1
|
Iacobescu M, Pop C, Uifălean A, Mogoşan C, Cenariu D, Zdrenghea M, Tănase A, Bergthorsson JT, Greiff V, Cenariu M, Iuga CA, Tomuleasa C, Tătaru D. Unlocking protein-based biomarker potential for graft-versus-host disease following allogenic hematopoietic stem cell transplants. Front Immunol 2024; 15:1327035. [PMID: 38433830 PMCID: PMC10904603 DOI: 10.3389/fimmu.2024.1327035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Despite the numerous advantages of allogeneic hematopoietic stem cell transplants (allo-HSCT), there exists a notable association with risks, particularly during the preconditioning period and predominantly post-intervention, exemplified by the occurrence of graft-versus-host disease (GVHD). Risk stratification prior to symptom manifestation, along with precise diagnosis and prognosis, relies heavily on clinical features. A critical imperative is the development of tools capable of early identification and effective management of patients undergoing allo-HSCT. A promising avenue in this pursuit is the utilization of proteomics-based biomarkers obtained from non-invasive biospecimens. This review comprehensively outlines the application of proteomics and proteomics-based biomarkers in GVHD patients. It delves into both single protein markers and protein panels, offering insights into their relevance in acute and chronic GVHD. Furthermore, the review provides a detailed examination of the site-specific involvement of GVHD. In summary, this article explores the potential of proteomics as a tool for timely and accurate intervention in the context of GVHD following allo-HSCT.
Collapse
Affiliation(s)
- Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Mogoşan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Translational Medicine, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Tănase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Jon Thor Bergthorsson
- Department of Laboratory Hematology, Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University Iceland, Reykjavik, Iceland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Translational Medicine, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Tătaru
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Single nucleotide polymorphisms within HLA region are associated with the outcomes of unrelated cord blood transplantation. Sci Rep 2021; 11:21925. [PMID: 34753965 PMCID: PMC8578435 DOI: 10.1038/s41598-021-01155-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/15/2021] [Indexed: 11/15/2022] Open
Abstract
Cord blood transplantation (CBT) provides a treatment scheme for hematologic diseases and leukemia in both children and adults. However, adverse reactions and transplantation-related death may still occur in patients receiving CBT even when donor and recipient have fully matched HLA in high-resolution HLA typing analysis. Single nucleotide polymorphisms (SNPs) of HLA-related and unrelated genes are known to associate with disease status of patients with unrelated stem cell transplantation. In this study, the genomic regions ranging from 500 base pairs upstream to 500 base pairs downstream of the eight SNPs that were reported as transplantation determinants by Petersdorf et al. were analyzed to evaluate whether genetic variants were associated with the survival status of patients, and the risk for severe (grades 3–4) graft-versus-host disease (GVHD) or cytomegalovirus (CMV) infection/reactivation. The analyses were performed in the mode of recipient genotype, donor genotype, and recipient-donor mismatching, respectively. By analysis of sixty-five patients and their HLA-matched unrelated donors, we found that five SNPs were associated with patient survival which included the recipient genotype with SNPs of rs107822 in the RING1 gene, and rs2070120, rs17220087 and rs17213693 in the HLA-DOB gene; and the recipient-donor mismatching with SNPs of rs9282369 in HLA-DOA gene, and rs2070120, rs17220087 and rs17213693 in the HLA-DOB gene. Five SNPs were associated with the risk for severe GVHD which included the donor genotype with SNPs of rs213210 and rs2523675; the recipient genotype with SNPs of rs9281491 in the HCP5 gene; and the recipient-donor mismatching with SNPs of rs209130 in the TRIM27 gene, and rs986522 in the COL11A2 gene. Six SNPs were related to the risk for CMV infection/reactivation which included the donor genotype with SNPs of rs435766, rs380924, and rs2523957; and the recipient-donor mismatching with SNPs of rs2070120, rs17220087, and rs17213693 in the HLA-DOB gene; and rs435766 and rs380924 in the MICD gene. This study provides the basis for larger analyses and if the results are confirmed, a way of selecting better unrelated CBT candidate donors.
