1
|
Han SY, Xu XY, Zhou M, Su JW, Zhou HX, Han Y. The Prospective Use of Avapritinib in Relapsed/Refractory (R/R) RUNX1-RUNX1T1-Positive AML Patients With KIT Mutation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:e378-e382. [PMID: 39971668 DOI: 10.1016/j.clml.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Affiliation(s)
- Si-Yi Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Yan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jin-Wen Su
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Xia Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Javidan A, Azarboo A, Jalali S, Fallahtafti P, Azimi Shahrabi Y, Yaghmaie M, Fathi AT. Secondary Mutational and Cytogenetic Alterations in Core Binding Factor - Acute Myeloid Leukemia (CBF-AML): A Systematic Review and Meta-Analysis. Crit Rev Oncol Hematol 2025:104770. [PMID: 40412578 DOI: 10.1016/j.critrevonc.2025.104770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with core-binding factor alterations (CBF-AML) is a notable subtype characterized by specific genetic alterations and a relatively favorable prognosis. Despite this, a significant proportion of CBF-AML patients experience relapse, indicating the potential prognostic role of other co-present cytogenetic abnormalities and gene mutations. METHODS A comprehensive search of PubMed, Embase, Web of Science, and Scopus was conducted until April 2024. Studies evaluating the prognostic impact of secondary cytogenetic abnormalities and gene mutations in CBF-AML were included. Data extraction and quality assessment were independently performed by two reviewers. Statistical analysis was conducted using the "meta" package in R. RESULTS 59 studies met the inclusion criteria. Mutations in the c-kit gene were significantly associated with decreased overall survival (OS) and disease-free survival (DFS) at 1, 5, and 10-year intervals. Patients with high c-kit expression also showed poorer survival outcomes. The presence of FLT3-ITD mutations was also correlated with lower survival rates. N-RAS mutations were found to have a variable impact on prognosis, with some studies indicating a negative effect on OS and DFS, while others showed no significant impact. Certain secondary cytogenetic abnormalities, such as loss of sex chromosomes and trisomy 8, were found to negatively affect prognosis, while trisomy 22 was found to increase 5-year RFS. CONCLUSION Secondary cytogenetic abnormalities and mutations, notably c-KIT and FLT3-ITD, were linked to poorer survival in CBF-AML. Trisomy 8 also worsened prognosis, while N-RAS mutations showed minimal impact. These findings highlight the value of genetic profiling for risk stratification and personalized therapy. Future research should explore targeted treatments for high-risk subgroups to improve outcomes and reduce relapse rates.
Collapse
Affiliation(s)
- Amin Javidan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Azarboo
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sayeh Jalali
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Parisa Fallahtafti
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yeganeh Azimi Shahrabi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Autonomous Nervous System (ANS) Association, Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir T Fathi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wang Q, Hu Y, Gao L, Zhang S, Lu J, Li B, Li J, Yao Y, Cheng S, Xiao P, Hu S. Pediatric acute myeloid leukemia with t(8;21) and KIT mutation treatment with avapritinib post-stem cell transplantation: a report of four cases. Ann Hematol 2024; 103:3795-3800. [PMID: 38802593 PMCID: PMC11358162 DOI: 10.1007/s00277-024-05810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Acute myeloid leukemia (AML) with t(8;21) (q22;q22), which forms RUNX1::RUNX1T1 fusion gene, is classified as a favorable-risk group. However, the presence of mutations in KIT exon 17 results in an adverse prognosis in this group. Avapritinib, a novel tyrosine kinase inhibitor, was designed to target KIT mutation. We report a retrospective study of four pediatric patients with AML with t(8:21) and KIT exon 17 mutation who were treated with avapritinib, three of them failed to demethylate drugs and donor lymphocyte infusion targeting RUNX1::RUNX1T1-positivity after allogeneic hematopoietic stem cell transplantation (allo-HSCT). So far, all patients with RUNX1::RUNX1T1 positivity had turned negative after 1, 9, 7, 2 months of avapritinib treatment. The common adverse effect of avapritinib is neutropenia, which is well-tolerated. This case series indicates that avapritinib may be effective and safe for preemptive treatment of children with AML with t(8;21) and KIT mutation after allo-HSCT, providing a treatment option for preventing relapse after allo-HSCT.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Male
- Proto-Oncogene Proteins c-kit/genetics
- Translocation, Genetic
- Female
- Hematopoietic Stem Cell Transplantation
- Child
- Mutation
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Child, Preschool
- Pyrazines/therapeutic use
- Pyrazines/adverse effects
- Adolescent
- Pyrazoles/therapeutic use
- Pyrazoles/adverse effects
- Oncogene Proteins, Fusion/genetics
- Retrospective Studies
- Pyrroles/therapeutic use
- Pyrroles/adverse effects
- Core Binding Factor Alpha 2 Subunit/genetics
- Triazines
Collapse
Affiliation(s)
- Qingwei Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Yixin Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Senlin Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Bohan Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Jie Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Yanhua Yao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Shengqin Cheng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Peifang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China.
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China.
| |
Collapse
|
4
|
Han SY, Zhou HX, Han Y, Wu DP. [Analysis of the therapeutic effect of avatinib bridged allogeneic hematopoietic stem cell transplantation on 7 cases of recurrent/refractory RUNX1-RUNX1T1 positive acute myeloid leukemia with KIT mutations]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:767-771. [PMID: 39307724 PMCID: PMC11535555 DOI: 10.3760/cma.j.cn121090-20240526-00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Indexed: 09/25/2024]
Abstract
Objective: To evaluate the efficacy of avatinib plus allogeneic hematopoietic stem cell transplantation (allo-HSCT) for the treatment of recurrent/refractory RUNX1-RUNX1T1 positive acute myeloid leukemia (AML) with KIT mutations. Method: A retrospective study was conducted on the clinical data of seven relapsed/refractory AML patients containing the RUNX1-RUNX1T1 fusion gene and KIT mutation who received afatinib plus allo-HSCT treatment at the First Affiliated Hospital of Soochow University from June 2019 to June 2023. Results: The seven AML patients included one male and six females with a median age of 37 (18-56) years. All seven patients had KIT mutations (five positive for D816V and two positive for D816Y) . There were two refractory patients and five relapsed patients (all of whom had bone marrow recurrence) . All patients had to complete at least one course of treatment with afatinib before transplantation. Four patients achieved complete remission (CR) after treatment with afatinib, six patients had negative KIT gene mutations, and one had a decreased KIT gene mutational burden. There were three cases of unrelated identical transplantation and four cases of haploidentical transplantation. All patients received the modified Bu/Cy pretreatment regimen. After transplantation, all patients were successfully implanted and a bone marrow examination showed CR and minimal residual disease turned negative. Five patients exhibited negative fusion genes. Two patients died from infection following transplantation. Conclusion: Afatinib plus allo-HSCT may be an effective and safe new treatment strategy for RUNX1-RUNX1T1 positive AML patients with KIT-D816 mutation.
Collapse
Affiliation(s)
- S Y Han
- The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - H X Zhou
- The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Y Han
- The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - D P Wu
- The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| |
Collapse
|
5
|
Zhang Z, Yin J, Lian G, Bao X, Hu M, Liu Z, Yu Y, Mi R, Zuo Y, Shi P, Zheng W, Jiang Q, Chao H, Xiao P, Yu W, Han Y, Wu Y, Zeng Y, Wu D, Yang X, Chen S. A multicenter retrospective comparison between systemic mastocytosis with t(8;21) AML and KIT mutant t(8;21) AML. Blood Adv 2024; 8:889-894. [PMID: 38170739 PMCID: PMC10875270 DOI: 10.1182/bloodadvances.2023012006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Yin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Guoli Lian
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Hu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenfang Liu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Ruihua Mi
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabei Zuo
- Department of Hematology, Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hongying Chao
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Peifang Xiao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Weijuan Yu
- Department of Hematology Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| | - Yanqiu Han
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Yu Wu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zeng
- Department of Hematology, Chengdu Second People’s Hospital, Chengdu, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaofei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Srinivasan S, Dhamne C, Patkar N, Chatterjee G, Moulik NR, Chichra A, Pallath A, Tembhare P, Shetty D, Subramanian PG, Narula G, Banavali S. KIT exon 17 mutations are predictive of inferior outcome in pediatric acute myeloid leukemia with RUNX1::RUNX1T1. Pediatr Blood Cancer 2024; 71:e30791. [PMID: 38014874 DOI: 10.1002/pbc.30791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Pediatric core binding factor acute myeloid leukemia (CBF-AML), although considered a favorable risk subtype, exhibits variable outcomes primarily driven by additional genetic abnormalities, such as KIT mutations. PROCEDURE In this study, we examined the prognostic impact of KIT mutations in 130 pediatric patients with CBF-AML, treated uniformly at a single center over 4 years (2017-2021). KIT mutations were detected via next-generation sequencing using a myeloid panel comprising 52 genes for most patients. RESULTS Our findings revealed that KIT mutations were present in 31% of CBF-AML cases. Exon 17 KIT mutation was most commonly (72%) seen with notable occurrences at the D816 and N822 residue in 48% and 39% of cases, respectively. The 3-year cumulative incidence of relapse (CIR) and overall survival (OS) for patients with exon 17 KIT mutation were 36% and 40%, respectively, and was significantly worse in comparison to other site KIT mutations (3-year CIR: 11%; OS: 64%) and without KIT mutation (3-year CIR: 13%; OS:71%). Notably, the prognostic impact of KIT mutations was prominent in patients with RUNX1::RUNX1T1, but not in those with CBFB::MYH11 fusion. Additionally, a high KIT variant-allele frequency (VAF) (>33%) predicted for a higher disease relapse; 3-year CIR of 40% for VAF greater than 33% versus 7% for VAF less than 33%. When adjusted for site of KIT mutation and end-of-induction measurable residual disease, VAF greater than 33% correlated with poor OS (hazard ratio [HR]: 4.4 [95% CI: 1.2-17.2], p = .034). CONCLUSION Exon 17 KIT mutations serve as an important predictor of relapse in RUNX1::RUNX1T1 pediatric AML. In addition, a high KIT VAF may predict poor outcomes in these patients. These results emphasize the need to incorporate KIT mutational analysis into risk stratification for pediatric CBF-AML.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Chetan Dhamne
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nikhil Patkar
- Department of Hematopathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gaurav Chatterjee
- Department of Hematopathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nirmalya Roy Moulik
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Akanksha Chichra
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Aneeta Pallath
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Prashant Tembhare
- Department of Hematopathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Dhanalaxmi Shetty
- Department of Cancer Cytogenetics, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - P G Subramanian
- Department of Hematopathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gaurav Narula
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Shripad Banavali
- Department of Pediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Sperotto A, Stanghellini MTL, Peccatori J, De Marchi R, Piemontese S, Ciotti G, Basso M, Pierdomenico E, Fiore P, Ciceri F, Gottardi M. CPX-351 and allogeneic stem cell transplant for a therapy-related acute myeloid leukemia that developed after treatment of acute promyelocytic leukemia: a case report and review of the literature. Front Oncol 2024; 13:1291457. [PMID: 38333543 PMCID: PMC10850225 DOI: 10.3389/fonc.2023.1291457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MNs), which develop after cytotoxic, radiation, or immunosuppressive therapy for an unrelated disease, account for 7%-8% of acute myeloid leukemia (AML). Worse outcomes and consequently shortened survival are associated with t-MNs as compared with de novo AML. Therapy-related MNs are being reported with increasing frequency in successfully treated acute promyelocytic leukemia (APL), in particular, before the introduction of all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO). Considering the high curability of APL, t-MNs represent one of the prognosis-limiting factors in this setting of leukemia. We report our experience with a patient who developed t-AML 15 years after treatment for APL. Treatment included three cycles of chemotherapy with CPX-351 (Vyxeos, Jazz Pharmaceuticals) followed, as in remission, by an allogeneic hematopoietic stem cell transplant. A review of available literature was also included.
