1
|
Cheung HL, Wong YH, Li YY, Yang X, Ko LH, Tan Kabigting JE, Chan KC, Leung AYH, Chan BP. Microenvironment matters: In vitro 3D bone marrow niches differentially modulate survival, phenotype and drug responses of acute myeloid leukemia (AML) cells. Biomaterials 2025; 312:122719. [PMID: 39088912 DOI: 10.1016/j.biomaterials.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.
Collapse
Affiliation(s)
- Hoi Lam Cheung
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yu Hin Wong
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Yin Li
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Xingxing Yang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Lok Him Ko
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jessica Evangeline Tan Kabigting
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Koon Chuen Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anskar Yu Hung Leung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Barbara Pui Chan
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
2
|
de Freitas FA, Levy D, Reichert CO, Sampaio-Silva J, Giglio PN, de Pádua Covas Lage LA, Demange MK, Pereira J, Bydlowski SP. Influence of Human Bone Marrow Mesenchymal Stem Cells Secretome from Acute Myeloid Leukemia Patients on the Proliferation and Death of K562 and K562-Lucena Leukemia Cell Lineages. Int J Mol Sci 2024; 25:4748. [PMID: 38731966 PMCID: PMC11084554 DOI: 10.3390/ijms25094748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Juliana Sampaio-Silva
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Pedro Nogueira Giglio
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Luís Alberto de Pádua Covas Lage
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Marco Kawamura Demange
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Juliana Pereira
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Department of General Physics, Physics Institute, Sao Paulo University, Sao Paulo 05508-090, SP, Brazil
| |
Collapse
|
3
|
Hu L, Xu T, Wang X, Qian M, Jin Y. Exposure to the fungicide prothioconazole and its metabolite prothioconazole-desthio induced hepatic metabolism disorder and oxidative stress in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105452. [PMID: 37248020 DOI: 10.1016/j.pestbp.2023.105452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Prothioconazole (PTC), as a popular triazole fungicide, with its main metabolite prothioconazole desthio (PTC-d), have attracted widespread concern due to their widely use and toxicological effects on non-target organisms. However, toxic effects of study analyzed PTC and PTC-d on the hepatic metabolism of mammalian still remains unclear. In this study, we conducted the study of the C57BL/6 mice which oral exposure to 30 mg/kg PTC and PTC-d via metabolomic analysis. In the liver, the metabolomics profile unveiled that exposure to 30 mg/kg PTC and PTC-d led to significantly altered 13 and 28 metabolites respectively, with 6 metabolites in common including significant decreased d-Fructose, Glutathione, showing the change of carbohydrate, lipid and amino acid metabolism. Via the further exploration of genes related to hepatic glycolipid metabolism and the biomarkers of oxidative stress, we found that liver was potentially damaged after exposure to 5 and 30 mg/kg PTC and PTC-d. Particularly, it was proved that PTC-d caused more adverse effect than its parent compound PTC on hepatotoxicity, and high concentration PTC or PTC-d exposure is more harmful than low concentration exposure.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Picoli CC, Martins PR, Wong XLC, Righi T, Guimarães PPG, Pinto MCX, Amorim JH, Azevedo VAC, Pereira SR, Kanashiro A, Cruz FC, Resende RR, Mintz A, Frenette PS, Birbrair A. Whole bone subcutaneous transplantation as a strategy to study precisely the bone marrow niche. Stem Cell Rev Rep 2022; 19:906-927. [PMID: 36585572 DOI: 10.1007/s12015-022-10496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Abstract
Hematopoietic stem cells are maintained in a specialized microenvironment, known as the 'niche', within the bone marrow. Understanding the contribution of cellular and molecular components within the bone marrow niche for the maintenance of hematopoietic stem cells is crucial for the success of therapeutic applications. So far, the roles of crucial mechanisms within the bone marrow niche have been explored in transgenic animals in which genetic modifications are ubiquitously introduced in the whole body. The lack of precise tools to explore genetic alterations exclusively within the bone marrow prevents our determination of whether the observed outcomes result from confounding effects from other organs. Here, we developed a new method - 'whole bone subcutaneous transplantation'- to study the bone marrow niche in transgenic animals precisely. Using immunolabeling of CD45.1 (donor) vs. CD45.2 (recipient) hematopoeitic stem cells, we demonstrated that hematopoeitic stem cells from the host animals colonize the subcutaneously transplanted femurs after transplantation, while the hematopoietic stem cells from the donor disappear. Strikinlgy, the bone marrow niche of these subcutaneously transplanted femurs remain from the donor mice, enabling us to study specifically cells of the bone marrow niche using this model. We also showed that genetic ablation of peri-arteriolar cells specifically in donor femurs reduced the numbers of hematopoietic stem cells in these bones. This supports the use of this strategy as a model, in combination with genetic tools, to evaluate how bone marrow niche specific modifications may impact non-modified hematopoietic stem cells. Thus, this approach can be utilized for genetic manipulation in vivo of specific cell types only within the bone marrow. The combination of whole bone subcutaneous transplantation with rodent transgenic models will facilitate a more precise, complex and comprehensive understanding of existing problems in the study of the hematopoietic stem cell bone marrow niche.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Xiao Lin Casey Wong