Collapse
|
3
|
Lim HC, Soneji S, Pálmason R, Lenhoff S, Laurell T, Scheding S. Development of acoustically isolated extracellular plasma vesicles for biomarker discovery in allogeneic hematopoietic stem cell transplantation. Biomark Res 2021; 9:6. [PMID: 33468257 PMCID: PMC7814576 DOI: 10.1186/s40364-020-00259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Background Infection and graft-versus-host disease (GvHD) are the major causes for mortality and morbidity of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Plasma-derived extracellular vesicles (EVs) contain disease-related proteins, DNAs and RNAs, and have recently been suggested as potential biomarker candidates for transplantation complications. However, EV isolation from small plasma volumes in clinical biomarker studies using conventional methods is challenging. We therefore investigated if EVs isolated by novel automated acoustic trapping could be developed as potential biomarkers for allo-HSCT complications by performing a clinical proof-of-principle study. Results Plasma samples were collected from twenty consecutive patients with high-risk/relapsed hematologic malignancies undergoing allo-HSCT before transplantation and post-transplant up to 12 weeks. EVs were isolated from small plasma sample volumes (150 μl) by an automated, acoustofluidic-based particle trapping device, which utilizes a local λ/2 ultrasonic standing wave in a borosilicate glass capillary to capture plasma EVs among pre-seeded polystyrene microbeads through sound scatter interactions. We found that EVs could be reliably isolated from all plasma samples (n = 173) and that EV numbers increased more than 2-fold in the majority of patients after transplantation. Also, sufficient quantities of RNA for downstream microRNA (miRNA) analysis were obtained from all samples and EV miRNA profiles were found to differ from whole plasma profiles. As a proof of principle, expression of platelet-specific miR-142-3p in EVs was shown to correlate with platelet count kinetics after transplantation as expected. Importantly, we identified plasma EV miRNAs that were consistently positively correlated with infection and GvHD, respectively, as well as miRNAs that were consistently negatively correlated with these complications. Conclusions This study demonstrates that acoustic enrichment of EVs in a clinical biomarker study setting is feasible and that downstream analysis of acoustically-enriched EVs presents a promising tool for biomarker development in allo-HSCT. Certainly, these findings warrant further exploration in larger studies, which will have significant implications not only for biomarker studies in transplantation but also for the broad field of EV-based biomarker discovery. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-020-00259-4.
Collapse
Affiliation(s)
- Hooi Ching Lim
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, BMC B12, Klinikgatan 26, 22184, Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, BMC B12, Klinikgatan 26, 22184, Lund, Sweden
| | - Róbert Pálmason
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| | - Stig Lenhoff
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| | - Thomas Laurell
- Division of Nanobiotechnology and Lab-on-a-chip, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, BMC B12, Klinikgatan 26, 22184, Lund, Sweden. .,Department of Hematology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
4
|
Giaccone L, Faraci DG, Butera S, Lia G, Di Vito C, Gabrielli G, Cerrano M, Mariotti J, Dellacasa C, Felicetti F, Brignardello E, Mavilio D, Bruno B. Biomarkers for acute and chronic graft versus host disease: state of the art. Expert Rev Hematol 2020; 14:79-96. [PMID: 33297779 DOI: 10.1080/17474086.2021.1860001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Despite significant advances in treatment and prevention, graft-versus-host disease (GVHD) still represents the main cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Thus, considerable research efforts have been made to find and validate reliable biomarkers for diagnosis, prognosis, and risk stratification of GVHD. AREAS COVERED In this review the most recent evidences on different types of biomarkers studied for GVHD, such as genetic, plasmatic, cellular markers, and those associated with microbiome, were summarized. A comprehensive search of peer-review literature was performed in PubMed including meta-analysis, preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graft-versus-host disease, cytokines, and allogeneic hematopoietic stem cell transplantation. EXPERT OPINION In the near future, several validated biomarkers will be available to help clinicians in the diagnosis of GVHD, the identification of patients at high risk of GVHD development and in patients' stratification according to its severity. Then, immunosuppressive treatment could be tailored to each patient's real needs. However, more efforts are needed to achieve this goal. Although most of the proposed biomarkers currently lack validation with large-scale clinical data, their study led to improved knowledge of the biological basis of GVHD, and ultimately to implementation of GHVD treatment.
