1
|
Sant'Ana AN, Dias CK, Nunes VBS, Farias MG, Alegretti AP, Portela P, Calvache ET, Meirelles MF, Daudt LE, Michalowski MB, Paz AA, Figueiró F. Prognostic value of myeloid-derived suppressor-like cells in acute myeloid leukemia: insights from immunophenotyping and clinical correlations. Immunol Res 2024; 73:11. [PMID: 39673675 DOI: 10.1007/s12026-024-09558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population that acts on both innate and adaptive immunity, fostering immune escape in tumors and contributing to cancer progression. Despite the lack of definitive markers for immunophenotyping MDSCs, particularly the polymorphonuclear (PMN-MDSC) subset, these cells seem to play a crucial role in acute myeloid leukemia (AML) patients' prognosis. Additionally, the maturation stage of MDSCs remains a subject of debate and is largely unknown within the AML context. In this study, we conducted a retrospective analysis of flow cytometry immunophenotyping data obtained at the diagnosis of AML patients. We explored how the enrichment of neutrophil maturation stages, the frequency of PMN-MDSC-like cells and monocytic MDSC-like population (M-MDSC-like), and the ratios of MDSC-like cells to T lymphocytes correlate with relevant prognostic indicators. Our findings revealed that CD45+CD33lowHLA-DR-CD36+ PMN-MDSC-like cells and mature CD13+CD11b+CD10+ neutrophils correlate poor survival in AML patients. Furthermore, PMN-MDSC-like cells, and their ratio to T lymphocytes, are elevated in patients with adverse-risk stratification. Similarly, the M-MDSC-like population is increased in FLT3-ITD mutation carrier patients. Notably, we observed confirmational evidence of CD36 relevance in the AML context, which has emerged recently as a potential marker for PMN-MDSCs. Our study highlights significant findings associating increased MDSC-like subsets and poor prognostic factors in AML.
Collapse
MESH Headings
- Humans
- Myeloid-Derived Suppressor Cells/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Immunophenotyping
- Prognosis
- Female
- Male
- Middle Aged
- Adult
- Aged
- Neutrophils/immunology
- Retrospective Studies
- Flow Cytometry
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Antigens, CD/metabolism
- Aged, 80 and over
- T-Lymphocytes/immunology
- Young Adult
- Mutation
Collapse
Affiliation(s)
- Alexia N Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Camila K Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Vitória B S Nunes
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Mariela G Farias
- Unidade de Hematologia e Citometria de Fluxo, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Ana P Alegretti
- Setor de Inovação, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Pâmela Portela
- Unidade de Hematologia e Citometria de Fluxo, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Ebellins T Calvache
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Maria F Meirelles
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Liane E Daudt
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Gradução em Saúde da Criança e do Adolescente, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Mariana B Michalowski
- Programa de Pós-Gradução em Saúde da Criança e do Adolescente, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Serviço de Oncologia Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Alessandra A Paz
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
2
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
3
|
Murdock HM, Ho VT, Garcia JS. Innovations in conditioning and post-transplant maintenance in AML: genomically informed revelations on the graft-versus-leukemia effect. Front Immunol 2024; 15:1359113. [PMID: 38571944 PMCID: PMC10987864 DOI: 10.3389/fimmu.2024.1359113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is the prototype of cancer genomics as it was the first published cancer genome. Large-scale next generation/massively parallel sequencing efforts have identified recurrent alterations that inform prognosis and have guided the development of targeted therapies. Despite changes in the frontline and relapsed standard of care stemming from the success of small molecules targeting FLT3, IDH1/2, and apoptotic pathways, allogeneic stem cell transplantation (alloHSCT) and the resulting graft-versus-leukemia (GVL) effect remains the only curative path for most patients. Advances in conditioning regimens, graft-vs-host disease prophylaxis, anti-infective agents, and supportive care have made this modality feasible, reducing transplant related mortality even among patients with advanced age or medical comorbidities. As such, relapse has emerged now as the most common cause of transplant failure. Relapse may occur after alloHSCT because residual disease clones persist after transplant, and develop immune escape from GVL, or such clones may proliferate rapidly early after alloHSCT, and outpace donor immune reconstitution, leading to relapse before any GVL effect could set in. To address this issue, genomically informed therapies are increasingly being incorporated into pre-transplant conditioning, or as post-transplant maintenance or pre-emptive therapy in the setting of mixed/falling donor chimerism or persistent detectable measurable residual disease (MRD). There is an urgent need to better understand how these emerging therapies modulate the two sides of the GVHD vs. GVL coin: 1) how molecularly or immunologically targeted therapies affect engraftment, GVHD potential, and function of the donor graft and 2) how these therapies affect the immunogenicity and sensitivity of leukemic clones to the GVL effect. By maximizing the synergistic action of molecularly targeted agents, immunomodulating agents, conventional chemotherapy, and the GVL effect, there is hope for improving outcomes for patients with this often-devastating disease.