Collapse
Affiliation(s)
- Alessandra Sperotto
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, Istituto Oncologico Veneto-Istituto di Ricerca e Cura a Carattere Scientifico (IOV-IRCCS), Castelfranco Veneto, Italy
| | - Maria Teresa Lupo Stanghellini
- Hematology and Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milano, Italy
| | - Jacopo Peccatori
- Hematology and Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milano, Italy
| | - Roberta De Marchi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, Istituto Oncologico Veneto-Istituto di Ricerca e Cura a Carattere Scientifico (IOV-IRCCS), Castelfranco Veneto, Italy
| | - Simona Piemontese
- Hematology and Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Ciotti
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, Istituto Oncologico Veneto-Istituto di Ricerca e Cura a Carattere Scientifico (IOV-IRCCS), Castelfranco Veneto, Italy
| | - Marco Basso
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, Istituto Oncologico Veneto-Istituto di Ricerca e Cura a Carattere Scientifico (IOV-IRCCS), Castelfranco Veneto, Italy
| | - Elisabetta Pierdomenico
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, Istituto Oncologico Veneto-Istituto di Ricerca e Cura a Carattere Scientifico (IOV-IRCCS), Castelfranco Veneto, Italy
| | - Paolo Fiore
- Hematology and Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milano, Italy
| | - Fabio Ciceri
- Hematology and Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milano, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, Istituto Oncologico Veneto-Istituto di Ricerca e Cura a Carattere Scientifico (IOV-IRCCS), Castelfranco Veneto, Italy
| |
Collapse
|
8
|
Tashi T, Deininger MW. Management of Advanced Systemic Mastocytosis and Associated Myeloid Neoplasms. Immunol Allergy Clin North Am 2023; 43:723-741. [PMID: 37758409 DOI: 10.1016/j.iac.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Advanced systemic mastocytosis (AdvSM) is a heterogeneous group of disorders characterized by neoplastic mast cell-related organ damage and frequently associated with a myeloid neoplasm. The 3 clinical entities that comprise AdvSM are aggressive SM (ASM), SM-associated hematologic neoplasm, and mast cell leukemia. A gain-of-function KIT D816 V mutation is the primary oncogenic driver found in about 90% of all patients with AdvSM. Midostaurin, an oral multikinase inhibitor with activity against KIT D816V, and avapritinib, an oral selective KIT D816V inhibitor are approved for AdvSM.
Collapse
Affiliation(s)
- Tsewang Tashi
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, 2000, Circle of Hope, Salt Lake City, UT 84112, USA.
| | - Michael W Deininger
- Division of Hematology and Oncology, Medical College of Wisconsin, Versiti Blood Research Institute, 8727 West Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Abdellateif MS, Bayoumi AK, Mohammed MA. c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights. Onco Targets Ther 2023; 16:785-799. [PMID: 37790582 PMCID: PMC10544070 DOI: 10.2147/ott.s404648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
c-Kit is a type III receptor tyrosine kinase (RTK) that has an essential role in various biological functions including gametogenesis, melanogenesis, hematopoiesis, cell survival, and apoptosis. c-KIT aberrations, either overexpression or loss-of-function mutations, have been implicated in the pathogenesis and development of many cancers, including gastrointestinal stromal tumors, mastocytosis, acute myeloid leukemia, breast, thyroid, and colorectal cancer, making c-KIT an attractive molecular target for the treatment of cancers. Therefore, a lot of effort has been put into investigating the utility of tyrosine kinase inhibitors for the management of c-KIT mutated tumors. This review of the literature illustrates the role of c-KIT mutations in many cancers, aiming to provide insights into the role of TKIs as a therapeutic option for cancer patients with c-KIT aberrations. In conclusion, c-KIT is implicated in different types of cancer, and it could be a successful molecular target; however, proper detection of the underlying mutation type is required before starting the appropriate personalized therapy.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ahmed K Bayoumi
- Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
- Children’s Cancer Hospital 57357, Cairo, 11617, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| |
Collapse
|
11
|
Li Y, Deng K, Kaner J, Geyer JT, Ouseph M, Fang F, Xu K, Roboz G, Kluk MJ. Detection of Hybrid Fusion Transcripts, Aberrant Transcript Expression, and Specific Single Nucleotide Variants in Acute Leukemia and Myeloid Disorders with Recurrent Gene Rearrangements. Pathobiology 2023; 91:76-88. [PMID: 37490880 PMCID: PMC11524540 DOI: 10.1159/000532085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION A variety of gene rearrangements and molecular alterations are key drivers in the pathobiology of acute leukemia and myeloid disorders; current classification systems increasingly incorporate these findings in diagnostic algorithms. Therefore, clinical laboratories require versatile tools, which can detect an increasing number and variety of molecular and cytogenetic alterations of clinical significance. METHODS We validated an RNA-based next-generation sequencing (NGS) assay that enables the detection of: (i) numerous hybrid fusion transcripts (including rare/novel gene partners), (ii) aberrantly expressed EVI1 (MECOM) and IKZF1 (Del exons 4-7) transcripts, and (iii) hotspot variants in KIT, ABL1, NPM1 (relevant in the context of gene rearrangement status). RESULTS For hybrid fusion transcripts, the assay showed 98-100% concordance for known positive and negative samples, with an analytical sensitivity (i.e., limit of detection) of approximately 0.8% cells. Samples with underlying EVI1 (MECOM) translocations demonstrated increased EVI1 (MECOM) expression. Aberrant IKZF1 (Del exons 4-7) transcripts detectable with the assay were also present on orthogonal reverse transcription PCR. Specific hotspot mutations in KIT, ABL1, and NPM1 detected with the assay showed 100% concordance with orthogonal testing. Lastly, several illustrative samples are included to highlight the assay's clinically relevant contributions to patient workup. CONCLUSION Through its ability to simultaneously detect various gene rearrangements, aberrantly expressed transcripts, and hotspot mutations, this RNA-based NGS assay is a valuable tool for clinical laboratories to supplement other molecular and cytogenetic methods used in the diagnostic workup and in clinical research for patients with acute leukemia and myeloid disorders.