Collapse
Affiliation(s)
- Luisa Giaccone
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Danilo Giuseppe Faraci
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Sara Butera
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Giuseppe Lia
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Giulia Gabrielli
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Marco Cerrano
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Chiara Dellacasa
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy
| | - Francesco Felicetti
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Enrico Brignardello
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| |
Collapse
|
5
|
Yang CY. Comparative Analyses of the Conformational Dynamics Between the Soluble and Membrane-Bound Cytokine Receptors. Sci Rep 2020; 10:7399. [PMID: 32366846 PMCID: PMC7198498 DOI: 10.1038/s41598-020-64034-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Cytokine receptors receive extracellular cues by binding with cytokines to transduce a signaling cascade leading to gene transcription in cells. Their soluble isoforms, functioning as decoy receptors, contain only the ectodomain. Whether the ectodomains of cytokine receptors at the membrane exhibit different conformational dynamics from their soluble forms is unknown. Using Stimulation-2 (ST2) as an example, we performed microsecond molecular dynamics (MD) simulations to study the conformational dynamics of the soluble and the membrane-bound ST2 (sST2 and ST2). Combined use of accelerated and conventional MD simulations enabled extensive sampling of the conformational space of sST2 for comparison with ST2. Using the interdomain loop conformation as the reaction coordinate, we built a Markov State Model to determine the slowest implied timescale of the conformational transition in sST2 and ST2. We found that the ectodomain of ST2 undergoes slower conformational relaxation but exhibits a faster rate of conformational transition in a more restricted conformational space than sST2. Analyses of the relaxed conformations of ST2 further suggest important contributions of interdomain salt-bridge interactions to the stabilization of different ST2 conformations. Our study elucidates differential conformational properties between sST2 and ST2 that may be exploited for devising strategies to selectively target each isoform.
Collapse
Affiliation(s)
- Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| |
Collapse
|
6
|
Mester A, Irimie AI, Tanase A, Tranca S, Campian RS, Tomuleasa C, Dima D, Piciu A, Lucaciu O. Periodontal disease might be a risk factor for graft versus host disease. A systematic review. Crit Rev Oncol Hematol 2020; 147:102878. [PMID: 32000068 DOI: 10.1016/j.critrevonc.2020.102878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The aim of this systematic review was to determine a potential association between periodontal disease and graft versus host disease (GVHD). DESIGN PubMed, Scopus and Web of Science databases were searched to identify all relevant articles. The eligibility criteria were prospective, retrospective, cross-sectional, cohort, case-control studies and interventional studies that assessed periodontal parameters in GVHD adults' patients. RESULTS Seven studies, published between 2000 and 2018, were eligible. The aggravation of periodontal tissues is due to inadequate oral hygiene, dental plaque, decays, gum recession, retained roots, tooth loss, periodontally infected teeth. Several studies have indicated that periodontitis treatment performed before transplantation showed the reduction of gingival inflammation and maintenance of periodontal health. CONCLUSIONS Periodontitis might be a risk factor for GVHD. However, due to the limited number of studies included in the review and their heterogeneity, more data are needed to sustain the correlation between periodontitis and GVHD.
Collapse
Affiliation(s)
- Alexandru Mester
- Department of Oral Health, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Department of Propedeutics, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Sebastian Tranca
- Department of Intensive Care Unit, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Radu Septimiu Campian
- Department of Oral Health, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Andra Piciu
- Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.