Collapse
Affiliation(s)
- H. Moses Murdock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vincent T. Ho
- Bone Marrow Transplant Program, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
4
|
Flynn PA, Long MD, Kosaka Y, Long N, Mulkey JS, Coy JL, Agarwal A, Lind EF. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency. Front Immunol 2024; 15:1297338. [PMID: 38495876 PMCID: PMC10943691 DOI: 10.3389/fimmu.2024.1297338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Dendritic cells (DC) are mediators between innate and adaptive immune responses to pathogens and tumors. DC development is determined by signaling through the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3) in bone marrow myeloid progenitors. Recently the naming conventions for DC phenotypes have been updated to distinguish between "Conventional" DCs (cDCs) and plasmacytoid DCs (pDCs). Activating mutations of FLT3, including Internal Tandem Duplication (FLT3-ITD), are associated with poor prognosis for acute myeloid leukemia (AML) patients. Having a shared myeloid lineage it can be difficult to distinguish bone fide DCs from AML tumor cells. To date, there is little information on the effects of FLT3-ITD in DC biology. To further elucidate this relationship we utilized CITE-seq technology in combination with flow cytometry and multiplex immunoassays to measure changes to DCs in human and mouse tissues. We examined the cDC phenotype and frequency in bone marrow aspirates from patients with AML to understand the changes to cDCs associated with FLT3-ITD. When compared to healthy donor (HD) we found that a subset of FLT3-ITD+ AML patient samples have overrepresented populations of cDCs and disrupted phenotypes. Using a mouse model of FLT3-ITD+ AML, we found that cDCs were increased in percentage and number compared to control wild-type (WT) mice. Single cell RNA-seq identified FLT3-ITD+ cDCs as skewed towards a cDC2 T-bet- phenotype, previously shown to promote Th17 T cells. We assessed the phenotypes of CD4+ T cells in the AML mice and found significant enrichment of both Treg and Th17 CD4+ T cells in the bone marrow and spleen compartments. Ex vivo stimulation of CD4+ T cells also showed increased Th17 phenotype in AML mice. Moreover, co-culture of AML mouse-derived DCs and naïve OT-II cells preferentially skewed T cells into a Th17 phenotype. Together, our data suggests that FLT3-ITD+ leukemia-associated cDCs polarize CD4+ T cells into Th17 subsets, a population that has been shown to be negatively associated with survival in solid tumor contexts. This illustrates the complex tumor microenvironment of AML and highlights the need for further investigation into the effects of FLT3-ITD mutations on DC phenotypes and their downstream effects on Th polarization.
Collapse
Affiliation(s)
- Patrick A. Flynn
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yoko Kosaka
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Nicola Long
- Department of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jessica S. Mulkey
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Jesse L. Coy
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Anupriya Agarwal
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Evan F. Lind
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
Peng J, He S, Yang X, Huang L, Wei J. Plasmacytoid dendritic cell expansion in myeloid neoplasms: A novel distinct subset of myeloid neoplasm? Crit Rev Oncol Hematol 2023; 192:104186. [PMID: 37863402 DOI: 10.1016/j.critrevonc.2023.104186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific dendritic cell type stemming from the myeloid lineage. Clinically and pathologically, neoplasms associated with pDCs are classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN), mature plasmacytoid dendritic myeloid neoplasm (MPDMN) and pDC expansion in myeloid neoplasms (MNs). BPDCN was considered a rare and aggressive neoplasm in the 2016 World Health Organization (WHO) classification. MPDMN, known as mature pDC-derived neoplasm, is closely related to MNs and was first recognized in the latest 2022 WHO classification, proposing a new concept that acute myeloid leukemia cases could show clonally expanded pDCs (pDC-AML). With the advances in detection techniques, an increasing number of pDC expansion in MNs have been reported, but whether the pathogenesis is similar to that of MPDMN remains unclear. This review focuses on patient characteristics, diagnosis and treatment of pDC expansion in MNs to gain further insight into this novel and unique provisional subtype.
Collapse
Affiliation(s)
- Juan Peng
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Shaolong He
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Pospiech M, Tamizharasan M, Wei YC, Kumar AMS, Lou M, Milstein J, Alachkar H. Features of the TCR repertoire associate with patients' clinical and molecular characteristics in acute myeloid leukemia. Front Immunol 2023; 14:1236514. [PMID: 37928542 PMCID: PMC10620936 DOI: 10.3389/fimmu.2023.1236514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023] Open
Abstract
Background Allogeneic hematopoietic stem cell transplant remains the most effective strategy for patients with high-risk acute myeloid leukemia (AML). Leukemia-specific neoantigens presented by the major histocompatibility complexes (MHCs) are recognized by the T cell receptors (TCR) triggering the graft-versus-leukemia effect. A unique TCR signature is generated by a complex V(D)J rearrangement process to form TCR capable of binding to the peptide-MHC. The generated TCR repertoire undergoes dynamic changes with disease progression and treatment. Method Here we applied two different computational tools (TRUST4 and MIXCR) to extract the TCR sequences from RNA-seq data from The Cancer Genome Atlas (TCGA) and examine the association between features of the TCR repertoire in adult patients with AML and their clinical and molecular characteristics. Results We found that only ~30% of identified TCR CDR3s were shared by the two computational tools. Yet, patterns of TCR associations with patients' clinical and molecular characteristics based on data obtained from either tool were similar. The numbers of unique TCR clones were highly correlated with patients' white blood cell counts, bone marrow blast percentage, and peripheral blood blast percentage. Multivariable regressions of TCRA and TCRB median normalized number of unique clones with mutational status of AML patients using TRUST4 showed significant association of TCRA or TCRB with WT1 mutations, WBC count, %BM blast, and sex (adjusted in TCRB model). We observed a correlation between TCRA/B number of unique clones and the expression of T cells inhibitory signal genes (TIGIT, LAG3, CTLA-4) and foxp3, but not IL2RA, CD69 and TNFRSF9 suggestive of exhausted T cell phenotypes in AML. Conclusion Benchmarking of computational tools is needed to increase the accuracy of the identified clones. The utilization of RNA-seq data enables identification of highly abundant TCRs and correlating these clones with patients' clinical and molecular characteristics. This study further supports the value of high-resolution TCR-Seq analyses to characterize the TCR repertoire in patients.
