1
|
Narasimhan H, Ferraro F, Bleilevens A, Weiskirchen R, Stickeler E, Maurer J. Tumor Necrosis Factor-α (TNFα) Stimulate Triple-Negative Breast Cancer Stem Cells to Promote Intratumoral Invasion and Neovasculogenesis in the Liver of a Xenograft Model. BIOLOGY 2022; 11:biology11101481. [PMID: 36290384 PMCID: PMC9598572 DOI: 10.3390/biology11101481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
TNBC represents the most aggressive breast cancer subtype. Although cancer stem cells (CSCs) are a minor fraction of all cancer cells, they are highly cancerous when compared to their non-stem counterparts, playing a major role in tumor recurrence and metastasis. Angiogenic stimuli and the tumor environment response are vital factors in cancer metastasis. However, the causes and effects of tumor angiogenesis are still poorly understood. In this study, we demonstrate TNFα effects on primary triple-negative breast cancer stem cells (BCSCs). TNFα stimulation increased the mesenchymality of BCSCs in an intermediate epithelial-to-mesenchymal transition (EMT) state, enhanced proliferation, self-renewal, and invasive capacity. TNFα-treatment elicited BCSC signaling on endothelial networks in vitro and increased the network forming capacity of the endothelial cells. Our findings further demonstrate that TNFα stimulation in BCSCs has the ability to instigate distinct cellular communication within the tumor microenvironment, inducing intra-tumoral stromal invasion. Further, TNFα-treatment in BCSCs induced a pre-metastatic niche through breast-liver organ crosstalk by inducing vascular cell adhesion molecule-1 (VCAM-1) enriched neovasculogenesis in the liver of tumor-bearing mice. Overall, TNFα is an important angiogenic target to be considered in breast cancer progression to attenuate any angiogenic response in the tumor environment that could lead to secondary organ metastasis.
Collapse
Affiliation(s)
- Harini Narasimhan
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Francesca Ferraro
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Andreas Bleilevens
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC) RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen, D-52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
2
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
3
|
Cell repopulation, rewiring metabolism, and immune regulation in cancer radiotherapy. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
4
|
Shenouda S, Kulkarni K, Abuetabh Y, Sergi C. Cancer Stem Cells and their Management in Cancer Therapy. Recent Pat Anticancer Drug Discov 2020; 15:212-227. [PMID: 32660407 DOI: 10.2174/1574892815666200713145931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last decade, the proposed Cancer Stem Cell (CSC) hypothesis has steadily changed the way cancer treatment is approached. CSCs may be the source of the heterogeneous non-tumorigenic cell population included in a neoplasm. Intratumor and intertumoral heterogeneity is a well-known phenomenon that massively entangles the diagnosis and treatment of cancer. The literature seems to suggest that heterogeneity develops progressively within tumor-initiating stem cells. CSCs harbor genetic and/or epigenetic alterations that allow them to differentiate into multiple tumor cell types sequentially. OBJECTIVE The CSC hypothesis, cellular therapy, and the most recent patents on CSCs were reviewed. METHODS PubMed, Scopus, and Google Scholar were screened for this information. Also, an analysis of the most recent data targeting CSCs in pediatric cancer developed at two Canadian institutions is provided. The genes involved with the activation of CSCs and the drugs used to antagonize them are also highlighted. RESULTS It is underlined that (1) CSCs possess stem cell-like properties, including the ability for self-renewal; (2) CSCs can start carcinogenesis and are responsible for tumor recurrence after treatment; (3) Although some limitations have been raised, which may oppose the CSC hypothesis, cancer progression and metastasis have been recognized to be caused by CSCs. CONCLUSION The significant roles of cell therapy may include an auto-transplant with high-dose treatment, an improvement of the immune function, creation of chimeric antigen receptor T cells, and the recruitment of NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Suzan Shenouda