| | - Ondine Lucaciu
- Department of Oral Health, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
7
|
Zimta AA, Tomuleasa C, Sahnoune I, Calin GA, Berindan-Neagoe I. Long Non-coding RNAs in Myeloid Malignancies. Front Oncol 2019; 9:1048. [PMID: 31681586 PMCID: PMC6813191 DOI: 10.3389/fonc.2019.01048] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) represents 80% of adult leukemias and 15-20% of childhood leukemias. AML are characterized by the presence of 20% blasts or more in the bone marrow, or defining cytogenetic abnormalities. Laboratory diagnoses of myelodysplastic syndromes (MDS) depend on morphological changes based on dysplasia in peripheral blood and bone marrow, including peripheral blood smears, bone marrow aspirate smears, and bone marrow biopsies. As leukemic cells are not functional, the patient develops anemia, neutropenia, and thrombocytopenia, leading to fatigue, recurrent infections, and hemorrhage. The genetic background and associated mutations in AML blasts determine the clinical course of the disease. Over the last decade, non-coding RNAs transcripts that do not codify for proteins but play a role in regulation of functions have been shown to have multiple applications in the diagnosis, prognosis and therapeutic approach of various types of cancers, including myeloid malignancies. After a comprehensive review of current literature, we found reports of multiple long non-coding RNAs (lncRNAs) that can differentiate between AML types and how their exogenous modulation can dramatically change the behavior of AML cells. These lncRNAs include: H19, LINC00877, RP11-84C10, CRINDE, RP11848P1.3, ZNF667-AS1, AC111000.4-202, SFMBT2, LINC02082-201, MEG3, AC009495.2, PVT1, HOTTIP, SNHG5, and CCAT1. In addition, by performing an analysis on available AML data in The Cancer Genome Atlas (TCGA), we found 10 lncRNAs with significantly differential expression between patients in favorable, intermediate/normal, or poor cytogenetic risk categories. These are: DANCR, PRDM16-DT, SNHG6, OIP5-AS1, SNHG16, JPX, FTX, KCNQ1OT1, TP73-AS1, and GAS5. The identification of a molecular signature based on lncRNAs has the potential for have deep clinical significance, as it could potentially help better define the evolution from low-grade MDS to high-grade MDS to AML, changing the course of therapy. This would allow clinicians to provide a more personalized, patient-tailored therapeutic approach, moving from transfusion-based therapy, as is the case for low-grade MDS, to the introduction of azacytidine-based chemotherapy or allogeneic stem cell transplantation, which is the current treatment for high-grade MDS.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Iman Sahnoune
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Aberrant Expression of the miR-181b/miR-222 after Hematopoietic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia. Indian J Hematol Blood Transfus 2019; 35:446-450. [PMID: 31388255 DOI: 10.1007/s12288-018-01066-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Recently, dysregulated expression of various micro RNAs has been reported in hematologic malignancies, especially AML disease which affects normal hematopoiesis in these patients and thereby contribute to clinical outcome of AML patients, associated with either poor or favorable prognosis. Herein, we evaluated the expression of miR-181b and miR-222 in acute myeloid leukemia patients and correlation with response to therapy after hematopoietic stem cell transplantation. Eighty newly diagnosed AML patients and 80 healthy controls were recruited. The expression of miR-181b and miR-222 was evaluated by real-time SYBR Green PCR method. miR-181b gene expression was significantly increased (4.7 fold) whereas miR-222 was decreased (18.3 fold) in AML patients compared to controls (P = 0.03 and P < 0.001, respectively). Both miR-181b and miR-222 were not associated with response to treatment (P > 0.05). Also, miR-181b and miR-222 were not differentially expressed in AML patients with M3 compared to non-M3 FAB subtypes (P > 0.05). miR-181b and miR-222 are aberrantly expressed in AML patients and their baseline level is not associated with response to treatment.
Collapse
|
9
|
Constantinescu C, Bodolea C, Pasca S, Teodorescu P, Dima D, Rus I, Tat T, Achimas-Cadariu P, Tanase A, Tomuleasa C, Einsele H. Clinical Approach to the Patient in Critical State Following Immunotherapy and/or Stem Cell Transplantation: Guideline for the On-Call Physician. J Clin Med 2019; 8:E884. [PMID: 31226876 PMCID: PMC6616972 DOI: 10.3390/jcm8060884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
: The initial management of the hematology patient in a critical state is crucial and poses a great challenge both for the hematologist and the intensive care unit (ICU) physician. After years of clinical practice, there is still a delay in the proper recognition and treatment of critical situations, which leads to late admission to the ICU. There is a much-needed systematic ABC (Airway, Breathing, Circulation) approach for the patients being treated on the wards as well as in the high dependency units because the underlying hematological disorder, as well as disease-related complications, have an increasing frequency. Focusing on score-based decision-making on the wards (Modified Early Warning Score (MEWS), together with Quick Sofa score), active sepsis screening with inflammation markers (C-reactive protein, procalcitonin, and presepsin), and assessment of microcirculation, organ perfusion, and oxygen supply by using paraclinical parameters from the ICU setting (lactate, central venous oxygen saturation (ScVO2), and venous-to-arterial carbon dioxide difference), hematologists can manage the immediate critical patient and improve the overall outcome.