Collapse
Affiliation(s)
- Mateusz Pospiech
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mukund Tamizharasan
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Computer Science, University of Southern California, Los Angeles, CA, United States
| | - Yu-Chun Wei
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Advaith Maya Sanjeev Kumar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Computer Science, University of Southern California, Los Angeles, CA, United States
| | - Mimi Lou
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Joshua Milstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Flynn PA, Long MD, Kosaka Y, Mulkey JS, Coy JL, Agarwal A, Lind EF. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558512. [PMID: 37781631 PMCID: PMC10541139 DOI: 10.1101/2023.09.19.558512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dendritic cells (DC) are mediators of adaptive immune responses to pathogens and tumors. DC development is determined by signaling through the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3) in bone marrow myeloid progenitors. Recently the naming conventions for DC phenotypes have been updated to distinguish between "Conventional" DCs (cDCs) and plasmacytoid DCs (pDCs). Activating mutations of FLT3, including Internal Tandem Duplication (FLT3-ITD), are associated with poor prognosis for leukemia patients. To date, there is little information on the effects of FLT3-ITD in DC biology. We examined the cDC phenotype and frequency in bone marrow aspirates from patients with acute myeloid leukemia (AML) to understand the changes to cDCs associated with FLT3-ITD. When compared to healthy donor (HD) we found that a subset of FLT3-ITD+ AML patient samples have overrepresented populations of cDCs and disrupted phenotypes. Using a mouse model of FLT3-ITD+ AML, we found that cDCs were increased in percentage and number compared to control wild-type (WT) mice. Single cell RNA-seq identified FLT3-ITD+ cDCs as skewed towards a cDC2 T-bet - phenotype, previously shown to promote Th17 T cells. We assessed the phenotypes of CD4+ T cells in the AML mice and found significant enrichment of both Treg and Th17 CD4+ T cells. Furthermore, co-culture of AML mouse- derived DCs and naïve OT-II cells preferentially skewed T cells into a Th17 phenotype. Together, our data suggests that FLT3-ITD+ leukemia-associated cDCs polarize CD4+ T cells into Th17 subsets, a population that has been shown to be negatively associated with survival in solid tumor contexts. This illustrates the complex tumor microenvironment of AML and highlights the need for further investigation into the effects of FLT3-ITD mutations on DC phenotypes.
Collapse
|
8
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Damiani D, Tiribelli M. Checkpoint Inhibitors in Acute Myeloid Leukemia. Biomedicines 2023; 11:1724. [PMID: 37371818 PMCID: PMC10295997 DOI: 10.3390/biomedicines11061724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The prognosis of acute myeloid leukemia (AML) remains unsatisfactory. Among the reasons for the poor response to therapy and high incidence of relapse, there is tumor cell immune escape, as AML blasts can negatively influence various components of the immune system, mostly weakening T-cells. Since leukemic cells can dysregulate immune checkpoints (ICs), receptor-based signal transductors that lead to the negative regulation of T-cells and, eventually, to immune surveillance escape, the inhibition of ICs is a promising therapeutic strategy and has led to the development of so-called immune checkpoint inhibitors (ICIs). ICIs, in combination with conventional chemotherapy, hypomethylating agents or targeted therapies, are being increasingly tested in cases of AML, but the results reported are often conflicting. Here, we review the main issues concerning the immune system in AML, the main pathways leading to immune escape and the results obtained from clinical trials of ICIs, alone or in combination, in newly diagnosed or relapsed/refractory AML.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| |
Collapse
|
10
|
Atilla E, Benabdellah K. The Black Hole: CAR T Cell Therapy in AML. Cancers (Basel) 2023; 15:2713. [PMID: 37345050 DOI: 10.3390/cancers15102713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Despite exhaustive studies, researchers have made little progress in the field of adoptive cellular therapies for relapsed/refractory acute myeloid leukemia (AML), unlike the notable uptake for B cell malignancies. Various single antigen-targeting chimeric antigen receptor (CAR) T cell Phase I trials have been established worldwide and have recruited approximately 100 patients. The high heterogeneity at the genetic and molecular levels within and between AML patients resembles a black hole: a great gravitational field that sucks in everything. One must consider the fact that only around 30% of patients show a response; there are, however, consequential off-tumor effects. It is obvious that a new point of view is needed to achieve more promising results. This review first introduces the unique therapeutic challenges of not only CAR T cells but also other adoptive cellular therapies in AML. Next, recent single-cell sequencing data for AML to assess somatically acquired alterations at the DNA, epigenetic, RNA, and protein levels are discussed to give a perspective on cellular heterogeneity, intercellular hierarchies, and the cellular ecosystem. Finally, promising novel strategies are summarized, including more sophisticated next-generation CAR T, TCR-T, and CAR NK therapies; the approaches with which to tailor the microenvironment and target neoantigens; and allogeneic approaches.
Collapse
Affiliation(s)
- Erden Atilla
- Fred Hutchinson Cancer Research Center, Clinical Research Division, 1100 Fairview Ave N, Seattle, WA 98109, USA
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| | - Karim Benabdellah
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| |
Collapse
|
11
|
Zoine JT, Moore SE, Velasquez MP. Leukemia's Next Top Model? Syngeneic Models to Advance Adoptive Cellular Therapy. Front Immunol 2022; 13:867103. [PMID: 35401520 PMCID: PMC8990900 DOI: 10.3389/fimmu.2022.867103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 01/24/2023] Open
Abstract
In recent years, there has been an emphasis on harnessing the immune system for therapeutic interventions. Adoptive cell therapies (ACT) have emerged as an effective option for B-cell derived hematological malignancies. Despite remarkable successes with ACT, immune dysregulation and the leukemia microenvironment can critically alter clinical responses. Therefore, preclinical modeling can contribute to the advancement of ACT for leukemias. Human xenografts, the current mainstay of ACT in vivo models, cannot evaluate the impact of the immunosuppressive leukemia microenvironment on adoptively transferred cells. Syngeneic mouse models utilize murine tumor models and implant them into immunocompetent mice. This provides an alternative model, reducing the need for complicated breeding strategies while maintaining a matched immune system, stromal compartment, and leukemia burden. Syngeneic models that evaluate ACT have analyzed the complexity of cytotoxic T lymphocytes, T cell receptor transgenics, and chimeric antigen receptors. This review examines the immunosuppressive features of the leukemia microenvironment, discusses how preclinical modeling helps predict ACT associated toxicities and dysfunction, and explores publications that have employed syngeneic modeling in ACT studies for the improvement of therapy for leukemias.