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Ketan Kulkarni
- Department of Pediatrics, Pediatric Hematology/Oncology, Halifax, NS, Canada
| | - Yasser Abuetabh
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Consolato Sergi
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Toledo-Guzmán ME, Bigoni-Ordóñez GD, Ibáñez Hernández M, Ortiz-Sánchez E. Cancer stem cell impact on clinical oncology. World J Stem Cells 2018; 10:183-195. [PMID: 30613312 PMCID: PMC6306557 DOI: 10.4252/wjsc.v10.i12.183] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a widespread worldwide chronic disease. In most cases, the high mortality rate from cancer correlates with a lack of clear symptoms, which results in late diagnosis for patients, and consequently, advanced tumor disease with poor probabilities for cure, since many patients will show chemo- and radio-resistance. Several mechanisms have been studied to explain chemo- and radio-resistance to anti-tumor therapies, including cell signaling pathways, anti-apoptotic mechanisms, stemness, metabolism, and cellular phenotypes. Interestingly, the presence of cancer stem cells (CSCs), which are a subset of cells within the tumors, has been related to therapy resistance. In this review, we focus on evaluating the presence of CSCs in different tumors such as breast cancer, gastric cancer, lung cancer, and hematological neoplasias, highlighting studies where CSCs were identified in patient samples. It is evident that there has been a great drive to identify the cell surface phenotypes of CSCs so that they can be used as a tool for anti-tumor therapy treatment design. We also review the potential effect of nanoparticles, drugs, natural compounds, aldehyde dehydrogenase inhibitors, cell signaling inhibitors, and antibodies to treat CSCs from specific tumors. Taken together, we present an overview of the role of CSCs in tumorigenesis and how research is advancing to target these highly tumorigenic cells to improve oncology patient outcomes.
Collapse
Affiliation(s)
- Mariel E Toledo-Guzmán
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | | | - Miguel Ibáñez Hernández
- Departamento de Bioquímica, Laboratorio de Terapia Génica, Escuela Nacional de Ciencias Biológicas, Posgrado de Biomedicina y Biotecnología Molecular, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
6
|
Liu QF, Zhang ZF, Hou GJ, Yang GY, He Y. Polymorphisms of the stem cell marker gene CD133 are associated the clinical outcome in a cohort of Chinese non-small cell lung cancer patients. BMJ Open 2017; 7:e016913. [PMID: 28827262 PMCID: PMC5724226 DOI: 10.1136/bmjopen-2017-016913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To evaluate the prognostic relevance of four functional single nucleotide polymorphisms (SNPs) in CD133 (rs2240688A>C, rs10022537T>A, rs7686732C>G, and rs3130C>T) on overall survival (OS) of non-small cell lung cancer (NSCLC) patients. DESIGN Retrospective cohort study. SETTING Department of General Surgery, in a general hospital, Henan Province, China. PARTICIPANTS NSCLC patients aged ≥18 years, who were not receiving preoperative neoadjuvant therapies and had a blood sample available for genotyping, were eligible for inclusion. Those participants who were pregnant or breastfeeding, had a previous history of cancer, had other primary tumours, or who had had primary tumours of the skin and nasopharynx, were excluded from the study. OUTCOME MEASURES The primary endpoint was OS, which was calculated from the date of enrolment until the date of death or date of last follow-up. RESULTS There was a total of 1383 participants, with a median age of 63 years; 726 (52.5%) were male. Compared with thers2240688 AA genotype, the variant AC/CC genotypes were independently associated with OS (HR 1.27, 95% CI 1.12 to 1.45 for AC genotype; HR 2.32, 95% CI 1.91 to 2.80 for CC genotype). Higher hazard ratios for associations between CD133 rs2240688 polymorphism and OS were observed in patients with adjuvant chemotherapy (HR 1.86, 95% CI 1.52 to 2.26) and radiotherapy for curative intent (HR 1.90, 95% CI 1.55 to 2.33). CONCLUSIONS The study confirmed the significant association between the SNP rs2240688 A>C of CD133 and OS of NSCLC patients. Larger population-based studies in different ethnic groups are necessary to further validate the role and mechanisms of CD133 in NSCLC.