Collapse
Affiliation(s)
- Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania.
- Intensive Care Unit, Ion Chiricuta Clinical Cancer Center, 400005 Cluj Napoca, Romania.
| | - Constantin Bodolea
- Department of Anesthesia, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania.
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania.
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400005 Cluj Napoca, Romania.
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400005 Cluj Napoca, Romania.
| | - Ioana Rus
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400005 Cluj Napoca, Romania.
| | - Tiberiu Tat
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400005 Cluj Napoca, Romania.
| | - Patriciu Achimas-Cadariu
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania.
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania.
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400005 Cluj Napoca, Romania.
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street, 400124 Cluj Napoca, Romania.
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, 97070 Wuerzburg, Germany.
| |
Collapse
|
10
|
Abstract
miRNAs, ∼20 to 22 nucleotide single-stranded RNA species that play a pivotal role in the regulation of protein-coding genes, are emerging as robust biomarkers for assessing allograft status. Herein, the authors briefly review the biogenesis and function of the miRNAs and provide an overview of the tools to quantify miRNAs in tissues and body fluids. They then review their studies of discovery and validation of alterations in miRNA expression within kidney allografts with or without acute rejection, as well as with or without fibrosis, and summarize published data on miRNA expression patterns in kidney transplant recipients.
Collapse
Affiliation(s)
- Zahraa Khan
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA.
| |
Collapse
|
11
|
Jurj A, Pop L, Petrushev B, Pasca S, Dima D, Frinc I, Deak D, Desmirean M, Trifa A, Fetica B, Gafencu G, Selicean S, Moisoiu V, Micu WT, Berce C, Sacu A, Moldovan A, Colita A, Bumbea H, Tanase A, Dascalescu A, Zdrenghea M, Stiufiuc R, Leopold N, Tetean R, Burzo E, Tomuleasa C, Berindan-Neagoe I. Exosome-carried microRNA-based signature as a cellular trigger for the evolution of chronic lymphocytic leukemia into Richter syndrome. Crit Rev Clin Lab Sci 2018; 55:501-515. [PMID: 30238808 DOI: 10.1080/10408363.2018.1499707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Even if considered a cumulative and not a proliferative CD5+ B-cell neoplasm, chronic lymphocytic leukemia (CLL) has a proliferation rate higher than that recognized earlier, especially in the lymphoid tissues. Some patients with CLL develop a clinical syndrome entitled Richter syndrome (RS). Understanding CLL genetics and epigenetics may help to elucidate the molecular basics of the clinical heterogeneity of this type of malignancy. In the present project we aimed to identify a microRNA species that can predict the evolution of therapy-resistant CLL towards RS. In the first phase of our study, microRNA-19b was identified as a possible target, and in the second phase, we transfected three different CLL cell lines with microRNA-19b mimic and inhibitor and assessed the potential role on leukemia cells in vitro. The mechanism by which miR-19b acts were identified as the upregulation of Ki67 and downregulation of p53. This was further supported through RT-PCR and western blotting on CLL cell lines, as well as by next generation sequencing on two patients diagnosed with CLL that evolved into RS.