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | - Thamires Righi
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA.,Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Alexandre Kanashiro
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | - Fabio Cardoso Cruz
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Frenette
- Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Gilson Sena IF, Fernandes LL, Lorandi LL, Santana TV, Cintra L, Lima IF, Iwai LK, Kramer JM, Birbrair A, Heller D. Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Sci Rep 2022; 12:11544. [PMID: 35798767 PMCID: PMC9263110 DOI: 10.1038/s41598-022-14514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is one of leading causes of death worldwide in the female population. Deaths from breast cancer could be reduced significantly through earlier and more efficient detection of the disease. Saliva, an oral fluid that contains an abundance of protein biomarkers, has been recognized as a promising diagnostic biofluid that is easy to isolate through non-invasive techniques. Assays on saliva can be performed rapidly and are cost-effective. Therefore, our work aimed to identify salivary biomarkers present in the initial stages of breast cancer, where cell alterations are not yet detectable by histopathological analysis. Using state-of-the-art techniques, we employed a transgenic mouse model of mammary cancer to identify molecular changes in precancerous stage breast cancer through protein analysis in saliva. Through corroborative molecular approaches, we established that proteins related to metabolic changes, inflammatory process and cell matrix degradation are detected in saliva at the onset of tumor development. Our work demonstrated that salivary protein profiles can be used to identify cellular changes associated with precancerous stage breast cancer through non-invasive means even prior to biopsy-evident disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Ismael Feitosa Lima
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, The University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Department of Dermatology, Medical Sciences Center, University of Wisconsin-Madison, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| | - Débora Heller
- Post Graduate Program in Dentistry, Cruzeiro do Sul University, São Paulo, Brazil. .,Hospital Israelita Albert Einstein, São Paulo, Brazil. .,Department of Periodontology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Bernardes SS, Pinto MCX, Amorim JH, Azevedo VADC, Resende RR, Mintz A, Birbrair A. Glioma Pericytes Promote Angiogenesis by Producing Periostin. Cell Mol Neurobiol 2022; 42:557-564. [PMID: 33010018 PMCID: PMC8018985 DOI: 10.1007/s10571-020-00975-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022]
Abstract
Glioma is the prevalent aggressive primary brain tumor, with a very poor prognosis. The absence of advanced understanding of the roles played by the cells within the glioma microenvironment limits the development of effective drugs. A recent study indicates that periostin expressed by pericytes is crucial for glioma angiogenesis. Here, we describe succinctly the results and implications of this discovery in what we know about pericytes within the glioma microenvironment. The emerging knowledge from this work will benefit the development of therapies for gliomas.
Collapse
Affiliation(s)
- Sara Santos Bernardes
- Tissue Microenvironment Laboratory, Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Cunha Xavier Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime Henrique Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Tissue Microenvironment Laboratory, Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Goodarzi A, Valikhani M, Amiri F, Safari A. The mechanisms of mutual relationship between malignant hematologic cells and mesenchymal stem cells: Does it contradict the nursing role of mesenchymal stem cells? Cell Commun Signal 2022; 20:21. [PMID: 35236376 PMCID: PMC8889655 DOI: 10.1186/s12964-022-00822-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known as the issue in biology because of some unpredictable characteristics in the different microenvironments especially in their bone marrow niche. MSCs are used in the regenerative medicine because of their unique potentials for trans-differentiation, immunomodulation, and paracrine capacity. But, their pathogenic and pro-survival effects in tumors/cancers including hematologic malignancies are indisputable. MSCs and/or their derivatives might be involved in tumor growth, metastasis and drug resistance in the leukemias. One of important relationship is MSCs and hematologic malignancy-derived cells which affects markedly the outcome of disease. The communication between these two cells may be contact-dependent and/or contact-independent. In this review, we studied the crosstalk between MSCs and malignant hematologic cells which results the final feedback either the progression or suppression of blood cell malignancy. Video abstract.