Collapse
Affiliation(s)
- Yuewei Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kaifang Deng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin Kaner
- Department of Medicine, Hematology and Medical Oncology, Clinical and Translational Leukemia Program, Weill Cornell Medicine, New York, NY, USA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Madhu Ouseph
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Frank Fang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kemin Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gail Roboz
- Department of Medicine, Hematology and Medical Oncology, Clinical and Translational Leukemia Program, Weill Cornell Medicine, New York, NY, USA
| | - Michael J. Kluk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Murray HC, Miller K, Brzozowski JS, Kahl RGS, Smith ND, Humphrey SJ, Dun MD, Verrills NM. Synergistic Targeting of DNA-PK and KIT Signaling Pathways in KIT Mutant Acute Myeloid Leukemia. Mol Cell Proteomics 2023; 22:100503. [PMID: 36682716 PMCID: PMC9986649 DOI: 10.1016/j.mcpro.2023.100503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, and The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia.
| |
Collapse
|
13
|
Katagiri S, Chi S, Minami Y, Fukushima K, Shibayama H, Hosono N, Yamauchi T, Morishita T, Kondo T, Yanada M, Yamamoto K, Kuroda J, Usuki K, Akahane D, Gotoh A. Mutated KIT Tyrosine Kinase as a Novel Molecular Target in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23094694. [PMID: 35563085 PMCID: PMC9103326 DOI: 10.3390/ijms23094694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
KIT is a type-III receptor tyrosine kinase that contributes to cell signaling in various cells. Since KIT is activated by overexpression or mutation and plays an important role in the development of some cancers, such as gastrointestinal stromal tumors and mast cell disease, molecular therapies targeting KIT mutations are being developed. In acute myeloid leukemia (AML), genome profiling via next-generation sequencing has shown that several genes that are mutated in patients with AML impact patients’ prognosis. Moreover, it was suggested that precision-medicine-based treatment using genomic data will improve treatment outcomes for AML patients. This paper presents (1) previous studies regarding the role of KIT mutations in AML, (2) the data in AML with KIT mutations from the HM-SCREEN-Japan-01 study, a genome profiling study for patients newly diagnosed with AML who are unsuitable for the standard first-line treatment (unfit) or have relapsed/refractory AML, and (3) new therapies targeting KIT mutations, such as tyrosine kinase inhibitors and heat shock protein 90 inhibitors. In this era when genome profiling via next-generation sequencing is becoming more common, KIT mutations are attractive novel molecular targets in AML.
Collapse
Affiliation(s)
- Seiichiro Katagiri
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Naoko Hosono
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takanobu Morishita
- Division of Hematology, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya-shi, Aichi 453-8511, Japan;
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, 2-1 S4 W25 Chuo-ku, Sapporo, Hokkaido 064-0804, Japan;
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Kazuhito Yamamoto
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan;
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| |
Collapse
|
14
|
Talami A, Bettelli F, Pioli V, Giusti D, Gilioli A, Colasante C, Galassi L, Giubbolini R, Catellani H, Donatelli F, Maffei R, Martinelli S, Barozzi P, Potenza L, Marasca R, Trenti T, Tagliafico E, Comoli P, Luppi M, Forghieri F. How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines 2021; 9:biomedicines9080953. [PMID: 34440157 PMCID: PMC8391269 DOI: 10.3390/biomedicines9080953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) carrying inv(16)/t(16;16), resulting in fusion transcript CBFB-MYH11, belongs to the favorable-risk category. However, even if most patients obtain morphological complete remission after induction, approximately 30% of cases eventually relapse. While well-established clinical features and concomitant cytogenetic/molecular lesions have been recognized to be relevant to predict prognosis at disease onset, the independent prognostic impact of measurable residual disease (MRD) monitoring by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), mainly in predicting relapse, actually supersedes other prognostic factors. Although the ELN Working Party recently indicated that patients affected with CBFB-MYH11 AML should have MRD assessment at informative clinical timepoints, at least after two cycles of intensive chemotherapy and after the end of treatment, several controversies could be raised, especially on the frequency of subsequent serial monitoring, the most significant MRD thresholds (most commonly 0.1%) and on the best source to be analyzed, namely, bone marrow or peripheral blood samples. Moreover, persisting low-level MRD positivity at the end of treatment is relatively common and not predictive of relapse, provided that transcript levels remain stably below specific thresholds. Rising MRD levels suggestive of molecular relapse/progression should thus be confirmed in subsequent samples. Further prospective studies would be required to optimize post-remission monitoring and to define effective MRD-based therapeutic strategies.
Collapse
Affiliation(s)
- Annalisa Talami
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Corrado Colasante
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Laura Galassi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rachele Giubbolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Hillary Catellani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Donatelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Silvia Martinelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy;
| | - Enrico Tagliafico
- Center for Genome Research, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy;
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| |
Collapse
|
15
|
Prognostic values of D816V KIT mutation and peri-transplant CBFB-MYH11 MRD monitoring on acute myeloid leukemia with CBFB-MYH11. Bone Marrow Transplant 2021; 56:2682-2689. [PMID: 34183780 DOI: 10.1038/s41409-021-01384-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Given the controversies in the prognostic value of KIT mutations and optimal thresholds and time points of MRD monitoring for AML with CBFB-MYH11, we retrospectively evaluated 88 patients who underwent allogeneic hematopoietic stem cell transplantation (Allo-HSCT, n = 60) or autologous HSCT (Auto-HSCT, n = 28). The D816V KIT mutation was significantly associated with post-transplant relapse, contrasting with other types of mutations in KIT. Pre- and post-transplant (3 months after transplant) CBFB-MYH11 MRD assessments were useful in predicting post-transplant relapse and poor survival. The optimal threshold was determined as a 2 log reduction at both time points. In multivariate analysis, the D816V KIT mutation and CBFB-MYH11 MRD assessments were independently associated with post-transplant relapse and survival. Stratification by D816V KIT and pre-transplant CBFB-MYH11 MRD status further distinguished the risk of relapse and survival. Auto-HSCT was superior to Allo-HSCT in MRD negative patients without D816V KIT, while Allo-HSCT trended to be superior to Auto-HSCT in patients with MRD positivity or the D816V KIT mutation. In conclusion, this study demonstrated the differentiated prognostic value of the D816V KIT mutation in AML with CBFB-MYH11 and clarified optimal time points and thresholds for CBFB-MYH11 MRD monitoring in the setting of HSCT.
Collapse
|
16
|
Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv 2021; 4:66-75. [PMID: 31899799 DOI: 10.1182/bloodadvances.2019000709] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
The prognostic impact of KIT mutation on core-binding factor acute myeloid leukemia (CBF-AML) remains controversial. We registered 199 newly diagnosed de novo CBF-AML patients, aged 16 to 64 years, who achieved complete remission. They received 3 courses of high-dose cytarabine therapy and no further treatment until hematological relapse. Mutations in exons 8, 10-11, and 17 of the KIT gene were analyzed. Furthermore, we analyzed mutations in 56 genes that are frequently identified in myeloid malignancies and evaluated minimal residual disease (MRD). The primary end point was relapse-free survival (RFS) according to KIT mutations. The RFS in KIT-mutated patients was inferior to that in unmutated patients (hazard ratio, 1.92; 95% confidence interval, 1.23-3.00; P = .003). Based on subgroup analysis, KIT mutations had a prognostic impact in patients with RUNX1-RUNX1T1, but not in those with CBFB-MYH11, and only exon 17 mutation had a significant prognostic impact. Multivariate Cox regression analysis with stepwise selection revealed that the KIT exon 17 mutation and the presence of extramedullary tumors in patients with RUNX1-RUNX1T1, and loss of chromosome X or Y and NRAS mutation in patients with CBFB-MYH11 were poor prognostic factors for RFS. MRD was evaluated in 112 patients, and it was associated with a poorer RFS in the patients with CBFB-MYH11, but not in those with RUNX1-RUNX1T1. These results suggested that it is necessary to separately evaluate AML with RUNX1-RUNX1T1 or CBFB-MYH11 according to appropriate prognostic factors. This study was registered at www.umin.ac.jp/ctr/ as #UMIN000003434.
Collapse
|
17
|
Doucette K, Karp J, Lai C. Advances in therapeutic options for newly diagnosed, high-risk AML patients. Ther Adv Hematol 2021; 12:20406207211001138. [PMID: 33995985 PMCID: PMC8111550 DOI: 10.1177/20406207211001138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by clonal proliferation of neoplastic immature precursor cells. AML impacts older adults and has a poor prognosis. Despite recent advances in treatment, AML is complex, with both genetic and epigenetic aberrations in the malignant clone and elaborate interactions with its microenvironment. We are now able to stratify patients on the basis of specific clinical and molecular features in order to optimize individual treatment strategies. However, our understanding of the complex nature of these molecular abnormalities continues to expand the defining characteristics of high-risk mutations. In this review, we focus on genetic and microenvironmental factors in adverse risk AML that play critical roles in leukemogenesis, including those not described in an European LeukemiaNet adverse risk group, and describe therapies that are currently in the clinical arena, either approved or under development.
Collapse
Affiliation(s)
- Kimberley Doucette
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith Karp
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Catherine Lai
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| |
Collapse
|
18
|
Duan W, Liu X, Zhao X, Jia J, Wang J, Gong L, Jiang Q, Zhao T, Wang Y, Zhang X, Xu L, Shi H, Chang Y, Liu K, Huang X, Qin Y, Jiang H. Both the subtypes of KIT mutation and minimal residual disease are associated with prognosis in core binding factor acute myeloid leukemia: a retrospective clinical cohort study in single center. Ann Hematol 2021; 100:1203-1212. [PMID: 33474629 DOI: 10.1007/s00277-021-04432-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/08/2023]
Abstract
Core binding factor acute myeloid leukemia (CBF-AML), including cases with KIT mutation, is currently defined as a low-risk AML. However, some patients have poor response to treatment, and the prognostic significance of KIT mutation is still controversial. This study aimed to explore the prognostic significance of different KIT mutation subtypes and minimal residual disease (MRD) in CBF-AML. We retrospectively evaluated continuous patients diagnosed with CBF-AML in our center between January 2014 and April 2019. Of the 215 patients, 147 (68.4%) and 68 (31.6%) patients were RUNX1-RUNX1T1- and CBFB-MYH11 positive, respectively. KIT mutations were found in 71 (33.0%) patients; of them, 38 (53.5%) had D816/D820 mutations. After excluding 10 patients who died or were lost to follow-up within a half year, 42.0% (n = 86) of the remaining 205 patients received allogeneic hematopoietic stem cell transplantation (allo-HSCT). An MRD > 0.1% at the end of two cycles of consolidation predicted relapse (P < 0.001). Multivariate analysis showed that D816 or D820 mutations and MRD > 0.1% at the end of two cycles of consolidation were independent adverse factors affecting relapse-free survival (RFS) and overall survival (OS). Allo-HSCT could improve RFS (74.4% vs. 34.6%, P < 0.001) and OS (78.1% vs. 52.3%, P = 0.002). In conclusion, high-risk CBF-AML patients must be identified before treatment. D816/D820 mutation, MRD > 0.1% at the end of two cycles of consolidation chemotherapy predicted poor survivals, and allo-HSCT can improve the survival of properly identified patients.