Collapse
Affiliation(s)
- Jaquelyn T. Zoine
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Sarah E. Moore
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
12
|
Bialek-Waldmann JK, Domning S, Esser R, Glienke W, Mertens M, Aleksandrova K, Arseniev L, Kumar S, Schneider A, Koenig J, Theobald SJ, Tsay HC, Cornelius ADA, Bonifacius A, Eiz-Vesper B, Figueiredo C, Schaudien D, Talbot SR, Bleich A, Spineli LM, von Kaisenberg C, Clark C, Blasczyk R, Heuser M, Ganser A, Köhl U, Farzaneh F, Stripecke R. Induced dendritic cells co-expressing GM-CSF/IFN-α/tWT1 priming T and B cells and automated manufacturing to boost GvL. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:621-641. [PMID: 34095345 PMCID: PMC8142053 DOI: 10.1016/j.omtm.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/03/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) patients with minimal residual disease and receiving allogeneic hematopoietic stem cell transplantation (HCT) have poor survival. Adoptive administration of dendritic cells (DCs) presenting the Wilms tumor protein 1 (WT1) leukemia-associated antigen can potentially stimulate de novo T and B cell development to harness the graft-versus-leukemia (GvL) effect after HCT. We established a simple and fast genetic modification of monocytes for simultaneous lentiviral expression of a truncated WT1 antigen (tWT1), granulocyte macrophage-colony-stimulating factor (GM-CSF), and interferon (IFN)-α, promoting their self-differentiation into potent “induced DCs” (iDCtWT1). A tricistronic integrase-defective lentiviral vector produced under good manufacturing practice (GMP)-like conditions was validated. Transduction of CD14+ monocytes isolated from peripheral blood, cord blood, and leukapheresis material effectively induced their self-differentiation. CD34+ cell-transplanted Nod.Rag.Gamma (NRG)- and Nod.Scid.Gamma (NSG) mice expressing human leukocyte antigen (HLA)-A∗0201 (NSG-A2)-immunodeficient mice were immunized with autologous iDCtWT1. Both humanized mouse models showed improved development and maturation of human T and B cells in the absence of adverse effects. Toward clinical use, manufacturing of iDCtWT1 was up scaled and streamlined using the automated CliniMACS Prodigy system. Proof-of-concept clinical-scale runs were feasible, and the 38-h process enabled standardized production and high recovery of a cryopreserved cell product with the expected identity characteristics. These results advocate for clinical trials testing iDCtWT1 to boost GvL and eradicate leukemia.
Collapse
Affiliation(s)
- Julia K Bialek-Waldmann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Domning
- Molecular Medicine Group, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, Kings College London, London, UK
| | - Ruth Esser
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Wolfgang Glienke
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Mira Mertens
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | | | - Lubomir Arseniev
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Suresh Kumar
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Schneider
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Johannes Koenig
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, 30625 Hannover, Germany
| | - Sebastian J Theobald
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, 30625 Hannover, Germany
| | - Hsin-Chieh Tsay
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Angela D A Cornelius
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Loukia M Spineli
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Caren Clark
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany.,Fraunhofer Institute for Cell Therapy and Immunology IZI and University of Leipzig, 04103 Leipzig, Germany
| | - Farzin Farzaneh
- Molecular Medicine Group, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, Kings College London, London, UK
| | - Renata Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, 30625 Hannover, Germany
| |
Collapse
|
13
|
Xiao W, Chan A, Waarts MR, Mishra T, Liu Y, Cai SF, Yao J, Gao Q, Bowman RL, Koche RP, Csete IS, DelGaudio NL, Derkach A, Baik J, Yanis S, Famulare CA, Patel M, Arcila ME, Stahl M, Rampal RK, Tallman MS, Zhang Y, Dogan A, Goldberg AD, Roshal M, Levine RL. Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood 2021; 137:1377-1391. [PMID: 32871587 PMCID: PMC7955409 DOI: 10.1182/blood.2020007897] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the principal natural type I interferon-producing dendritic cells. Neoplastic expansion of pDCs and pDC precursors leads to blastic plasmacytoid dendritic cell neoplasm (BPDCN), and clonal expansion of mature pDCs has been described in chronic myelomonocytic leukemia. The role of pDC expansion in acute myeloid leukemia (AML) is poorly studied. Here, we characterize patients with AML with pDC expansion (pDC-AML), which we observe in ∼5% of AML cases. pDC-AMLs often possess cross-lineage antigen expression and have adverse risk stratification with poor outcome. RUNX1 mutations are the most common somatic alterations in pDC-AML (>70%) and are much more common than in AML without pDC expansion and BPDCN. We demonstrate that pDCs are clonally related to, as well as originate from, leukemic blasts in pDC-AML. We further demonstrate that leukemic blasts from RUNX1-mutated AML upregulate a pDC transcriptional program, poising the cells toward pDC differentiation and expansion. Finally, tagraxofusp, a targeted therapy directed to CD123, reduces leukemic burden and eliminates pDCs in a patient-derived xenograft model. In conclusion, pDC-AML is characterized by a high frequency of RUNX1 mutations and increased expression of a pDC transcriptional program. CD123 targeting represents a potential treatment approach for pDC-AML.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology, Hematopathology Service
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Michael R Waarts
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Tanmay Mishra
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Ying Liu
- Department of Pathology, Hematopathology Service
| | - Sheng F Cai
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
| | - Jinjuan Yao
- Department of Pathology, Molecular Diagnostic Laboratory
| | - Qi Gao
- Department of Pathology, Hematopathology Service
| | - Robert L Bowman
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Isabelle S Csete
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Nicole L DelGaudio
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Jeeyeon Baik
- Department of Pathology, Hematopathology Service
| | - Sophia Yanis
- Department of Pathology, Hematopathology Service
| | | | | | - Maria E Arcila
- Department of Pathology, Hematopathology Service
- Department of Pathology, Molecular Diagnostic Laboratory
| | | | - Raajit K Rampal
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
| | | | - Yanming Zhang
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service
| | | | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
- Center for Epigenetics Research
- Center for Hematologic Malignancies, and
| |
Collapse
|
14
|
Guo R, Lü M, Cao F, Wu G, Gao F, Pang H, Li Y, Zhang Y, Xing H, Liang C, Lyu T, Du C, Li Y, Guo R, Xie X, Li W, Liu D, Song Y, Jiang Z. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res 2021; 9:15. [PMID: 33648605 PMCID: PMC7919996 DOI: 10.1186/s40364-021-00265-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Knowledge of immune cell phenotypes, function, and developmental trajectory in acute myeloid leukemia (AML) microenvironment is essential for understanding mechanisms of evading immune surveillance and immunotherapy response of targeting special microenvironment components. METHODS Using a single-cell RNA sequencing (scRNA-seq) dataset, we analyzed the immune cell phenotypes, function, and developmental trajectory of bone marrow (BM) samples from 16 AML patients and 4 healthy donors, but not AML blasts. RESULTS We observed a significant difference between normal and AML BM immune cells. Here, we defined the diversity of dendritic cells (DC) and macrophages in different AML patients. We also identified several unique immune cell types including T helper cell 17 (TH17)-like intermediate population, cytotoxic CD4+ T subset, T cell: erythrocyte complexes, activated regulatory T cells (Treg), and CD8+ memory-like subset. Emerging AML cells remodels the BM immune microenvironment powerfully, leads to immunosuppression by accumulating exhausted/dysfunctional immune effectors, expending immune-activated types, and promoting the formation of suppressive subsets. CONCLUSION Our results provide a comprehensive AML BM immune cell census, which can help to select pinpoint targeted drug and predict efficacy of immunotherapy.