Collapse
Affiliation(s)
- Qing-Feng Liu
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| | - Zhi-Fei Zhang
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| | - Guang-Jie Hou
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| | - Guang-Yu Yang
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| | - Yi He
- Department of Thoracic Surgery, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou, China
| |
Collapse
|
7
|
A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun 2017; 8:14450. [PMID: 28205552 PMCID: PMC5316898 DOI: 10.1038/ncomms14450] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022] Open
Abstract
Non-classical secretory vesicles, collectively referred to as extracellular vesicles (EVs), have been implicated in different aspects of cancer cell survival and metastasis. Here, we describe how a specific class of EVs, called microvesicles (MVs), activates VEGF receptors and tumour angiogenesis through a unique 90 kDa form of VEGF (VEGF90K). We show that VEGF90K is generated by the crosslinking of VEGF165, catalysed by the enzyme tissue transglutaminase, and associates with MVs through its interaction with the chaperone Hsp90. We further demonstrate that MV-associated VEGF90K has a weakened affinity for Bevacizumab, causing Bevacizumab to be ineffective in blocking MV-dependent VEGF receptor activation. However, treatment with an Hsp90 inhibitor releases VEGF90K from MVs, restoring the sensitivity of VEGF90K to Bevacizumab. These findings reveal a novel mechanism by which cancer cell-derived MVs influence the tumour microenvironment and highlight the importance of recognizing their unique properties when considering drug treatment strategies. Extracellular vesicles (EVs) contain VEGF and can contribute to tumour angiogenesis, although the mechanism remains unclear. Here, the authors find that a form of VEGF (VEGF90K) resistant to Bevacizumab but sensitive to HSP90 inhibitors, associates with EVs through its interaction with Hsp90.
Collapse
|
8
|
He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells. Front Pharmacol 2016; 7:313. [PMID: 27679576 PMCID: PMC5020043 DOI: 10.3389/fphar.2016.00313] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Lee Y Lim
- Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA, Australia
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education Guangzhou, China
| |
Collapse
|
9
|
Thanh Vu B, Le HT, Phan NLC, Pham PV. Optimization of culture medium for the isolation and propagation of human breast cancer cells from primary tumour biopsies. BIOMEDICAL RESEARCH AND THERAPY 2015. [DOI: 10.7603/s40730-015-0006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Cancer stem cell marker Musashi-1 rs2522137 genotype is associated with an increased risk of lung cancer. PLoS One 2014; 9:e95915. [PMID: 24787949 PMCID: PMC4008537 DOI: 10.1371/journal.pone.0095915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/01/2014] [Indexed: 12/12/2022] Open
Abstract
Gene single nucleotide polymorphisms (SNPs) have been extensively studied in association with development and prognosis of various malignancies. However, the potential role of genetic polymorphisms of cancer stem cell (CSC) marker genes with respect to cancer risk has not been examined. We conducted a case-control study involving a total of 1000 subjects (500 lung cancer patients and 500 age-matched cancer-free controls) from northeastern China. Lung cancer risk was analyzed in a logistic regression model in association with genotypes of four lung CSC marker genes (CD133, ALDH1, Musashi-1, and EpCAM). Using univariate analysis, the Musashi-1 rs2522137 GG genotype was found to be associated with a higher incidence of lung cancer compared with the TT genotype. No significant associations were observed for gene variants of CD133, ALDH1, or EpCAM. In multivariate analysis, Musashi-1 rs2522137 was still significantly associated with lung cancer when environmental and lifestyle factors were incorporated in the model, including lower BMI; family history of cancer; prior diagnosis of chronic obstructive pulmonary disease, pneumonia, or pulmonary tuberculosis; occupational exposure to pesticide; occupational exposure to gasoline or diesel fuel; heavier smoking; and exposure to heavy cooking emissions. The value of the area under the receiver-operating characteristic (ROC) curve (AUC) was 0.7686. To our knowledge, this is the first report to show an association between a Musashi-1 genotype and lung cancer risk. Further, the prediction model in this study may be useful in determining individuals with high risk of lung cancer.