Collapse
Affiliation(s)
- Wenbing Duan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaohong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaosu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jinsong Jia
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lizhong Gong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ting Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hongxia Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yazhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China.
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
- Peking University Institute of Hematology, Xizhimen South Street No. 11, Peking University People's Hospital, Beijing, 100044, China.
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematology Disease, Beijing, China.
- Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
- Peking University Institute of Hematology, Xizhimen South Street No. 11, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
19
|
Cho BS, Min GJ, Park SS, Park S, Jeon YW, Shin SH, Yahng SA, Yoon JH, Lee SE, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Kim DW, Wook-Lee J, Kim MS, Kim YG, Kim HJ. Prognostic Impacts of D816V KIT Mutation and Peri-Transplant RUNX1-RUNX1T1 MRD Monitoring on Acute Myeloid Leukemia with RUNX1-RUNX1T1. Cancers (Basel) 2021; 13:336. [PMID: 33477584 PMCID: PMC7831332 DOI: 10.3390/cancers13020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The prognostic significance of KIT mutations and optimal thresholds and time points of measurable residual disease (MRD) monitoring for acute myeloid leukemia (AML) with RUNX1-RUNX1T1 remain controversial in the setting of hematopoietic stem cell transplantation (HSCT). We retrospectively evaluated 166 high-risk patients who underwent allogeneic (Allo-HSCT, n = 112) or autologous HSCT (Auto-HSCT, n = 54). D816V KIT mutation, a subtype of exon 17 mutations, was significantly associated with post-transplant relapse and poor survival, while other types of mutations in exons 17 and 8 were not associated with post-transplant relapse. Pre- and post-transplant RUNX1-RUNX1T1 MRD assessments were useful for predicting post-transplant relapse and poor survival with a higher sensitivity at later time points. Survival analysis for each stratified group by D816V KIT mutation and pre-transplant RUNX1-RUNX1T1 MRD status demonstrated that Auto-HSCT was superior to Allo-HSCT in MRD-negative patients without D816V KIT mutation, while Allo-HSCT was superior to Auto-HSCT in MRD-negative patients with D816V KIT mutation. Very poor outcomes of pre-transplant MRD-positive patients with D816V KIT mutation suggested that this group should be treated in clinical trials. Risk stratification by both D816V KIT mutation and RUNX1-RUNX1T1 MRD status will provide a platform for decision-making or risk-adapted therapeutic approaches.
Collapse
Affiliation(s)
- Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Gi-June Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung-Soo Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Young-Woo Jeon
- Department of Hematology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Seung-Hwan Shin
- Department of Hematology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Seung-Ah Yahng
- Department of Hematology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ki-Seong Eom
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chang-Ki Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok-Goo Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
| | - Dong-Wook Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jong Wook-Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
| | - Myung-Shin Kim
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (M.-S.K.); (Y.-G.K.)
| | - Yong-Goo Kim
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (M.-S.K.); (Y.-G.K.)
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-S.C.); (G.-J.M.); (S.-S.P.); (S.P.); (J.-H.Y.); (S.-E.L.); (K.-S.E.); (Y.-J.K.); (S.L.); (C.-K.M.); (S.-G.C.); (D.-W.K.); (J.-W.L.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
20
|
Allogeneic Hematopoietic Stem Cell Transplantation Improved Survival for Adult Core Binding Factor Acute Myelogenous Leukemia Patients with Intermediate- and Adverse-Risk Genetics in the 2017 European LeukemiaNet. Transplant Cell Ther 2020; 27:173.e1-173.e9. [PMID: 33830030 DOI: 10.1016/j.jtct.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
The use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for consolidation therapy in patients with core binding factor (CBF) acute myelogenous leukemia (AML) with intermediate- and adverse-risk genetics remains controversial. We retrospectively analyzed the clinical outcomes of 286 CBF-AML patients with intermediate- and adverse-risk genetics in first complete remission following consolidation with chemotherapy (n = 122), auto-HSCT (n = 27), or allo-HSCT (n = 137) between January 2009 and December 2018 at our center. Patients with allo-HSCT showed superior 5-year overall survival (OS; 74% versus 38% or 49%; P < .001) and progression-free survival (PFS; 74% versus 26% or 49%; P < .001) and lower cumulative incidence of relapse (CIR; 9% versus 69% or 31%; P < .001) compared with chemotherapy alone or auto-HSCT. In the allo-HSCT group, minimal residual disease (MRD) at the second and third months after allo-HSCT could predict relapse in t(8;21) patients (2 months: PCIR = .002; 3 months: PCIR < .001) but not in inv(16) patients. Moreover, positive MRD after 2 courses of consolidation chemotherapy before allo-HSCT was an independent risk factor for survival in CBF-AML patients with intermediate- and adverse-risk genetics, whereas haploidentical donor (haplo-) HSCT could overcome the adverse prognosis (5-year OS, 87%; 5-year PFS, 81%; 5-year CIR, 7%). Allo-HSCT could be the optimal first-line consolidation therapy for patients with intermediate- and adverse-risk genetics, and haplo-HSCT could improve survival for patients with positive MRD after 2 courses of consolidation chemotherapy.
Collapse
|
21
|
Fan J, Gao L, Chen J, Hu S. Influence of KIT mutations on prognosis of pediatric patients with core-binding factor acute myeloid leukemia: a systematic review and meta-analysis. Transl Pediatr 2020; 9:726-733. [PMID: 33457293 PMCID: PMC7804481 DOI: 10.21037/tp-20-102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/16/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND KIT mutations are common in children with core-binding factor (CBF) acute myeloid leukemia (AML). The relationship between KIT mutations and their prognostic value has generated intense attention during the past years. Although studies have evaluated the role of KIT mutations, their prognostic implications remain unclear. To clarify this issue, we conducted this meta-analysis. METHODS We electronically searched the PubMed, Embase and Cochrane Library databases. Twelve studies met our selection criteria. These studies involved 1,123 children with CBF-AML including 256 children with KIT mutations. We investigated the effects of KIT mutations on the complete remission (CR), relapse, event-free survival (EFS), disease-free survival (DFS), and overall survival (OS) rates of pediatric CBF-AML patients. RESULTS KIT mutations were not associated with CR [relative risk: 1.01, 95% confidence interval (CI): 0.94-1.09, P=0.761], but were associated with higher relapse risk [hazard ratio (HR): 1.69, 95% CI: 1.32-2.16, P=0.000], lower OS (HR: 3.05, 95% CI: 1.23-7.60, P=0.016), lower DFS (HR: 1.65, 95% CI: 1.07-2.54, P=0.024), and lower EFS (HR: 3.08, 95% CI: 1.02-9.32, P=0.046). CONCLUSIONS Our analysis suggested that KIT mutations had an adverse prognostic effect in pediatric CBF-AML patients. The initial diagnostic workup for these patients should include tests for the detection of KIT mutations, and the treatment may need to be adjusted when these mutations are found to be present.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Li Gao
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Yan D, Wei H, Lai X, Ge Y, Xu S, Meng J, Wen T, Liu J, Zhang W, Wang J, Xu H. Co-delivery of homoharringtonine and doxorubicin boosts therapeutic efficacy of refractory acute myeloid leukemia. J Control Release 2020; 327:766-778. [DOI: 10.1016/j.jconrel.2020.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
|
23
|
Alnagar AA, Mahmoud AA, El Gammal MM, Hamdy N, Samra MA. Outcome of Core Binding Factor Acute Myeloid Leukemia by Receptor Tyrosine Kinase Mutation. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:459-467. [PMID: 32229198 DOI: 10.1016/j.clml.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Core binding factor acute myeloid leukemia (CBF-AML) encodes 2 recurrent cytogenetic abnormalities, t(8;21) and inv(16), which carries an overall good prognosis. However, some patients will develop a relapse. We sought define the unfavorable group of CBF-AML by analysis of (c-KIT and FLT3-ITD) and to correlate them with treatment outcome. PATIENTS AND METHODS We performed a prospective study of 70 patients with CBF-AML diagnosed and managed at the medical oncology department of the (National Cancer Institute), Cairo University, with analysis of c-KIT and FLT3 mutations. All patients had received "3 + 7" induction, followed by 3 to 4 courses of high-dose cytarabine consolidation. The institutional review board approved the present study. RESULTS The median patient age was 31 years (range, 18-60 years), with a male/female ratio of 4:3. Of the 70 patients, 42 (60%) had t(8;21) and 28 had inv(16) (40%). c-KIT mutations (exons 8 and 17) were detected in 10 of 52 tested patients, and FLT3-ITD was detected in 3 of 70 patients. Patients with inv(16) experienced more lymphadenopathy and splenomegaly, had a higher median initial leukocyte count. Hepatitis C antibody positivity (8 of 42) was exclusively present in patients with t(8;21). The median overall survival (OS) was 19.5 months, and the median disease-free survival (DFS) was not reached. Patients with inv(16) had near-significant (P = .07) better DFS than patients with t(8;21). c-KIT mutations had no significant effect on OS or DFS. However, reverse tyrosine kinase mutations had a negative effect on DFS but not OS (P = .04). CONCLUSION CBF-AML with reverse tyrosine kinase mutation conveys a worse prognosis. Hepatitis C virus antibody positivity might be associated with t(8;21) AML and inv(16) with more extramedullary disease.