Collapse
Affiliation(s)
- Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengdie Lü
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Fujiao Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guanghua Wu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haili Pang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Liang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianxin Lyu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Delong Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Zhu S, Yang N, Wu J, Wang X, Wang W, Liu YJ, Chen J. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy. Pharmacol Res 2020; 159:104980. [PMID: 32504832 DOI: 10.1016/j.phrs.2020.104980] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs), as specialized antigen-presenting cells, are essential for the initiation of specific T cell responses in innate antitumor immunity and, in certain cases, support humoral responses to inhibit tumor development. Mounting evidence suggests that the DC system displays a broad spectrum of dysfunctional status in the tumor microenvironment (TME), which ultimately affects antitumor immune responses. DC-based therapy can restore the function of DCs in the TME, thus showing a promising potential in tumor therapy. In this review, we provide an overview of the DC deficiency caused by various factors in the TME and discuss proposed strategies to reverse DC deficiency and the applications of novel combinatorial DC-based therapy for immune normalization of the tumor.
Collapse
Affiliation(s)
- Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | | | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Epperly R, Gottschalk S, Velasquez MP. A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Front Oncol 2020; 10:262. [PMID: 32185132 PMCID: PMC7058784 DOI: 10.3389/fonc.2020.00262] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 have been successful treating patients with relapsed/refractory B cell acute lymphoblastic leukemia (ALL) and B cell lymphomas. However, relapse after CAR T cell therapy is still a challenge. In addition, preclinical and early clinical studies targeting acute myeloid leukemia (AML) have not been as successful. This can be attributed in part to the presence of an AML microenvironment that has a dampening effect on the antitumor activity of CAR T cells. The AML microenvironment includes cellular interactions, soluble environmental factors, and structural components. Suppressive immune cells including myeloid derived suppressor cells and regulatory T cells are known to inhibit T cell function. Environmental factors contributing to T cell exhaustion, including immune checkpoints, anti-inflammatory cytokines, chemokines, and metabolic alterations, impact T cell activity, persistence, and localization. Lastly, structural factors of the bone marrow niche, secondary lymphoid organs, and extramedullary sites provide opportunities for CAR T cell evasion by AML blasts, contributing to treatment resistance and relapse. In this review we discuss the effect of the AML microenvironment on CAR T cell function. We highlight opportunities to enhance CAR T cell efficacy for AML through manipulating, targeting, and evading the anti-inflammatory leukemic microenvironment.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Epperly R, Gottschalk S, Velasquez MP. Harnessing T Cells to Target Pediatric Acute Myeloid Leukemia: CARs, BiTEs, and Beyond. CHILDREN (BASEL, SWITZERLAND) 2020; 7:E14. [PMID: 32079207 PMCID: PMC7072334 DOI: 10.3390/children7020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Outcomes for pediatric patients with acute myeloid leukemia (AML) remain poor, highlighting the need for improved targeted therapies. Building on the success of CD19-directed immune therapy for acute lymphocytic leukemia (ALL), efforts are ongoing to develop similar strategies for AML. Identifying target antigens for AML is challenging because of the high expression overlap in hematopoietic cells and normal tissues. Despite this, CD123 and CD33 antigen targeted therapies, among others, have emerged as promising candidates. In this review we focus on AML-specific T cell engaging bispecific antibodies and chimeric antigen receptor (CAR) T cells. We review antigens being explored for T cell-based immunotherapy in AML, describe the landscape of clinical trials upcoming for bispecific antibodies and CAR T cells, and highlight strategies to overcome additional challenges facing translation of T cell-based immunotherapy for AML.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| | - Mireya Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| |
Collapse
|
18
|
Mendez LM, Posey RR, Pandolfi PP. The Interplay Between the Genetic and Immune Landscapes of AML: Mechanisms and Implications for Risk Stratification and Therapy. Front Oncol 2019; 9:1162. [PMID: 31781488 PMCID: PMC6856667 DOI: 10.3389/fonc.2019.01162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
AML holds a unique place in the history of immunotherapy by virtue of being among the first malignancies in which durable remissions were achieved with "adoptive immunotherapy," now known as allogeneic stem cell transplantation. The successful deployment of unselected adoptive cell therapy established AML as a disease responsive to immunomodulation. Classification systems for AML have been refined and expanded over the years in an effort to capture the variability of this heterogeneous disease and risk-stratify patients. Current systems increasingly incorporate information about cytogenetic alterations and genetic mutations. The advent of next generation sequencing technology has enabled the comprehensive identification of recurrent genetic mutations, many with predictive power. Recurrent genetic mutations found in AML have been intensely studied from a cell intrinsic perspective leading to the genesis of multiple, recently approved targeted therapies including IDH1/2-mutant inhibitors and FLT3-ITD/-TKD inhibitors. However, there is a paucity of data on the effects of these targeted agents on the leukemia microenvironment, including the immune system. Recently, the phenomenal success of checkpoint inhibitors and CAR-T cells has re-ignited interest in understanding the mechanisms leading to immune dysregulation and suppression in leukemia, with the objective of harnessing the power of the immune system via novel immunotherapeutics. A paradigm has emerged that places crosstalk with the immune system at the crux of any effective therapy. Ongoing research will reveal how AML genetics inform the composition of the immune microenvironment paving the way for personalized immunotherapy.