Collapse
Affiliation(s)
- Alireza Goodarzi
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran
| | - Mohsen Valikhani
- Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran.
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
8
|
Santos GSP, Costa AC, Picoli CC, Rocha BGS, Sulaiman SO, Radicchi DC, Pinto MCX, Batista ML, Amorim JH, Azevedo VAC, Resende RR, Câmara NOS, Mintz A, Birbrair A. Sympathetic nerve-adipocyte interactions in response to acute stress. J Mol Med (Berl) 2021; 100:151-165. [PMID: 34735579 PMCID: PMC8567732 DOI: 10.1007/s00109-021-02157-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Psychological stress predisposes our body to several disorders. Understanding the cellular and molecular mechanisms involved in the physiological responses to psychological stress is essential for the success of therapeutic applications. New studies show, by using in vivo inducible Cre/loxP-mediated approaches in combination with pharmacological blockage, that sympathetic nerves, activated by psychological stress, induce brown adipocytes to produce IL-6. Strikingly, this cytokine promotes gluconeogenesis in hepatocytes, that results in the decline of tolerance to inflammatory organ damage. The comprehension arising from this research will be crucial for the handling of many inflammatory diseases. Here, we review recent advances in our comprehension of the sympathetic nerve-adipocyte axis in the tissue microenvironment.
Collapse
Affiliation(s)
- Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sheu O Sulaiman
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora C Radicchi
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Miguel L Batista
- Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil.,Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, BA, Barreiras, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Niels O S Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Picoli CC, Gonçalves BÔP, Santos GSP, Rocha BGS, Costa AC, Resende RR, Birbrair A. Pericytes cross-talks within the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1876:188608. [PMID: 34384850 DOI: 10.1016/j.bbcan.2021.188608] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells are embedded within the tumor microenvironment and interact dynamically with its components during tumor progression. Understanding the molecular mechanisms by which the tumor microenvironment components communicate is crucial for the success of therapeutic applications. Recent studies show, by using state-of-the-art technologies, including sophisticated in vivo inducible Cre/loxP mediated systems and CRISPR-Cas9 gene editing, that pericytes communicate with cancer cells. The arising knowledge on cross-talks within the tumor microenvironment will be essential for the development of new therapies against cancer. Here, we review recent progress in our understanding of pericytes roles within tumors.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan Ô P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Coimbra-Campos LMC, Silva WN, Baltazar LM, Costa PAC, Prazeres PHDM, Picoli CC, Costa AC, Rocha BGS, Santos GSP, Oliveira FMS, Pinto MCX, Amorim JH, Azevedo VAC, Souza DG, Russo RC, Resende RR, Mintz A, Birbrair A. Circulating Nestin-GFP + Cells Participate in the Pathogenesis of Paracoccidioides brasiliensis in the Lungs. Stem Cell Rev Rep 2021; 17:1874-1888. [PMID: 34003465 DOI: 10.1007/s12015-021-10181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning. The presence of cells expressing Nestin-GFP has been reported in different tissues, and their roles as tissue-specific progenitors have been stablished in particular organs. Here, we explored how Nestin-GFP+ cells are affected after lung infection by Paracoccidioides brasiliensis, a model of lung granulomatous inflammation with fibrotic outcome. We used Nestin-GFP transgenic mice, parabiosis surgery, confocal microscopy and flow cytometry to investigate the participation of Nestin-GFP+ cells in Paracoccidioides brasiliensis pathogenesis. We revealed that these cells increase in the lungs post-Paracoccidioides brasiliensis infection, accumulating around granulomas. This increase was due mainly to Nestin-GPF+ cells derived from the blood circulation, not associated to blood vessels, that co-express markers suggestive of hematopoietic cells (Sca-1, CD45 and CXCR4). Therefore, our findings suggest that circulating Nestin-GFP+ cells participate in the Paracoccidioides brasiliensis pathogenesis in the lungs.