Collapse
Affiliation(s)
- Ahmed A Alnagar
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Asmaa A Mahmoud
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mosaad M El Gammal
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naera Hamdy
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed A Samra
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Badar T, Szabo A, Sallman D, Komrojki R, Lancet J, Padron E, Song J, Hussaini MO. Interrogation of molecular profiles can help in differentiating between MDS and AML with MDS-related changes. Leuk Lymphoma 2020; 61:1418-1427. [DOI: 10.1080/10428194.2020.1719089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Talha Badar
- Division of Hematology and Oncology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Hematology and Oncology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, WI, USA
| | - David Sallman
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Rami Komrojki
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jefferey Lancet
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL, USA
| | - Mohammad Omar Hussaini
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
25
|
Wang B, Zhang J, Hua X, Li H, Wang Z, Yang B. Clinical heterogeneity under induction with different dosages of cytarabine in core binding factor acute myeloid leukaemia. Sci Rep 2020; 10:685. [PMID: 31959790 PMCID: PMC6971028 DOI: 10.1038/s41598-020-57414-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Repeated cycles of post-remission high-dose cytarabine (Ara-C) have been suggested to improve survival in core binding factor (CBF) acute myeloid leukaemia (AML). High-dose Ara-C used for induction regimens has also been reported to be associated with increased treatment-related mortality (TRM). Few data are available about intermediate-dose Ara-C serving as induction therapy. The aim of our study was to compare the tolerance and outcomes of standard- and intermediate-dose levels of Ara-C as induction in CBF AML and to analyse the clinical heterogeneity of the two AML entities under these induction settings. We retrospectively investigated the outcomes in adults with CBF AML induced with regimens based on standard-dose Ara-C at 100 to 200 mg/m2 or intermediate-dose Ara-C at 1,000 mg/m2. In total, 152 patients with t(8; 21) and 54 patients with inv(16) AML were administered an induction regimen containing anthracyclines plus either standard- or intermediate-dose Ara-C. After a single course of induction, the complete remission (CR) rate in the inv(16) cohort was 52/52 (100%), higher than the 127/147 (86.4%) in the t(8; 21) cohort (P = 0.005). Intermediate-dose Ara-C (HR = 9.931 [2.135-46.188], P = 0.003) and negative KITmut (HR = 0.304 [0.106-0.874], P = 0.027) independently produced an increased CR rate in the t(8; 21) cohort. Positive CD19 expression (HR = 0.133 [0.045-0.387], P = 0.000) and sex (male) (HR = 0.238 [0.085-0.667], P = 0.006) were associated with superior leukaemia-free survival (LFS) in the t(8; 21) cohort independently of KITmut status or the induction regimen. We conclude that intermediate-dose Ara-C is superior to standard-dose Ara-C for induction of remission in t(8; 21) AML, and CD19 status and sex independently confer prognostic significance for LFS. The KITmut status alone does not have an independent effect on survival in t(8; 21) AML. More intensive induction therapy is unnecessary in inv(16) AML.
Collapse
Affiliation(s)
- Biao Wang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Jihong Zhang
- Shengjing Hospital of China Medical University, Blood Research Laboratory, Shenyang, 110000, China
| | - Xiaoying Hua
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Haiqian Li
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Zhilin Wang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Bin Yang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China.
| |
Collapse
|
26
|
Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT. Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia. J Med Chem 2019; 62:11135-11150. [DOI: 10.1021/acs.jmedchem.9b01229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Tsu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Cheng-Tai Lu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Pei-Chen Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Tsung-Sheng Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-You Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ya-Ling Weng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Fang-Chun Kung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Yu-Chieh Su
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Kuo-Wei Huang
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Ling-Hui Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Ching-Cheng Hsueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Kuei-Jung Yen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Po-Chu Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704, Taiwan R.O.C
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan R.O.C
| |
Collapse
|
27
|
|
28
|
Tarlock K, Alonzo TA, Wang YC, Gerbing RB, Ries R, Loken MR, Pardo L, Hylkema T, Joaquin J, Sarukkai L, Raimondi SC, Hirsch B, Sung L, Aplenc R, Bernstein I, Gamis AS, Meshinchi S, Pollard JA. Functional Properties of KIT Mutations Are Associated with Differential Clinical Outcomes and Response to Targeted Therapeutics in CBF Acute Myeloid Leukemia. Clin Cancer Res 2019; 25:5038-5048. [PMID: 31182436 DOI: 10.1158/1078-0432.ccr-18-1897] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/03/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE KIT mutations (KIT +) are common in core binding factor (CBF) AML and have been associated with varying prognostic significance. We sought to define the functional and clinical significance of distinct KIT mutations in CBF pediatric AML. EXPERIMENTAL DESIGN Following transfection of exon 17 (E17) and exon 8 (E8) mutations into HEK293 and Ba/F3 cells, KIT phosphorylation, cytokine-independent growth, and response to tyrosine kinase inhibitors (TKI) were evaluated. Clinical outcomes of patients treated on COG AAML0531 (NCT01407757), a phase III study of gemtuzumab ozogamicin (GO), were analyzed according to mutation status [KIT + vs. wild-type KIT (KIT -)] and mutation location (E8 vs. E17). RESULTS KIT mutations were detected in 63 of 205 patients (31%); 22 (35%) involved only E8, 32 (51%) only E17, 6 (10%) both exons, and 3 (5%) alternative exons. Functional studies demonstrated that E17, but not E8, mutations result in aberrant KIT phosphorylation and growth. TKI exposure significantly affected growth of E17, but not E8, transfected cells. Patients with KIT + CBF AML had overall survival similar to those with KIT - (78% vs. 81%, P = 0.905) but higher relapse rates (RR = 43% vs. 21%; P = 0.005). E17 KIT + outcomes were inferior to KIT - patients [disease-free survival (DFS), 51% vs. 73%, P = 0.027; RR = 21% vs. 46%, P = 0.007)], although gemtuzumab ozogamicin abrogated this negative prognostic impact. E8 mutations lacked significant prognostic effect, and GO failed to significantly improve outcome. CONCLUSIONS E17 mutations affect prognosis in CBF AML, as well as response to GO and TKIs; thus, clinical trials using both agents should be considered for KIT + patients.
Collapse
Affiliation(s)
- Katherine Tarlock
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Todd A Alonzo
- University of Southern California Keck School of Medicine, Los Angeles, California.,Children's Oncology Group, Monrovia, California
| | | | | | - Rhonda Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jason Joaquin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Leela Sarukkai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Betsy Hirsch
- University of Minnesota Cancer Center, Minneapolis, Minnesota
| | - Lillian Sung
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Aplenc
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Alan S Gamis
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Jessica A Pollard
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Jawhar M, Döhner K, Kreil S, Schwaab J, Shoumariyeh K, Meggendorfer M, Span LLF, Fuhrmann S, Naumann N, Horny HP, Sotlar K, Kubuschok B, von Bubnoff N, Spiekermann K, Heuser M, Metzgeroth G, Fabarius A, Klein S, Hofmann WK, Kluin-Nelemans HC, Haferlach T, Döhner H, Cross NCP, Sperr WR, Valent P, Reiter A. KIT D816 mutated/CBF-negative acute myeloid leukemia: a poor-risk subtype associated with systemic mastocytosis. Leukemia 2019; 33:1124-1134. [PMID: 30635631 PMCID: PMC6756067 DOI: 10.1038/s41375-018-0346-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023]
Abstract
KIT D816 mutations (KIT D816mut) are strongly associated with systemic mastocytosis (SM) but are also detectable in acute myeloid leukemia (AML), where they represent an adverse prognostic factor in combination with core binding factor (CBF) fusion genes. Here, we evaluated the clinical and molecular features of KIT D816mut/CBF-negative (CBFneg) AML, a previously uncharacterized combination. All KIT D816mut/CBFneg cases (n = 40) had histologically proven SM with associated AML (SM-AML). Molecular analyses revealed at least one additional somatic mutation (median, n = 3) beside KIT D816 (e.g., SRSF2, 38%; ASXL1, 31%; RUNX1, 34%) in 32/32 (100%) patients. Secondary AML evolved in 29/40 (73%) patients from SM ± associated myeloid neoplasm. Longitudinal molecular and cytogenetic analyses revealed the acquisition of new mutations and/or karyotype evolution in 15/16 (94%) patients at the time of SM-AML. Median overall survival (OS) was 5.4 months. A screen of two independent AML databases (AMLdatabases) revealed remarkable similarities between KIT D816mut/CBFneg SM-AML and KIT D816mut/CBFneg AMLdatabases (n = 69) with regard to KIT D816mut variant allele frequency, mutation profile, aberrant karyotype, and OS suggesting underlying SM in a significant proportion of AMLdatabases patients. Bone marrow histology and reclassification as SM-AML has important clinical implications regarding prognosis and potential inclusion of KIT inhibitors in treatment concepts.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alleles
- Biomarkers
- Bone Marrow/pathology
- Core Binding Factors/genetics
- Cytogenetic Analysis
- Female
- Gene Frequency
- High-Throughput Nucleotide Sequencing
- Humans
- In Situ Hybridization, Fluorescence
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Male