Collapse
Affiliation(s)
- Lourdes M. Mendez
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Ryan R. Posey
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Pandolfi
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Monocytes reprogrammed with lentiviral vectors co-expressing GM-CSF, IFN-α2 and antigens for personalized immune therapy of acute leukemia pre- or post-stem cell transplantation. Cancer Immunol Immunother 2019; 68:1891-1899. [PMID: 31628525 PMCID: PMC6851032 DOI: 10.1007/s00262-019-02406-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/29/2019] [Indexed: 01/09/2023]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and overall survival remains poor. Chemotherapy is the standard of care for intensive induction therapy. Patients who achieve a complete remission require post-remission therapies to prevent relapse. There is no standard of care for patients with minimal residual disease (MRD), and stem cell transplantation is a salvage therapy. Considering the AML genetic heterogeneity and the leukemia immune-suppressive properties, novel cellular immune therapies to effectively harness immunological responses to prevent relapse are needed. We developed a novel modality of immune therapy consisting of monocytes reprogrammed with lentiviral vectors expressing GM-CSF, IFN-α and antigens. Preclinical studies in humanized mice showed that the reprogrammed monocytes self-differentiated into highly viable induced dendritic cells (iDCs) in vivo which migrated effectively to lymph nodes, producing remarkable effects in the de novo regeneration of T and B cell responses. For the first-in-man clinical trial, the patient’s monocytes will be transduced with an integrase-defective tricistronic lentiviral vector expressing GM-CSF, IFN-α and a truncated WT1 antigen. For transplanted patients, pre-clinical development of iDCs co-expressing cytomegalovirus antigens is ongoing. To simplify the product chain for a de-centralized supply model, we are currently exploring a closed automated system for a short two-day manufacturing of iDCs. A phase I clinical trial study is in preparation for immune therapy of AML patients with MRD. The proposed cell therapy can fill an important gap in the current and foreseeable future immunotherapies of AML.
Collapse
|
20
|
McGill CM, Brown TJ, Fisher LN, Gustafson SJ, Dunlap KL, Beck AJ, Toran PT, Claxton DF, Barth BM. Combinatorial Efficacy of Quercitin and Nanoliposomal Ceramide for Acute Myeloid Leukemia. INTERNATIONAL JOURNAL OF BIOPHARMACEUTICAL SCIENCES 2018; 1:106. [PMID: 30701264 PMCID: PMC6349237 DOI: 10.31021/ijbs.20181106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with limited treatment options. Inflammation is often a contributing factor to the development and progression of AML, and related diseases, and can potentiate therapy failure. Previously, we had identified anti-inflammatory roles and anti-AML efficacy for blueberry extracts. The present study extended these observations to determine that the polyphenol quercetin inhibited neutral sphingomyelinase (N-SMase) activity and exerted anti-AML efficacy. Moreover, quercetin was shown to exert combinatorial anti-AML efficacy with nanoliposomal ceramide. Overall, this demonstrated that quercetin could block the pro-inflammatory actions of N-SMase and augment the efficacy of anti-AML therapeutics, including ceramide-based therapeutics.
Collapse
Affiliation(s)
- Colin M McGill
- Department of Chemistry, University of Alaska-Anchorage, Anchorage, AK 99508 USA
| | - Timothy J Brown
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Lindsey N Fisher
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Sally J Gustafson
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK 99775
| | - Kriya L Dunlap
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK 99775
| | - Adam J Beck
- Drug Discovery, Development, and Delivery Core, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Paul T Toran
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - David F Claxton
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Brian M Barth
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
21
|
Hsu JL, Bryant CE, Papadimitrious MS, Kong B, Gasiorowski RE, Orellana D, McGuire HM, Groth BFDS, Joshua DE, Ho PJ, Larsen S, Iland HJ, Gibson J, Clark GJ, Fromm PD, Hart DN. A blood dendritic cell vaccine for acute myeloid leukemia expands anti-tumor T cell responses at remission. Oncoimmunology 2018; 7:e1419114. [PMID: 29632738 DOI: 10.1080/2162402x.2017.1419114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Only modest advances in AML therapy have occurred in the past decade and relapse due to residual disease remains the major challenge. The potential of the immune system to address this is evident in the success of allogeneic transplantation, however this leads to considerable morbidity. Dendritic cell (DC) vaccination can generate leukemia-specific autologous immunity with little toxicity. Promising results have been achieved with vaccines developed in vitro from purified monocytes (Mo-DC). We now demonstrate that blood DC (BDC) have superior function to Mo-DC. Whilst BDC are reduced at diagnosis in AML, they recover following chemotherapy and allogeneic transplantation, can be purified using CMRF-56 antibody technology, and can stimulate functional T cell responses. While most AML patients in remission had a relatively normal T cell landscape, those who had received fludarabine as salvage therapy have persistent T cell abnormalities including reduced number, altered subset distribution, failure to expand, and increased activation-induced cell death. Furthermore, PD-1 and TIM-3 are increased on CD4T cells in AML patients in remission and their blockade enhances the expansion of leukemia-specific T cells. This confirms the feasibility of a BDC vaccine to consolidate remission in AML and suggests it should be tested in conjunction with checkpoint blockade.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia
| | - Christian E Bryant
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin Kong
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Robin E Gasiorowski
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia
| | - Daniel Orellana
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Melanoma Immunology and Oncology Unit, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney NSW, Australia
| | - Douglas E Joshua
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - P Joy Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Stephen Larsen
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Harry J Iland
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - John Gibson
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Georgina J Clark
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Phillip D Fromm
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Derek Nj Hart
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
McGill CM, Brown TJ, Cheng YY, Fisher LN, Shanmugavelandy SS, Gustafson SJ, Dunlap KL, Lila MA, Kester M, Toran PT, Claxton DF, Barth BM. Therapeutic Effect of Blueberry Extracts for Acute Myeloid Leukemia. INTERNATIONAL JOURNAL OF BIOPHARMACEUTICAL SCIENCES 2018; 1:102. [PMID: 29607443 PMCID: PMC5875929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with high incidence in the aging population. In addition, AML is one of the more common pediatric malignancies. Unfortunately, both of these patient groups are quite sensitive to chemotherapy toxicities. Investigation of blueberries specifically as an anti-AML agent has been limited, despite being a prominent natural product with no reported toxicity. In this study, blueberry extracts are reported for the first time to exert a dietary therapeutic effect in animal models of AML. Furthermore, in vitro studies revealed that blueberry extracts exerted anti-AML efficacy against myeloid leukemia cell lines as well as against primary AML, and specifically provoked Erk and Akt regulation within the leukemia stem cell subpopulation. This study provides evidence that blueberries may be unique sources for anti-AML biopharmaceutical compound discovery, further warranting fractionation of this natural product. More so, blueberries themselves may provide an intriguing dietary option to enhance the anti-AML efficacy of traditional therapy for subsets of patients that otherwise may not tolerate rigorous combinations of therapeutics.