Collapse
|
11
|
Geng SQ, Alexandrou AT, Li JJ. Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Lett 2014; 349:1-7. [PMID: 24727284 DOI: 10.1016/j.canlet.2014.03.036] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/27/2022]
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. Accumulating evidence indicates that the local recurrent and/or distant metastatic tumors, the major causes of lethality in the clinic, are related to the aggressive phenotype of a small fraction of cancer cells loosely termed as cancer stem cells (CSCs), tumor initiating cells (TICs), or cancer metastasis-initiating cells (CMICs). Breast cancer stem cells (BCSCs) are shown to exhibit unique growth abilities including self-renewal, differentiation potential, and resistance to most anti-cancer agents including chemo- and/or radiotherapy, all of which are believed to contribute to the development and overall aggressiveness of the recurrent or metastatic lesions. It is in the urgent need not only to further define the nature of heterogeneity in each tumor but also to characterize the precise mechanisms governing tumor-host cross-talk which is assumed to be initiated by BCSCs. In this review, we will focus on recently identified key factors, including the BCSCs among circulating tumor cells, interaction of BCSCs with the host, epithelial mesenchymal transition (EMT), tumor microenvironment, the intrinsic resistance due to HER2 expression, potential biomarkers of BCSCs and cancer cell immune signaling. We believe that new evidence coming from both bench and clinical research will help to develop more effective approaches to control or significantly reduce the aggressiveness of metastatic tumors.
Collapse
Affiliation(s)
- Shao-Qing Geng
- Department of Pathology, the Second Affiliated Hospital, Qingdao University Medical College, Qingdao 266042, China
| | - Aris T Alexandrou
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Jian Jian Li
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
12
|
Gentry SN, Jackson TL. A mathematical model of cancer stem cell driven tumor initiation: implications of niche size and loss of homeostatic regulatory mechanisms. PLoS One 2013; 8:e71128. [PMID: 23990931 PMCID: PMC3747196 DOI: 10.1371/journal.pone.0071128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/28/2013] [Indexed: 12/23/2022] Open
Abstract
Hierarchical organized tissue structures, with stem cell driven cell differentiation, are critical to the homeostatic maintenance of most tissues, and this underlying cellular architecture is potentially a critical player in the development of a many cancers. Here, we develop a mathematical model of mutation acquisition to investigate how deregulation of the mechanisms preserving stem cell homeostasis contributes to tumor initiation. A novel feature of the model is the inclusion of both extrinsic and intrinsic chemical signaling and interaction with the niche to control stem cell self-renewal. We use the model to simulate the effects of a variety of types and sequences of mutations and then compare and contrast all mutation pathways in order to determine which ones generate cancer cells fastest. The model predicts that the sequence in which mutations occur significantly affects the pace of tumorigenesis. In addition, tumor composition varies for different mutation pathways, so that some sequences generate tumors that are dominated by cancerous cells with all possible mutations, while others are primarily comprised of cells that more closely resemble normal cells with only one or two mutations. We are also able to show that, under certain circumstances, healthy stem cells diminish due to the displacement by mutated cells that have a competitive advantage in the niche. Finally, in the event that all homeostatic regulation is lost, exponential growth of the cancer population occurs in addition to the depletion of normal cells. This model helps to advance our understanding of how mutation acquisition affects mechanisms that influence cell-fate decisions and leads to the initiation of cancers.