- Mastocytosis, Systemic/genetics
- Mastocytosis, Systemic/metabolism
- Mastocytosis, Systemic/pathology
- Middle Aged
- Mutation
- Proto-Oncogene Proteins c-kit/genetics
Collapse
Affiliation(s)
- Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Sebastian Kreil
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Khalid Shoumariyeh
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | | | - Lambert L F Span
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan Fuhrmann
- Department of Hematology and Oncology, HELIOS Hospital, Berlin, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Karl Sotlar
- Institute of Pathology, Medical University of Salzburg, Salzburg, Austria
| | - Boris Kubuschok
- Department of Internal Medicine I, José-Carreras Centrum for Immuno- and Gene Therapy, University of Saarland Medical School, Homburg/Saar, Germany
| | - Nikolas von Bubnoff
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | | | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Klein
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Hanneke C Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
30
|
Cioccio J, Claxton D. Therapy of acute myeloid leukemia: therapeutic targeting of tyrosine kinases. Expert Opin Investig Drugs 2019; 28:337-349. [DOI: 10.1080/13543784.2019.1584610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Joseph Cioccio
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David Claxton
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
31
|
Singhal P, Kumar H, Malik A, Sharma S. De novo acute myeloid leukemia with t(8;21)(q22;q22) and monosomy 7. JOURNAL OF APPLIED HEMATOLOGY 2019. [DOI: 10.4103/joah.joah_40_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Shang L, Chen X, Liu Y, Cai X, Shi Y, Shi L, Li Y, Song Z, Zheng B, Sun W, Ru K, Mi Y, Wang J, Wang H. The immunophenotypic characteristics and flow cytometric scoring system of acute myeloid leukemia with t(8;21) (q22;q22); RUNX1-RUNX1T1. Int J Lab Hematol 2018; 41:23-31. [PMID: 30264491 DOI: 10.1111/ijlh.12916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The translocation t(8;21) is one of the most frequent chromosome translocations in AML. Molecular (cyto)genetics is regarded as the gold standard for diagnosis. However, due to the complicated variety of AML-related genetic abnormalities, comprehensive screening for all of these abnormalities may not be cost-effective. Therefore, a flow cytometric (FC) scoring system was generated in this study for rapid screening and diagnosis of t(8;21)AML. METHODS The immunophenotypic characteristics of leukemic cells and neutrophils in cases with t(8;21) AML or other subtypes of AML were analyzed to find a method for the flow diagnosis of t(8;21) AML. RESULTS In this study, we picked six FC features pointing to the diagnosis of t(8;21) AML: The blasts show high-intensity expression of CD34; aberrant expression of CD19, cCD79a, and CD56 in myeloblasts; co-expression of CD56 in neutrophils, especially in immature neutrophils; and a maturity disturbance in granulocytes. A six-point score was devised using these features. By ROC analysis, the AUC was 0.952, and the sensitivity, specificity, PPV, and NPV were 0.86, 0.90. 0.91, and 0.84 when the score was ≥3 points. The score was then prospectively validated on an independent cohort, and the AUC of the ROC curve for the validation cohort was 0.975. When the cutoff value was set at 3, the obtained sensitivity and specificity values were 0.91 and 0.94, respectively. CONCLUSIONS The FC score described can be used for the identification and rapid screening of t(8;21) AML.
Collapse
Affiliation(s)
- Lei Shang
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xuejing Chen
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Liu
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojin Cai
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yin Shi
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lihui Shi
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuanyuan Li
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Song
- Medical Service Division, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Bin Zheng
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wanchen Sun
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kun Ru
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yingchang Mi
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huijun Wang
- Department of Hematopathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
33
|
Gong BF, Tan YH, Liao AJ, Li J, Mao YY, Lu N, Ding Y, Jiang EL, Gong TJ, Jia ZL, Sun Y, Li BZ, Liu SC, Du J, Huang WR, Wei H, Wang JX. [Impact of KIT D816 mutation on salvage therapy in relapsed acute myeloid leukemia with t(8;21) translocation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:460-464. [PMID: 30032560 PMCID: PMC7342923 DOI: 10.3760/cma.j.issn.0253-2727.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/05/2022]
Abstract
Objective: To evaluate the impact of KIT D816 mutation on the salvage therapy in relapsed acute myeloid leukemia (AML) with t(8;21) translocation. Method: The characteristics of the first relapsed AML with t(8;21) translocation from 10 hospitals were retrospectively collected, complete remission (CR(2)) rate after one course salvage chemotherapy and the relationship between KIT mutation and CR(2) rate was analyzed. Results: 68 cases were enrolled in this study, and 30 cases (44.1%) achieved CR(2). All patients received KIT mutation detection, and KIT D816 mutation was identified in 26 cases. The KIT D816 positive group had significantly lower CR(2) compared with non-KIT D816 group (23.1% vs 57.1%, χ(2)=7.559, P=0.006), and patients with longer CR(1) duration achieved significantly higher CR(2) than those with CR(1) duration less than 12 months (74.1% vs 31.9%, χ(2)=9.192, P=0.002). KIT D816 mutation was tightly related to shorter CR(1) duration. No significant difference of 2 years post relapse survival was observed between KIT D816 mutation and non-KIT D816 mutation group. Conclusion: KIT D816 mutation at diagnosis was an adverse factor on the salvage therapy in relapsed AML with t(8;21) translocation, significantly related to shorter CR1 duration, and can be used for prediction of salvage therapy response. KIT D816 mutation could guide the decision-making of salvage therapy in relapsed AML with t(8;21) translocation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - J X Wang
- Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin Clinical Research Center for Blood Diseases, Tianjin 300020, China
| |
Collapse
|
34
|
Tan Y, Liu Z, Wang W, Zhu G, Guo J, Chen X, Zheng C, Xu Z, Chang J, Ren F, Wang H. Monitoring of clonal evolution of double C-KIT exon 17 mutations by Droplet Digital PCR in patients with core-binding factor acute myeloid leukemia. Leuk Res 2018; 69:89-93. [PMID: 29705537 DOI: 10.1016/j.leukres.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 11/15/2022]
Abstract
C-KIT gene mutations result in the constitutive activation of tyrosine kinase activity, and greatly affect the pathogenesis and prognosis of core-binding factor acute myeloid leukemia (CBF-AML). C-KIT mutations are often found as single point mutations. However, the rate of double mutations has recently increased in AML patients. In this study, we detected six cases (18.8%) harboring double C-KIT exon17 mutations in 75 patients with CBF-AML. The clone composition and dynamic evolution were analyzed by sequencing and droplet digital PCR (ddPCR). Results revealed that these double mutations can be occurred in either the same or different clones. Different clones of double mutations may result in different sensitivity to the treatment of CBF-AML. The clones with N822 mutation responded better to treatment as compared to those with D816 mutation. Moreover, D816 clone was readily transformed into a predominant clone at relapse. Meanwhile, the predominant clones in the same patient may change during the progression of disease. The emerging mutation can originate from a small quantity of clones at diagnosis or newly acquired during the course of disease. Furthermore, patients with double mutations had better overall survival (OS) and event-free survival (EFS) than those with single mutation, but the differences did not reach statistical significance (P > 0.05). The ddPCR is an effective method for monitoring clonal evolution in patients with CBF-AML.
Collapse
Affiliation(s)
- Yanhong Tan
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhuang Liu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Wenjun Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Guiyang Zhu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jianli Guo
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Xiuhua Chen
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chaofeng Zheng
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhifang Xu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jianmei Chang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Fanggang Ren
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Hongwei Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
35
|
Park S, Choi H, Kim HJ, Ahn JS, Kim HJ, Kim SH, Mun YC, Jung CW, Kim D. Genome-wide genotype-based risk model for survival in core binding factor acute myeloid leukemia patients. Ann Hematol 2018; 97:955-965. [DOI: 10.1007/s00277-018-3260-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
|
36
|
Shin SY, Lee ST, Kim HJ, Cho EH, Kim JW, Park S, Jung CW, Kim SH. Mutation profiling of 19 candidate genes in acute myeloid leukemia suggests significance of DNMT3A mutations. Oncotarget 2018; 7:54825-54837. [PMID: 27359055 PMCID: PMC5342384 DOI: 10.18632/oncotarget.10240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
We selected 19 significantly-mutated genes in AMLs, including FLT3, DNMT3A, NPM1, TET2, RUNX1, CEBPA, WT1, IDH1, IDH2, NRAS, ASXL1, SETD2, PTPN11, TP53, KIT, JAK2, KRAS, BRAF and CBL, and performed massively parallel sequencing for 114 patients with acute myeloid leukemias, mainly including those with normal karyotypes (CN-AML). More than 80% of patients had at least one mutation in the genes tested. DNMT3A mutation was significantly associated with adverse outcome in addition to conventional risk stratification such as the European LeukemiaNet (ELN) classification. We observed clinical usefulness of mutation testing on multiple target genes and the association with disease subgroups, clinical features and prognosis in AMLs.