Collapse
Affiliation(s)
- Ancuta Jurj
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Laura Pop
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Bobe Petrushev
- b Department of Pathology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Sergiu Pasca
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Delia Dima
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Ioana Frinc
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Dalma Deak
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Minodora Desmirean
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Adrian Trifa
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Bogdan Fetica
- b Department of Pathology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Grigore Gafencu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sonia Selicean
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Vlad Moisoiu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Wilhelm-Thomas Micu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cristian Berce
- e Center for Experimental Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Alexandra Sacu
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Alin Moldovan
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,f Department of Hematology , Carol Davilla University of Medicine and Pharmacy , Bucharest , Romania
| | - Andrei Colita
- g Department of Hematology , Coltea Hospital , Bucharest , Romania
| | - Horia Bumbea
- f Department of Hematology , Carol Davilla University of Medicine and Pharmacy , Bucharest , Romania.,h Department of Hematology , University Hospital , Bucharest , Romania
| | - Alina Tanase
- h Department of Hematology , University Hospital , Bucharest , Romania.,i Department of Hematology , Fundeni Clinical Hospital , Bucharest , Romania
| | - Angela Dascalescu
- j Department of Hematology , Grigore T. Popa University of Medicine and Pharmacy , Iasi , Romania.,k Department of Hematology , Regional Institute of Oncology , Iasi , Romania
| | - Mihnea Zdrenghea
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Rares Stiufiuc
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Nicolae Leopold
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania
| | - Romulus Tetean
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania
| | - Emil Burzo
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania.,m Romanian Academy , Romania
| | - Ciprian Tomuleasa
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Ioana Berindan-Neagoe
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| |
Collapse
|
12
|
Ramadan AM, Daguindau E, Rech JC, Chinnaswamy K, Zhang J, Hura GL, Griesenauer B, Bolten Z, Robida A, Larsen M, Stuckey JA, Yang CY, Paczesny S. From proteomics to discovery of first-in-class ST2 inhibitors active in vivo. JCI Insight 2018; 3:99208. [PMID: 30046004 DOI: 10.1172/jci.insight.99208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Soluble cytokine receptors function as decoy receptors to attenuate cytokine-mediated signaling and modulate downstream cellular responses. Dysregulated overproduction of soluble receptors can be pathological, such as soluble ST2 (sST2), a prognostic biomarker in cardiovascular diseases, ulcerative colitis, and graft-versus-host disease (GVHD). Although intervention using an ST2 antibody improves survival in murine GVHD models, sST2 is a challenging target for drug development because it binds to IL-33 via an extensive interaction interface. Here, we report the discovery of small-molecule ST2 inhibitors through a combination of high-throughput screening and computational analysis. After in vitro and in vivo toxicity assessment, 3 compounds were selected for evaluation in 2 experimental GVHD models. We show that the most effective compound, iST2-1, reduces plasma sST2 levels, alleviates disease symptoms, improves survival, and maintains graft-versus-leukemia activity. Our data suggest that iST2-1 warrants further optimization to develop treatment for inflammatory diseases mediated by sST2.
Collapse
Affiliation(s)
- Abdulraouf M Ramadan
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Etienne Daguindau
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jason C Rech
- Department of Internal Medicine, Hematology and Oncology Division, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jilu Zhang
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Greg L Hura
- Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Brad Griesenauer
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zachary Bolten
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aaron Robida
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Martha Larsen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Chao-Yie Yang
- Department of Internal Medicine, Hematology and Oncology Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Ren HG, Adom D, Paczesny S. The search for drug-targetable diagnostic, prognostic and predictive biomarkers in chronic graft-versus-host disease. Expert Rev Clin Immunol 2018; 14:389-404. [PMID: 29629613 DOI: 10.1080/1744666x.2018.1463159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic graft-versus-host disease (cGVHD) continues to be the leading cause of late morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), which is an increasingly applied curative method for both benign and malignant hematologic disorders. Biomarker identification is crucial for the development of noninvasive and cost-effective cGVHD diagnostic, prognostic, and predictive test for use in clinic. Furthermore, biomarkers may help to gain a better insight on ongoing pathophysiological processes. The recent widespread application of omics technologies including genomics, transcriptomics, proteomics and cytomics provided opportunities to discover novel biomarkers. Areas covered: This review focuses on biomarkers identified through omics that play a critical role in target identification for drug development, and that were verified in at least two independent cohorts. It also summarizes the current status on omics tools used to identify these useful cGVHD targets. We briefly list the biomarkers identified and verified so far. We further address challenges associated to their exploitation and application in the management of cGVHD patients. Finally, insights on biomarkers that are drug targetable and represent potential therapeutic targets are discussed. Expert commentary: We focus on biomarkers that play an essential role in target identification.