Collapse
Affiliation(s)
- Colin M. McGill
- Department of Chemistry, University of Alaska-Anchorage, Anchorage, AK 99508 USA
| | - Timothy J. Brown
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Yuan-Yin Cheng
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lindsey N. Fisher
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | | | - Sally J. Gustafson
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK 99775 USA
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Kriya L. Dunlap
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK 99775 USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Mark Kester
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
| | - Paul T. Toran
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - David F. Claxton
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Brian M. Barth
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
23
|
Tumor necrosis factor α in the onset and progression of leukemia. Exp Hematol 2016; 45:17-26. [PMID: 27833035 DOI: 10.1016/j.exphem.2016.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor alpha (TNF-α), originally described as an anti-neoplastic cytokine, has been found, in apparent contradiction to its name, to play an important role in promoting the development and progression of malignant disease. Targeting TNF-α with TNF antagonists has elicited an objective response in certain solid tumors in phase I and II clinical trials. This review focuses on the relationship of TNF-α expressed by leukemia cells and adverse clinical features of leukemia. TNF-α is involved in all steps of leukemogenesis, including cellular transformation, proliferation, angiogenesis, and extramedullary infiltration. TNF-α is also an important factor in the tumor microenvironment and assists leukemia cells in immune evasion, survival, and resistance to chemotherapy. TNF-α may be a potent target for leukemia therapy.
Collapse
|
24
|
Santegoets SJAM, Welters MJP, van der Burg SH. Monitoring of the Immune Dysfunction in Cancer Patients. Vaccines (Basel) 2016; 4:vaccines4030029. [PMID: 27598210 PMCID: PMC5041023 DOI: 10.3390/vaccines4030029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy shows promising clinical results in patients with different types of cancer, but its full potential is not reached due to immune dysfunction as a result of several suppressive mechanisms that play a role in cancer development and progression. Monitoring of immune dysfunction is a prerequisite for the development of strategies aiming to alleviate cancer-induced immune suppression. At this point, the level at which immune dysfunction occurs has to be established, the underlying mechanism(s) need to be known, as well as the techniques to assess this. While it is relatively easy to measure general signs of immune suppression, it turns out that accurate monitoring of the frequency and function of immune-suppressive cells is still difficult. A lack of truly specific markers, the phenotypic complexity among suppressive cells of the same lineage, but potentially with different functions and functional assays that may not cover every mechanistic aspect of immune suppression are among the reasons complicating proper assessments. Technical innovations in flow and mass cytometry will allow for more complete sets of markers to precisely determine phenotype and associated function. There is, however, a clear need for functional assays that recapitulate more of the mechanisms employed to suppress the immune system.
Collapse
Affiliation(s)
- Saskia J A M Santegoets
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
25
|
Ni M, Hoffmann JM, Schmitt M, Schmitt A. Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies. Expert Opin Biol Ther 2016; 16:1113-23. [PMID: 27238400 DOI: 10.1080/14712598.2016.1196181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Dendritic cells (DCs) are the most professional antigen-presenting cells eliciting cellular and humoral immune responses against cancer cells by expressing these antigens on MHC class I/II complexes to T cells. Therefore, they have been employed in many clinical trials as cancer vaccines for patients with cancer. This review focuses on the use of DCs in leukemia patients expressing leukemia-associated antigens (LAAs). AREAS COVERED The contribution of both stimulating vs. tolerogenic DCs as well as of other factors to the milieu of anti-leukemia immune responses are discussed. Several DC vaccination strategies like leukemia lysate, proteins and peptides have been developed. Next generation DC vaccines comprise transduction of DCs with retroviral vectors encoding for LAAs, cytokines and costimulatory molecules as well as transfection of DCs with naked RNA encoding for LAAs. Published as well as ongoing clinical trials are reported and critically reviewed. EXPERT OPINION Future results will demonstrate whether next-generation DCs are really superior to conventional pulsing with peptide, protein or tumor lysate. However, currently available methods based on nucleic acid transfection/transduction are tempting in terms of material production costs and time for clinical application according to good manufacturing practice (GMP).