Collapse
Affiliation(s)
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila M Baltazar
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício M S Oliveira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle G Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Effect of Chemotherapy on CXCL1 and CXCL10 Levels in Acute Myeloid Leukemia Patients with M4/M5 Subtype. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.52547/mlj.15.2.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
12
|
Picoli CC, Costa AC, Rocha BGS, Silva WN, Santos GSP, Prazeres PHDM, Costa PAC, Oropeza A, da Silva RA, Azevedo VAC, Resende RR, Cunha TM, Mintz A, Birbrair A. Sensory nerves in the spotlight of the stem cell niche. Stem Cells Transl Med 2020; 10:346-356. [PMID: 33112056 PMCID: PMC7900586 DOI: 10.1002/sctm.20-0284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Niches are specialized tissue microenvironments that control stem cells functioning. The bone marrow mesenchymal stem cell niche defines a location within the marrow in which mesenchymal stem cells are retained and produce new cells throughout life. Deciphering the signaling mechanisms by which the niche regulates stem cell fate will facilitate the use of these cells for therapy. Recent studies, by using state-of-the-art methodologies, including sophisticated in vivo inducible genetic techniques, such as lineage-tracing Cre/loxP mediated systems, in combination with pharmacological inhibition, provide evidence that sensory neuron is an important component of the bone marrow mesenchymal stem cell niche. Strikingly, knockout of a specific receptor in sensory neurons blocked stem cell function in the bone marrow. The knowledge arising from these discoveries will be crucial for stem cell manipulation in the future. Here, we review recent progress in our understanding of sensory nerves biology in the stem cell niche.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Oropeza
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo A da Silva
- Department of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Radiology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
13
|
Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FCO, Coimbra-Campos LMC, Resende RR, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Neural stem cell niche heterogeneity. Semin Cell Dev Biol 2019; 95:42-53. [PMID: 30639325 PMCID: PMC6710163 DOI: 10.1016/j.semcdb.2019.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/02/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
In mammals, new neurons can be generated from neural stem cells in specific regions of the adult brain. Neural stem cells are characterized by their abilities to differentiate into all neural lineages and to self-renew. The specific microenvironments regulating neural stem cells, commonly referred to as neurogenic niches, comprise multiple cell populations whose precise contributions are under active current exploration. Understanding the cross-talk between neural stem cells and their niche components is essential for the development of therapies against neurological disorders in which neural stem cells function is altered. In this review, we describe and discuss recent studies that identified novel components in the neural stem cell niche. These discoveries bring new concepts to the field. Here, we evaluate these recent advances that change our understanding of the neural stem cell niche heterogeneity and its influence on neural stem cell function.
Collapse
Affiliation(s)
- Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia C O Bitencourt
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Leonel C, Sena IFG, Silva WN, Prazeres PHDM, Fernandes GR, Mancha Agresti P, Martins Drumond M, Mintz A, Azevedo VAC, Birbrair A. Staphylococcus epidermidis role in the skin microenvironment. J Cell Mol Med 2019; 23:5949-5955. [PMID: 31278859 PMCID: PMC6714221 DOI: 10.1111/jcmm.14415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex dynamic physiological process in response to cutaneous destructive stimuli that aims to restore the cutaneous' barrier role. Deciphering the underlying mechanistic details that contribute to wound healing will create novel therapeutic strategies for skin repair. Recently, by using state-of-the-art technologies, it was revealed that the cutaneous microbiota interact with skin immune cells. Strikingly, commensal Staphylococcus epidermidis-induced CD8+ T cells induce re-epithelization of the skin after injury, accelerating wound closure. From a drug development perspective, the microbiota may provide new therapeutic candidate molecules to accelerate skin healing. Here, we summarize and evaluate recent advances in the understanding of the microbiota in the skin microenvironment.
Collapse
Affiliation(s)
- Caroline Leonel
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Isadora F. G. Sena
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Walison N. Silva
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | | | | | - Pamela Mancha Agresti
- Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | | | - Akiva Mintz
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| | - Vasco A. C. Azevedo
- Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Alexander Birbrair
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| |
Collapse
|
15
|
Santos GSP, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericyte Plasticity in the Brain. Neurosci Bull 2019; 35:551-560. [PMID: 30367336 PMCID: PMC6527663 DOI: 10.1007/s12264-018-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Cerebral pericytes are perivascular cells that stabilize blood vessels. Little is known about the plasticity of pericytes in the adult brain in vivo. Recently, using state-of-the-art technologies, including two-photon microscopy in combination with sophisticated Cre/loxP in vivo tracing techniques, a novel role of pericytes was revealed in vascular remodeling in the adult brain. Strikingly, after pericyte ablation, neighboring pericytes expand their processes and prevent vascular dilatation. This new knowledge provides insights into pericyte plasticity in the adult brain.