Collapse
Affiliation(s)
- Hong-Gang Ren
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| | - Djamilatou Adom
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| | - Sophie Paczesny
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| |
Collapse
|
14
|
Tat T, Li H, Constantinescu CS, Onaciu A, Chira S, Osan C, Pasca S, Petrushev B, Moisoiu V, Micu WT, Berce C, Tranca S, Dima D, Berindan-Neagoe I, Shen J, Tomuleasa C, Qian L. Genetically enhanced T lymphocytes and the intensive care unit. Oncotarget 2018; 9:16557-16572. [PMID: 29662667 PMCID: PMC5893262 DOI: 10.18632/oncotarget.24637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor-modified T cells (CAR-T cells) and donor lymphocyte infusion (DLI) are important protocols in lymphocyte engineering. CAR-T cells have emerged as a new modality for cancer immunotherapy due to their potential efficacy against hematological malignancies. These genetically modified receptors contain an antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular costimulatory domain resulting in lymphocyte T cell activation subsequent to antigen binding. In present-day medicine, four generations of CAR-T cells are described depending on the intracellular signaling domain number of T cell receptors. DLI represents a form of adoptive therapy used after hematopoietic stem cell transplant for its anti-tumor and anti-infectious properties. This article covers the current status of CAR-T cells and DLI research in the intensive care unit (ICU) patient, including the efficacy, toxicity, side effects and treatment.
Collapse
Affiliation(s)
- Tiberiu Tat
- Intensive Care Unit, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Department of Anesthesiology-Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Huming Li
- Department of Pulmonary and Critical Care Medicine, Navy General Hospital of PLA, Beijing, China
| | - Catalin-Sorin Constantinescu
- Intensive Care Unit, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Anca Onaciu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Osan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bobe Petrushev
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Wilhelm-Thomas Micu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristian Berce
- Department of Experimental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sebastian Tranca
- Department of Anesthesiology-Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Jianliang Shen
- Department of Hematology, Navy General Hospital of PLA, Beijing, China
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Clinical Cancer Research, Cluj Napoca, Romania
- Research Center for Functional Genomics and Translational Medicine / Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Liren Qian
- Department of Hematology, Navy General Hospital of PLA, Beijing, China
| |
Collapse
|
15
|
Tomuleasa C, Fuji S, Berce C, Onaciu A, Chira S, Petrushev B, Micu WT, Moisoiu V, Osan C, Constantinescu C, Pasca S, Jurj A, Pop L, Berindan-Neagoe I, Dima D, Kitano S. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. Front Immunol 2018. [PMID: 29515572 PMCID: PMC5825894 DOI: 10.3389/fimmu.2018.00239] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Shigeo Fuji
- Department of Stem Cell Transplantation, Osaka International Cancer Institute, Osaka, Japan
| | - Cristian Berce
- Animal Facility, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Anca Onaciu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bobe Petrushev
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Wilhelm-Thomas Micu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Osan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj Napoca, Romania
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy, Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
16
|
Qian L, Dima D, Berce C, Liu Y, Rus I, Raduly LZ, Liu Y, Petrushev B, Berindan-Neagoe I, Irimie A, Tanase A, Jurj A, Shen J, Tomuleasa C. Protein dysregulation in graft versus host disease. Oncotarget 2018; 9:1483-1491. [PMID: 29416707 PMCID: PMC5787452 DOI: 10.18632/oncotarget.23276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a well-established treatment for many malignant and non-malignant hematological disorders. As a frequent complication in up to 50% of all patients, graft-versus-host disease is still the main cause for morbidity and non-relapse mortality. Diagnosis is usually done clinically, even though confirmation by pathology is often used to support the clinical findings. Effective treatment requires intensified immunosuppression as early as possible. Although several promising biomarkers have been proposed for an early diagnosis, no internationally-recognized consensus has yet been established. Protein-based biomarkers represent an interesting tool since they have been recently reported to be an important regulator of various cells, including immune cells such as T cells. Therefore, we assume that protein dysregulation is important in the pathogenesis of acute graft versus host disease and their detection might be an possibility in the early diagnosis and monitoring. In this review, we aim to summarize the previous reports of protein biomarkers, focusing on the pathogenesis of the disease and possible implications in diagnostic approaches.