Collapse
Affiliation(s)
- Ming Ni
- a Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V , Heidelberg University Hospital , Heidelberg , Germany
| | - Jean-Marc Hoffmann
- a Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V , Heidelberg University Hospital , Heidelberg , Germany
| | - Michael Schmitt
- a Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V , Heidelberg University Hospital , Heidelberg , Germany
| | - Anita Schmitt
- a Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V , Heidelberg University Hospital , Heidelberg , Germany
| |
Collapse
|
26
|
Lau CM, Nish SA, Yogev N, Waisman A, Reiner SL, Reizis B. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses. J Exp Med 2016; 213:415-31. [PMID: 26903243 PMCID: PMC4813676 DOI: 10.1084/jem.20150642] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
Lau et al. show that the FLT3-ITD mutation directly affects dendritic cell development in preleukemic mice, indirectly modulating T cell homeostasis and supporting the expansion of regulatory T cells. A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3ITD knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3ITD/ITD mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8+ cDCs and noncanonical CD8+ cDCs were expanded and showed specific alterations in their expression profiles. Flt3ITD mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner.
Collapse
Affiliation(s)
- Colleen M Lau
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016 Department of Medicine, New York University Langone Medical Center, New York, NY 10016 Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Simone A Nish
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz 55131, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz 55131, Germany
| | - Steven L Reiner
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Boris Reizis
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016 Department of Medicine, New York University Langone Medical Center, New York, NY 10016 Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
27
|
Meyerson HJ, Osei E, Schweitzer K, Blidaru G, Edinger A, Schlegelmilch J, Awadallah A, Goyal T. CD1c(+) myeloid dendritic cells in myeloid neoplasia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:337-48. [DOI: 10.1002/cyto.b.21332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/26/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Howard J. Meyerson
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Ebenezer Osei
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Karen Schweitzer
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Georgetta Blidaru
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Alison Edinger
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - June Schlegelmilch
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Amad Awadallah
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Tanu Goyal
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| |
Collapse
|
28
|
Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH, Kurre P. Serum Exosome MicroRNA as a Minimally-Invasive Early Biomarker of AML. Sci Rep 2015; 5:11295. [PMID: 26067326 PMCID: PMC4650871 DOI: 10.1038/srep11295] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/21/2015] [Indexed: 12/18/2022] Open
Abstract
Relapse remains the major cause of mortality for patients with Acute Myeloid Leukemia (AML). Improved tracking of minimal residual disease (MRD) holds the promise of timely treatment adjustments to preempt relapse. Current surveillance techniques detect circulating blasts that coincide with advanced disease and poorly reflect MRD during early relapse. Here, we investigate exosomes as a minimally invasive platform for a microRNA (miRNA) biomarker. We identify a set of miRNA enriched in AML exosomes and track levels of circulating exosome miRNA that distinguish leukemic xenografts from both non-engrafted and human CD34+ controls. We develop biostatistical models that reveal circulating exosomal miRNA at low marrow tumor burden and before circulating blasts can be detected. Remarkably, both leukemic blasts and marrow stroma contribute to serum exosome miRNA. We propose development of serum exosome miRNA as a platform for a novel, sensitive compartment biomarker for prospective tracking and early detection of AML recurrence.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/blood
- Exosomes/metabolism
- HL-60 Cells
- Humans
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/blood
- Neoplasms, Experimental/blood
- Neoplasms, Experimental/pathology
- RNA, Neoplasm/blood
- U937 Cells
Collapse
Affiliation(s)
- Noah I. Hornick
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
- Department of Medicine, Oregon Health & Science University, Portland, OR
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR
| | - Jianya Huan
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
- Department of Medicine, Oregon Health & Science University, Portland, OR
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR
| | - Ben Doron
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
- Department of Medicine, Oregon Health & Science University, Portland, OR
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR
| | - Natalya A. Goloviznina
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
- Department of Medicine, Oregon Health & Science University, Portland, OR
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR
| | - Jodi Lapidus
- Department of Public Health, Oregon Health & Science University, Portland, OR
| | - Bill H. Chang
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
- Department of Medicine, Oregon Health & Science University, Portland, OR
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Peter Kurre
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
- Department of Medicine, Oregon Health & Science University, Portland, OR
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
29
|
Dieterlen MT, Mohr FW, Reichenspurner H, Barten MJ. Clinical value of flow cytometric assessment of dendritic cell subsets in peripheral blood after solid organ transplantation. Cytometry A 2015; 87:377-9. [PMID: 25808610 DOI: 10.1002/cyto.a.22655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Maja-Theresa Dieterlen
- Department of Cardiac Surgery, University Hospital Leipzig, Heart Center, HELIOS Clinic, Leipzig, Germany
| | | | | | | |
Collapse
|
30
|
Chen P, Sun Q, Huang Y, Atta MG, Turban S, Segev DL, Marr KA, Naqvi FF, Alachkar N, Kraus ES, Womer KL. Blood dendritic cell levels associated with impaired IL-12 production and T-cell deficiency in patients with kidney disease: implications for post-transplant viral infections. Transpl Int 2014; 27:1069-76. [PMID: 24963818 DOI: 10.1111/tri.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/03/2014] [Accepted: 06/18/2014] [Indexed: 11/30/2022]
Abstract
Reduced pretransplant blood myeloid dendritic cell (mDC) levels are associated with post-transplant BK viremia and cytomegalovirus (CMV) disease after kidney transplantation. To elucidate potential mechanisms by which mDC levels might influence these outcomes, we studied the association of mDC levels with mDC IL-12 production and T-cell level/function. Peripheral blood (PB) was studied in three groups: (i) end stage renal disease patients on hemodialysis (HD; n = 81); (ii) chronic kidney disease stage IV-V patients presenting for kidney transplant evaluation or the day of transplantation (Eval/Tx; n = 323); and (iii) healthy controls (HC; n = 22). Along with a statistically significant reduction in mDC levels, reduced CD8(+) T-cell levels were also demonstrated in the kidney disease groups compared with HC. Reduced PB mDC and monocyte-derived DC (MoDC) IL-12 production was observed after in vitro LPS stimulation in the HD versus HC groups. Finally, ELISpot assays demonstrated less robust CD3(+) INF-γ responses by MoDCs pulsed with CMV pp65 peptide from HD patients compared with HC. PB mDC level deficiency in patients with kidney disease is associated with deficient IL-12 production and T-cell level/function, which may explain the known correlation of CD8(+) T-cell lymphopenia with deficient post-transplant antiviral responses.
Collapse
Affiliation(s)
- Ping Chen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|