Collapse
Affiliation(s)
- Gabryella S P Santos
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Paz JL, Levy D, Oliveira BA, de Melo TC, de Freitas FA, Reichert CO, Rodrigues A, Pereira J, Bydlowski SP. 7-Ketocholesterol Promotes Oxiapoptophagy in Bone Marrow Mesenchymal Stem Cell from Patients with Acute Myeloid Leukemia. Cells 2019; 8:E482. [PMID: 31117185 PMCID: PMC6562391 DOI: 10.3390/cells8050482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
7-Ketocholesterol (7-KC) is a cholesterol oxidation product with several biological functions. 7-KC has the capacity to cause cell death depending on the concentration and specific cell type. Mesenchymal stem cells (MSCs) are multipotent cells with the ability to differentiate into various types of cells, such as osteoblasts and adipocytes, among others. MSCs contribute to the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases, such as leukemia, to a yet unknown extent. Here, we describe the effect of 7-KC on the death of bone marrow MSCs from patients with acute myeloid leukemia (LMSCs). LMSCs were less susceptible to the death-promoting effect of 7-KC than other cell types. 7-KC exposure triggered the extrinsic pathway of apoptosis with an increase in activated caspase-8 and caspase-3 activity. Mechanisms other than caspase-dependent pathways were involved. 7-KC increased ROS generation by LMSCs, which was related to decreased cell viability. 7-KC also led to disruption of the cytoskeleton of LMSCs, increased the number of cells in S phase, and decreased the number of cells in the G1/S transition. Autophagosome accumulation was also observed. 7-KC downregulated the SHh protein in LMSCs but did not change the expression of SMO. In conclusion, oxiapoptophagy (OXIdative stress + APOPTOsis + autophagy) seems to be activated by 7-KC in LMSCs. More studies are needed to better understand the role of 7-KC in the death of LMSCs and the possible effects on the SHh pathway.
Collapse
Affiliation(s)
- Jessica Liliane Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Beatriz Araujo Oliveira
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Thatiana Correia de Melo
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Fabio Alessandro de Freitas
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Alessandro Rodrigues
- Departmento de Ciencias Exactas e da Terra, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil.
| | - Juliana Pereira
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Sergio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), CNPq, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
17
|
Azevedo PO, Paiva AE, Santos GSP, Lousado L, Andreotti JP, Sena IFG, Tagliati CA, Mintz A, Birbrair A. Cross-talk between lung cancer and bones results in neutrophils that promote tumor progression. Cancer Metastasis Rev 2019; 37:779-790. [PMID: 30203108 DOI: 10.1007/s10555-018-9759-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer mortality around the world. The lack of detailed understanding of the cellular and molecular mechanisms participating in the lung tumor progression restrains the development of efficient treatments. Recently, by using state-of-the-art technologies, including in vivo sophisticated Cre/loxP technologies in combination with lung tumor models, it was revealed that osteoblasts activate neutrophils that promote tumor growth in the lung. Strikingly, genetic ablation of osteoblasts abolished lung tumor progression via interruption of SiglecFhigh-expressing neutrophils supply to the tumor microenvironment. Interestingly, SiglecFhigh neutrophil signature was associated with worse lung adenocarcinoma patients outcome. This study identifies novel cellular targets for lung cancer treatment. Here, we summarize and evaluate recent advances in our understanding of lung tumor microenvironment.
Collapse
Affiliation(s)
- Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Tagliati
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
18
|
Pericyte Biology: Development, Homeostasis, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1109:1-3. [DOI: 10.1007/978-3-030-02601-1_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Silva WN, Leonel C, Prazeres PHDM, Sena IFG, Guerra DAP, Heller D, Diniz IMA, Fortuna V, Mintz A, Birbrair A. Role of Schwann cells in cutaneous wound healing. Wound Repair Regen 2018; 26:392-397. [PMID: 30098299 PMCID: PMC6289698 DOI: 10.1111/wrr.12647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Dermal wound healing is the process of repairing and remodeling skin following injury. Delayed or aberrant cutaneous healing poses a challenge for the health care system. The lack of detailed understanding of cellular and molecular mechanisms involved in this process hampers the development of effective targeted treatments. In a recent study, Parfejevs et al.-using state-of-the-art technologies, including in vivo sophisticated Cre/loxP techniques in combination with a mouse model of excisional cutaneous wounding-reveal that Schwann cells induce adult dermal wound healing. Strikingly, genetic ablation of Schwann cells delays wound contraction and closure, decreases myofibroblast formation, and impairs skin re-epithelization after injury. From a drug development perspective, Schwann cells are a new cellular candidate to be activated to accelerate skin healing. Here, we summarize and evaluate recent advances in the understanding of Schwann cells roles in the skin microenvironment.
Collapse
Affiliation(s)
- Walison N. Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline Leonel
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Isadora F. G. Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel A. P. Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora Heller
- Experimental Research Center, Albert Einstein Israeli Hospital, São Paulo, SP, Brazil
- School of Dentistry, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Ivana M. A. Diniz
- Department of Restorative Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vitor Fortuna
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|