Collapse
Affiliation(s)
- Sang-Yong Shin
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Hospital and Research Institute, National Cancer Center, Goyang, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jong-Won Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Silvia Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
37
|
D816 mutation of the KIT gene in core binding factor acute myeloid leukemia is associated with poorer prognosis than other KIT gene mutations. Ann Hematol 2017; 96:1641-1652. [PMID: 28762080 DOI: 10.1007/s00277-017-3074-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2023]
Abstract
The clinical impact of KIT mutations in core binding factor acute myeloid leukemia (CBF-AML) is still unclear. In the present study, we analyzed the prognostic significance of each KIT mutation (D816, N822K, and other mutations) in Japanese patients with CBF-AML. We retrospectively analyzed 136 cases of CBF-AML that had gone into complete remission (CR). KIT mutations were found in 61 (45%) of the patients with CBF-AML. D816, N822K, D816 and N822K, and other mutations of the KIT gene were detected in 29 cases (21%), 20 cases (15%), 7 cases (5%), and 5 cases (4%), respectively. The rate of relapse-free survival (RFS) and overall survival (OS) in patients with D816 and with both D816 and N822K mutations was significantly lower than in patients with other or with no KIT mutations (RFS: p < 0.001, OS: p < 0.001). Moreover, stratified analysis of the chromosomal abnormalities t(8;21)(q22;q22) and inv(16)(p13.1q22), t(16;16)(p13.1;q22) showed that D816 mutation was associated with a significantly worse prognosis. In a further multivariate analysis of RFS and OS, D816 mutation was found to be an independent risk factor for significantly poorer prognosis. In the present study, we were able to establish that, of all KIT mutations, D816 mutation alone is an unfavorable prognostic factor.
Collapse
|
38
|
The spleen microenvironment influences disease transformation in a mouse model of KIT D816V-dependent myeloproliferative neoplasm. Sci Rep 2017; 7:41427. [PMID: 28128288 PMCID: PMC5269732 DOI: 10.1038/srep41427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
Activating mutations leading to ligand-independent signaling of the stem cell factor receptor KIT are associated with several hematopoietic malignancies. One of the most common alterations is the D816V mutation. In this study, we characterized mice, which conditionally express the humanized KITD816V receptor in the adult hematopoietic system to determine the pathological consequences of unrestrained KIT signaling during blood cell development. We found that KITD816V mutant animals acquired a myeloproliferative neoplasm similar to polycythemia vera, marked by a massive increase in red blood cells and severe splenomegaly caused by excessive extramedullary erythropoiesis. Moreover, we found mobilization of stem cells from bone marrow to the spleen. Splenectomy prior to KITD816V induction prevented expansion of red blood cells, but rapidly lead to a state of aplastic anemia and bone marrow fibrosis, reminiscent of post polycythemic myeloid metaplasia, the spent phase of polycythemia vera. Our results show that the extramedullary hematopoietic niche microenvironment significantly influences disease outcome in KITD816V mutant mice, turning this model a valuable tool for studying the interplay between functionally abnormal hematopoietic cells and their microenvironment during development of polycythemia vera-like disease and myelofibrosis.
Collapse
|
39
|
Zhu HH, Huang XJ. [How I treat acute myeloid leukemia with t (8;21)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:6-9. [PMID: 28219217 PMCID: PMC7348410 DOI: 10.3760/cma.j.issn.0253-2727.2017.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 11/24/2022]
|
40
|
Abstract
The spectrum of chromosomal abnormality associated with leukemogenesis of acute myeloid leukemia (AML) is broad and heterogeneous when compared to chronic myeloid leukemia and other myeloid neoplasms. Recurrent chromosomal translocations such as t(8;21), t(15;17), and inv(16) are frequently detected, but hundreds of other uncommon chromosomal aberrations from AML also exist. This chapter discusses 22 chromosomal abnormalities that are common structural, numerical aberrations, and other important but infrequent (less than 1 %) translocations emphasized in the WHO classification. Brief morphologic, cytogenetic, and clinical characteristics are summarized, so as to provide a concise reference to cancer cytogenetic laboratories. Morphology based on FAB classification is used together with the current WHO classification due to frequent mentioning in a vast number of reference literatures. Characteristic chromosomal aberrations of other myeloid neoplasms such as myelodysplastic syndrome and myeloproliferative neoplasm will be discussed in separate chapters-except for certain abnormalities such as t(9;22) in de novo AML. Gene mutations detected in normal karyotype AML by cutting edge next generation sequencing technology are also briefly mentioned.
Collapse
|
41
|
Ayatollahi H, Shajiei A, Sadeghian MH, Sheikhi M, Yazdandoust E, Ghazanfarpour M, Shams SF, Shakeri S. Prognostic Importance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Systematic Review. Hematol Oncol Stem Cell Ther 2016; 10:1-7. [PMID: 27613372 DOI: 10.1016/j.hemonc.2016.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE/BACKGROUND Acute myeloid leukemia (AML) is defined as leukemic blast reproduction in bone marrow. Chromosomal abnormalities form different subgroups with joint clinical specifications and results. t(8;21)(q22;q22) and inv(16)(p13;q22) form core binding factor-AML (CBF-AML). c-kit mutation activation occurs in 12.8-46.1% of adults with CBF leukemia. These mutations occur in 20-25% of t(8;21) and 30% of inv(16) cases. METHODS In this systematic review, we searched different databases, including PubMed, Scopus, and Embase. Selected articles were measured based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, articles relevant to the subject of this review were retrieved in full text. Twenty-two articles matched the inclusion criteria and were selected for this review. RESULTS In this study, c-kit mutations were associated with poor prognosis in AML patients with t(8;21) and inv(16). In addition, these mutations had better prognostic effects on AML patients with inv(16) compared with those with t(8;21). CONCLUSION According to the results of this study, c-kit mutations have intense, harmful effects on the relapse and white blood cell increase in CBF-AML adults. However, these mutations have no significant prognostic effects on patients.
Collapse
Affiliation(s)
- Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Shajiei
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ehsan Yazdandoust
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masumeh Ghazanfarpour
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyede Fatemeh Shams
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Shakeri
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Chen LT, Chen CT, Jiaang WT, Chen TY, Butterfield JH, Shih NY, Hsu JTA, Lin HY, Lin SF, Tsai HJ. BPR1J373, an Oral Multiple Tyrosine Kinase Inhibitor, Targets c-KIT for the Treatment of c-KIT–Driven Myeloid Leukemia. Mol Cancer Ther 2016; 15:2323-2333. [DOI: 10.1158/1535-7163.mct-15-1006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/26/2016] [Indexed: 11/16/2022]
|
43
|
The genomic landscape of testicular germ cell tumours: from susceptibility to treatment. Nat Rev Urol 2016; 13:409-19. [PMID: 27296647 DOI: 10.1038/nrurol.2016.107] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genomic landscape of testicular germ cell tumour (TGCT) can be summarized using four overarching hypotheses. Firstly, TGCT risk is dominated by inherited genetic factors, which determine nearly half of all disease risk and are highly polygenic in nature. Secondly KIT-KITLG signalling is currently the major pathway that is implicated in TGCT formation, both as a predisposition risk factor and a somatic driver event. Results from genome-wide association studies have also consistently suggested that other closely related pathways involved in male germ cell development and sex determination are associated with TGCT risk. Thirdly, the method of disease formation is unique, with tumours universally stemming from a noninvasive precursor lesion, probably of fetal origin, which lies dormant through childhood into adolescence and then eventually begins malignant growth in early adulthood. Formation of a 12p isochromosome, a hallmark of TGCT observed in nearly all tumours, is likely to be a key triggering event for malignant transformation. Finally, TGCT have been shown to have a distinctive somatic mutational profile, with a low rate of point mutations contrasted with frequent large-scale chromosomal gains. These four hypotheses by no means constitute a complete model that explains TGCT tumorigenesis, but advances in genomic technologies have enabled considerable progress in describing and understanding the disease. Further advancing our understanding of the genomic basis of TGCT offers a clear opportunity for clinical benefit in terms of preventing invasive cancer arising in young men, decreasing the burden of chemotherapy-related survivorship issues and reducing mortality in the minority of patients who have treatment-refractory disease.
Collapse
|
44
|
Jang W, Yoon JH, Park J, Lee GD, Kim J, Kwon A, Choi H, Han K, Nahm CH, Kim HJ, Min WS, Kim M, Kim Y. Significance of KIT exon 17 mutation depends on mutant level rather than positivity in core-binding factor acute myeloid leukemia. Blood Cancer J 2016; 6:e387. [PMID: 26771813 PMCID: PMC4742633 DOI: 10.1038/bcj.2015.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/19/2015] [Indexed: 01/22/2023] Open
Abstract
KIT exon 17 mutation is a poor prognostic factor in core-binding factor acute myeloid leukemia. However, the mutation detection method used for risk assessment is not assigned. It is necessary to verify the analytical and clinical performance before applying new methods. Herein, we firstly applied a highly sensitive allele-specific, real-time quantitative PCR (AS-qPCR) assay to analyze KIT mutations, which demonstrated excellent sensitivity and specificity. Much higher incidence of KIT mutations (62.2%, 69/111) and prevalence of multiple mutations (43.5%, 30/69) were observed using AS-qPCR, which meant the existence of multiple KIT mutant subclones. The relative KIT mutant level was variable (median, 0.3 per control allele 100 copies, 0.002–532.7) and was divided into two groups: high (⩾10, n=26) and low (<10) mutant level. Interestingly, rather than mutation positivity, mutant level was found to be associated with clinical outcome. High mutant level showed significantly inferior overall survival (P=0.005) and event-free survival (P=0.03), whereas low level did not influence the prognosis. The follow-up data showed that the mutant level were along with fusion transcripts in the majority (n=29), but moved separately in some cases, including the loss of mutations (n=5) and selective proliferation of minor clones (n=2) at relapse. This study highlighted that the KIT mutation should be analyzed using sensitive and quantitative techniques and set a cutoff level for identifying the risk group.