Collapse
Affiliation(s)
- Sara N. Gentry
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Trachette L. Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
13
|
Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, Zhang X, Bian XW, Yu SC. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev 2013; 22:2221-39. [PMID: 23540661 DOI: 10.1089/scd.2012.0613] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) constitute a subpopulation of cancer cells that have the potential for self-renewal, multipotent differentiation, and tumorigenicity. Studies on CSC biology and CSC-targeted therapies depend on CSC isolation and/or enrichment methodologies. Scientists have conducted extensive research in this field since John Dick's group successfully isolated CSCs based on the expression of the CD34 and CD38 surface markers. Progress in CSC research has been greatly facilitated by the enrichment and isolation of these cells. In this review, we summarize the current strategies used in our and other laboratories for CSC isolation and enrichment, including methods based on stem cell surface markers, intracellular enzyme activity, the concentration of reactive oxygen species, the mitochondrial membrane potential, promoter-driven fluorescent protein expression, autofluorescence, suspension/adherent culture, cell division, the identification of side population cells, resistance to cytotoxic compounds or hypoxia, invasiveness/adhesion, immunoselection, and physical property. Although many challenges remain to be overcome, it is reasonable to believe that more reliable, efficient, and convenient methods will be developed in the near future.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Du WW, Fang L, Yang X, Sheng W, Yang BL, Seth A, Zhang Y, Yang BB, Yee AJ. The Role of Versican in Modulating Breast Cancer Cell Self-renewal. Mol Cancer Res 2013; 11:443-55. [DOI: 10.1158/1541-7786.mcr-12-0461] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 2011; 17:1514-20. [PMID: 22019887 DOI: 10.1038/nm.2454] [Citation(s) in RCA: 769] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 07/27/2011] [Indexed: 11/09/2022]
Abstract
Development and preclinical testing of new cancer therapies is limited by the scarcity of in vivo models that authentically reproduce tumor growth and metastatic progression. We report new models for breast tumor growth and metastasis in the form of transplantable tumors derived directly from individuals undergoing treatment for breast cancer. These tumor grafts illustrate the diversity of human breast cancer and maintain essential features of the original tumors, including metastasis to specific sites. Co-engraftment of primary human mesenchymal stem cells maintains phenotypic stability of the grafts and increases tumor growth by promoting angiogenesis. We also report that tumor engraftment is a prognostic indicator of disease outcome for women with newly diagnosed breast cancer; orthotopic breast tumor grafting is a step toward individualized models for tumor growth, metastasis and prognosis. This bank of tumor grafts also serves as a publicly available resource for new models in which to study the biology of breast cancer.
Collapse
|
16
|
Mathews LA, Cabarcas SM, Hurt EM, Zhang X, Jaffee EM, Farrar WL. Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas 2011; 40:730-9. [PMID: 21633318 PMCID: PMC3116046 DOI: 10.1097/mpa.0b013e31821ae25b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pancreatic cancer was the fourth leading cause of cancer death in the United States in 2010. Recurrence of disease after resection occurs because of neoplastic cell survival. To better understand these highly aggressive cells, gene expression microarrays were performed. METHODS Using the established lines HPAC and PANC1 and a Matrigel assay, genome expression arrays were performed to analyze patterns between invasive and total cells. RESULTS Significant increases in the expression of genes related to DNA repair were observed. A number of the same genes also demonstrated an increase in expression when comparing bulk cells to a putative tumor-initiating cell (TIC) population. The TIC population was isolated using the spheroid technique, and compared with bulk cells, spheroid cells functionally repair breaks in DNA faster after challenge with the drug gemcitabine. Finally, using Oncomine, we observed a significant increase in DNA copy number of BRCA1 and RAD51 in tissue isolated from metastatic pancreatic cancer compared with tissue isolated from the primary site. CONCLUSIONS From these data, we conclude that the most invasive cells within a pancreatic tumor are able to thrive because of their increased genomic stability. These cells have also been linked to the TIC population in a tumor.