Collapse
Affiliation(s)
- Liren Qian
- Department of Hematology, Navy General Hospital, Beijing, PR China
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Cristian Berce
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Yu Liu
- Department of Hematology, Navy General Hospital, Beijing, PR China
| | - Ioana Rus
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Yi Liu
- Department of Hematology, Navy General Hospital, Beijing, PR China
| | - Bobe Petrushev
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | | | - Alexandru Irimie
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Ancuta Jurj
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Jianliang Shen
- Department of Hematology, Navy General Hospital, Beijing, PR China
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| |
Collapse
|
17
|
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11:2871-2890. [PMID: 29033548 PMCID: PMC5628667 DOI: 10.2147/dddt.s142337] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the last few years, nanostructures have gained considerable interest for the safe delivery of therapeutic agents. Several therapeutic approaches have been reported, such as molecular diagnosis, disease detection, nanoscale immunotherapy and anticancer drug delivery that could be integrated into clinical use. The current paper aims to highlight the background that supports the use of nanoparticles conjugated with different types of therapeutic agents, applicable in targeted therapy and cancer research, with a special emphasis on hematological malignancies. A particular key point is the functional characterization of nonviral delivery systems, such as gold nanoparticles, liposomes and dendrimers. The paper also presents relevant published data related to microRNA and RNA interference delivery using nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Hematology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Practical Abilities, Department of Medical Education, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Education, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Bojan A, Berindan-Neagoe I, Ciurea S, Dima D, Fuji S, Ghiaur G, Grewal R, Mccormack E, Tanase A, Trifa A, Tomuleasa C. Proceedings from the 1st Insights in Hematology Symposium, Cluj-Napoca, Romania March 11-12, 2016. ACTA ACUST UNITED AC 2017; 54:157-160. [PMID: 27658163 DOI: 10.1515/rjim-2016-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Indexed: 11/15/2022]
Abstract
In the March 2016 issue of the Lancet Haematology, the editorial office published a paper stating the roadmap for European research in hematology, based on the European Hematology Association (EHA) consensus document that outlines the directions in hematology for the following years across the continent. The meeting entitled "Insights in hematology" is organized a support for the initiative of a roadmap for European hematologists regarding research, may it be basic research or clinical research, but this consensus should not be focused mainly on European institutions, but rather form the backbone of global research between Europe and the United States, Japan or any other country. This will allow Europeans to learn as well as to share their experience with the rest of the scientific and medical community. And the Cluj-Napoca meeting should be followed by other such meetings all across the EU.
Collapse
|
19
|
Tanase A, Tomuleasa C, Marculescu A, Bardas A, Colita A, Orban C, Ciurea SO. Haploidentical Donors: Can Faster Transplantation Be Life-Saving for Patients with Advanced Disease? Acta Haematol 2016; 135:211-6. [PMID: 26914538 DOI: 10.1159/000443469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
Haploidentical stem cell transplantation is a therapeutic option for patients without an HLA-matched donor. It is increasingly being used worldwide due to the application of posttransplantation cyclophosphamide and is associated with lower incidence of graft-versus-host disease and treatment-related mortality. Haploidentical donors are generally available for most patients and stem cells can be rapidly obtained. Delays in transplantation while waiting for unrelated donor cells can be potentially problematic for patients with advanced disease at risk for progression; thus, the use of haploidentical donors, especially in this setting, can be life-saving. Here we reviewed the literature on haploidentical stem cell transplantation performed with posttransplantation cyclophosphamide.
Collapse
Affiliation(s)
- Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|