Collapse
Affiliation(s)
- W Jang
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - J-H Yoon
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - J Park
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - G D Lee
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - J Kim
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - A Kwon
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - H Choi
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - K Han
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - C H Nahm
- Department of Laboratory Medicine, College of Medicine, Inha University, Incheon, Korea
| | - H-J Kim
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - W-S Min
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - M Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Y Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
45
|
Chen W, Xie H, Wang H, Chen L, Sun Y, Chen Z, Li Q. Prognostic Significance of KIT Mutations in Core-Binding Factor Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0146614. [PMID: 26771376 PMCID: PMC4714806 DOI: 10.1371/journal.pone.0146614] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/18/2015] [Indexed: 12/18/2022] Open
Abstract
The prognostic significance of KIT mutations in core-binding factor acute myeloid leukemia (CBF-AML), including inv(16) and t(8;21) AML, is uncertain. We performed a systematic review and meta-analysis of the effect of KIT mutations on the complete remission (CR) and relapse rates and overall survival (OS) of CBF-AML. PubMed, Embase, Web of Science, and the Cochrane Library were searched and relevant studies were included. Negative effect was indicated on relapse risk of CBF-AML (RR [relative risk], 1.43; 95%CI [confidence interval], 1.20–1.70) and t(8;21) AML (RR, 1.70; 95% CI, 1.31–2.21), not on OS of CBF-AML (RR, 1.09; 95% CI, 0.97–1.23), CR (OR [odds ratio], 0.95; 95% CI, 0.52–1.74), relapse risk (RR, 1.12; 95% CI, 0.90–1.41) or OS (RR, 1.03; 95% CI, 0.90–1.18) of inv(16) AML. Subgroup analysis of t(8,21) AML showed negative effect of KIT mutations on CR (OR, 2.03; 95%CI: 1.02–4.05), relapse risk (RR, 1.89; 95%CI: 1.51–2.37) and OS (RR, 2.26; 95%CI: 1.35–3,78) of non-Caucasians, not on CR (OR, 0.61; 95%CI: 0.19–1.95) or OS (RR, 1.12; 95%CI: 0.90–1.40) of Caucasians. This study indicates KIT mutations in CBF-AML to be included in the initial routine diagnostic workup and stratification system of t(8,21) AML. Prospective large-scale clinical trials are warranted to evaluate these findings.
Collapse
Affiliation(s)
- Wenlan Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Wang
- Department of Hematology, Wuhan Central Hospital, Wuhan, 430000, China
| | - Li Chen
- Department of Hematology, Wuhan Central Hospital, Wuhan, 430000, China
| | - Yi Sun
- Department of Social Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- * E-mail: (ZC); (QL)
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- * E-mail: (ZC); (QL)
| |
Collapse
|
46
|
Berenstein R. Class III Receptor Tyrosine Kinases in Acute Leukemia - Biological Functions and Modern Laboratory Analysis. Biomark Insights 2015; 10:1-14. [PMID: 26309392 PMCID: PMC4527365 DOI: 10.4137/bmi.s22433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease caused by deregulation of multiple signaling pathways. Mutations in class III receptor tyrosine kinases (RTKs) have been implicated in alteration of cell signals concerning the growth and differentiation of leukemic cells. Point mutations, insertions, or deletions of RTKs as well as chromosomal translocations induce constitutive activation of the receptor, leading to uncontrolled proliferation of undifferentiated myeloid blasts. Aberrations can occur in all domains of RTKs causing either the ligand-independent activation or mimicking the activated conformation. The World Health Organization recommended including RTK mutations in the AML classification since their detection in routine laboratory diagnostics is a major factor for prognostic stratification of patients. Polymerase chain reaction (PCR)-based methods are well-validated for the detection of fms-related tyrosine kinase 3 (FLT3) mutations and can easily be applied for other RTKs. However, when methodological limitations are reached, accessory techniques can be applied. For a higher resolution and more quantitative approach compared to agarose gel electrophoresis, PCR fragments can be separated by capillary electrophoresis. Furthermore, high-resolution melting and denaturing high-pressure liquid chromatography are reliable presequencing screening methods that reduce the sample amount for Sanger sequencing. Because traditional DNA sequencing is time-consuming, next-generation sequencing (NGS) is an innovative modern possibility to analyze a high amount of samples simultaneously in a short period of time. At present, standardized procedures for NGS are not established, but when this barrier is resolved, it will provide a new platform for rapid and reliable laboratory diagnostic of RTK mutations in patients with AML. In this article, the biological and physiological role of RTK mutations in AML as well as possible laboratory methods for their detection will be reviewed.
Collapse
Affiliation(s)
- Rimma Berenstein
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Park SH, Lee HJ, Kim IS, Kang JE, Lee EY, Kim HJ, Kim YK, Won JH, Bang SM, Kim H, Song MK, Chung JS, Shin HJ. Incidences and Prognostic Impact of c-KIT, WT1, CEBPA, and CBL Mutations, and Mutations Associated With Epigenetic Modification in Core Binding Factor Acute Myeloid Leukemia: A Multicenter Study in a Korean Population. Ann Lab Med 2015; 35:288-97. [PMID: 25932436 PMCID: PMC4390696 DOI: 10.3343/alm.2015.35.3.288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/24/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To identify potential molecular prognostic markers in core binding factor (CBF) AML, we analyzed incidences and prognostic impacts of mutations in c-KIT, WT1, CEBPA, CBL, and a number of epigenetic genes in CBF AML. METHODS Seventy one and 21 AML patients with t(8;21) and inv(16) were enrolled in this study, respectively. NPM1, CEBPA, c-KIT, IDH1/2, DNMT3A, EZH2, WT1, and CBL mutations were analyzed by direct sequencing. Patients were categorized with respect to c-KIT and WT1 mutation status, and both clinical features and prognoses were compared. RESULTS The incidences of FLT3 internal tandem duplication (ITD), NPM1, CEBPA, IDH1/2, DNMT3A, EZH2, and CBL mutations were low (≤5%) in CBF AML patients. However, c-KIT and WT1 mutations occurred frequently (10.9% and 13.8%, respectively). t(8;21) patients with c-KIT mutations showed significantly shorter overall survival (OS) and disease free survival (DFS) periods than those without mutations (P<0.001, for both); however, although the limited number of t(8;21) patients were analyzed, WT1 mutation status did not affect prognosis significantly. Relapse or death during follow-up occurred more frequently in t(8;21) patients carrying c-KIT mutations than in those without the mutation, although the difference was significant only in a specific patient subgroup with no WT1 mutations (P=0.014). CONCLUSIONS The incidences of mutations in epigenetic genes are very low in CBF AML; however, c-KIT and WT1 mutations occur more frequently than others. The poor prognostic impact of c-KIT mutation in t(8;21) AML patients only applies in a specific patient subgroup without WT1 mutations. The prognostic impact of WT1 mutation in CBF AML is not evident and further investigation is required.
Collapse
Affiliation(s)
- Sang Hyuk Park
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hyun Ji Lee
- Department of Laboratory Medicine, Korean Red cross, Changwon, Korea
| | - In-Suk Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jeong-Eun Kang
- Department of Laboratory Medicine, Jinhae Yonsei Hospital, Changwon, Korea
| | - Eun Yup Lee
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Yeo-Kyeoung Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jong-Ho Won
- Department of Hematology-Oncology, Soonchunhyang University Hospital, Seoul, Korea
| | - Soo Mee Bang
- Department of Hematology-Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hawk Kim
- Department of Hematology-Oncology, Ulsan University Hospital, Ulsan, Korea
| | - Moo-Kon Song
- Division of Hematology-Oncology, Department of Internal Medicine, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Joo Seop Chung
- Division of Hematology-Oncology, Department of Internal Medicine, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Ho-Jin Shin
- Division of Hematology-Oncology, Department of Internal Medicine, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
48
|
Pollard WL, Beachkofsky TM, Kobayashi TT. Novel R634W c-kit mutation identified in familial mastocytosis. Pediatr Dermatol 2015; 32:267-70. [PMID: 25243845 DOI: 10.1111/pde.12381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Familial mastocytosis is a well-documented but rare entity, with fewer than 100 cases reported in the literature. The etiology has most commonly been linked to activating c-kit mutations, with several mutations reported to date. We present a novel familial mastocytosis-associated c-kit mutation (R634W) in three siblings with urticaria pigmentosa. This mutation has been previously described in mucosal melanoma, chronic myelomonocytic leukemia, and acute myeloid leukemia. Because this is a rare mutation, it is unclear whether screening for other disease states associated with the mutation would be of benefit.
Collapse
|
49
|
Bhatnagar B, Garzon R. The use of molecular genetics to refine prognosis in acute myeloid leukemia. Curr Hematol Malig Rep 2015; 9:148-57. [PMID: 24659319 DOI: 10.1007/s11899-014-0208-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery and application of advanced molecular techniques, such as gene and microRNA expression profiling, whole genome and exome sequencing, proteomic analysis and methylation assays, have allowed for the identification of recurrent molecular abnormalities in acute myeloid leukemia (AML) that have revolutionized our understanding of the genetic landscape of the disease. These modalities have emerged as valuable tools that permit a more comprehensive and detailed molecular characterization of AML. Many of these molecular abnormalities have been shown to predict prognosis, particularly within the context of cytogenetically normal AML. This review will discuss the major techniques and platforms that have been used to identify novel recurrent gene mutations in AML and briefly describe how these discoveries have impacted on outcome prediction.
Collapse
|
50
|
Wu SY, Fan J, Hong D, Zhou Q, Zheng D, Wu D, Li Z, Chen RH, Zhao Y, Pan J, Qi X, Chen CS, Hu SY. C3aR1gene overexpressed at initial stage of acute myeloid leukemia-M2 predicting short-term survival. Leuk Lymphoma 2015; 56:2200-2. [DOI: 10.3109/10428194.2014.986481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|