Collapse
Affiliation(s)
- Lesley A Mathews
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
17
|
Cancer stem cells in urologic cancers. Urol Oncol 2010; 28:585-90. [DOI: 10.1016/j.urolonc.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 12/31/2022]
|
18
|
Mihaliak AM, Gilbert CA, Li L, Daou MC, Moser RP, Reeves A, Cochran BH, Ross AH. Clinically relevant doses of chemotherapy agents reversibly block formation of glioblastoma neurospheres. Cancer Lett 2010; 296:168-77. [PMID: 20435409 DOI: 10.1016/j.canlet.2010.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/26/2010] [Accepted: 04/06/2010] [Indexed: 12/24/2022]
Abstract
Glioblastoma patients have a poor prognosis, even after surgery, radiotherapy, and chemotherapy with temozolomide or 1,3-bis(2-chloroethy)-1-nitrosourea. We developed an in vitro recovery model using neurosphere cultures to analyze the efficacy of chemotherapy treatments, and tested whether glioblastoma neurosphere-initiating cells are resistant. Concentrations of chemotherapy drugs that inhibit neurosphere formation are similar to clinically relevant doses. Some lines underwent a transient cell cycle arrest and a robust recovery of neurosphere formation. These results indicate that glioblastoma neurospheres can regrow after treatment with chemotherapy drugs. This neurosphere recovery assay will facilitate studies of chemo-resistant subpopulations and methods to enhance glioblastoma therapy.
Collapse
Affiliation(s)
- Alicia M Mihaliak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
A non-synonymous polymorphism Thr115Met in the EpCAM gene is associated with an increased risk of breast cancer in Chinese population. Breast Cancer Res Treat 2010; 126:487-95. [DOI: 10.1007/s10549-010-1094-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 01/16/2023]
|
20
|
Karimi-Busheri F, Zadorozhny V, Shawler DL, Fakhrai H. The stability of breast cancer progenitor cells during cryopreservation: Maintenance of proliferation, self-renewal, and senescence characteristics. Cryobiology 2010; 60:308-14. [DOI: 10.1016/j.cryobiol.2010.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/15/2010] [Accepted: 02/18/2010] [Indexed: 12/24/2022]
|
21
|
Gedye C, Quirk J, Browning J, Svobodová S, John T, Sluka P, Dunbar PR, Corbeil D, Cebon J, Davis ID. Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells. Cancer Immunol Immunother 2009; 58:1635-46. [PMID: 19221743 PMCID: PMC11029848 DOI: 10.1007/s00262-009-0672-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/23/2009] [Indexed: 02/01/2023]
Abstract
"Cancer stem cells" that resist conventional treatments may be a cause of therapeutic failure in melanoma. We report a subpopulation of clonogenic melanoma cells that are characterized by high prominin-1/CD133 expression in melanoma and melanoma cell lines. These cells have enhanced clonogenicity and self-renewal in vitro, and serve as a limited in vitro model for melanoma stem cells. In some cases clonogenic CD133(+) melanoma cells show increased expression of some cancer/testis (CT) antigens. The expression of NY-ESO-1 in an HLA-A2 expressing cell line allowed CD133(+) clonogenic melanoma cells to be targeted for killing in vitro by NY-ESO-1-specific CD8(+) T-lymphocytes. Our in vitro findings raise the hypothesis that if melanoma stem cells express CT antigens in vivo that immune targeting of these antigens may be a viable clinical strategy for the adjuvant treatment of melanoma.
Collapse
Affiliation(s)
- Craig Gedye
- Ludwig Institute for Cancer Research, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Metastasis--the spread of cancer to distant organs--is responsible for most cancer deaths. Current adjuvant therapy is based on prognostic indicators that stratify patients into defined risk groups. However, some patients believed to have a good prognosis nonetheless develop metastases, in some cases many years after apparently successful treatment of their primary cancer. This period of clinical dormancy leads to many questions about how best to manage patients, including how to better assign risk of late recurrence, how long to monitor patients, and whether some patients will benefit from extended therapy to prevent late recurrences. The development of targeted therapies with fewer side effects is leading to clinical trials aimed at determining the effectiveness of such long-term therapy. However, much remains to be learned about tumor dormancy. Experimental studies are shedding light on biological and molecular mechanisms potentially responsible for tumor dormancy. Emerging research into tumor initiating cells, immunotherapy, and metastasis suppressor genes, may lead to new approaches for targeted antimetastatic therapy to prolong tumor dormancy. An improved understanding of tumor dormancy is needed for better management of patients at risk for late-developing metastases.
Collapse
Affiliation(s)
- Benjamin D Hedley
- Division of Hematology, London Health Sciences Centre, London, Ontario, Canada
| | | |
Collapse
|
23
|
Identification of cancer stem cells in a Tax-transgenic (Tax-Tg) mouse model of adult T-cell leukemia/lymphoma. Blood 2009; 114:2709-20. [PMID: 19584402 DOI: 10.1182/blood-2008-08-174425] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a malignant lymphoproliferative disorder caused by HTLV-I infection. In ATL, chemotherapeutic responses are generally poor, which has suggested the existence of chemotherapy-resistant cancer stem cells (CSCs). To identify CSC candidates in ATL, we have focused on a Tax transgenic mouse (Tax-Tg) model, which reproduces ATL-like disease both in Tax-Tg animals and also after transfer of Tax-Tg splenic lymphomatous cells (SLCs) to nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Using a limiting dilution transplantation, it was estimated that one CSC existed per 10(4) SLCs (0.01%). In agreement with this, we have successfully identified candidate CSCs in a side population (0.06%), which overlapped with a minor population of CD38(-)/CD71(-)/CD117(+) cells (0.03%). Whereas lymphoma did not develop after transplantation of 10(2) SLCs, 10(2) CSCs could consistently regenerate the original lymphoma. In addition, lymphoma and CSCs could also be demonstrated in the bone marrow and CD117(+) CSCs were observed in both osteoblastic and vascular niches. In the CSCs, Tax, Notch1, and Bmi1 expression was down-regulated, suggesting that the CSCs were derived from Pro-T cells or early hematopoietic progenitor cells. Taken together, our data demonstrate that CSCs certainly exist and have the potential to regenerate lymphoma in our mouse model.
Collapse
|
24
|
Mathews LA, Crea F, Farrar WL. Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation 2009; 78:1-17. [PMID: 19443100 PMCID: PMC2706282 DOI: 10.1016/j.diff.2009.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 01/08/2023]
Abstract
Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by 'epigenetic' alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins, and the epigenetic function of non-coding RNA. These changes are modifications inherited during both meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms. Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells.
Collapse
Affiliation(s)
- Lesley A. Mathews
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - W. L. Farrar
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
25
|
Regenbrecht CRA, Lehrach H, Adjaye J. Stemming cancer: functional genomics of cancer stem cells in solid tumors. ACTA ACUST UNITED AC 2009; 4:319-28. [PMID: 18561035 PMCID: PMC2758383 DOI: 10.1007/s12015-008-9034-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) were discovered about 15 years ago in hematopoietic cancers. Subsequently, cancer stem cells were discovered in various solid tumors. Based on parallels with normal stem cells, a developmental process of cancer stem cells follows paths of organized, hierarchical structure of cells with different degrees of maturity. While some investigators have reported particular markers as identification of cancer stem cells, these markers require further research. In this review, we focus on the functional genomics of cancer stem cells. Functional genomics provides useful information on the signaling pathways which are consecutively activated or inactivated amongst those cells. This information is of particular importance for cancer research and clinical treatment in many respects. (1) Understanding of self-renewal mechanisms crucial to tumor growth. (2) Allow the identification of new, more specific marker for CSCs, and (3) pathways that are suitable as future targets for anti-cancer drugs. This is of particular importance, because today's chemotherapy targets the proliferating cancer cells sparing the relatively slow dividing cancer stem cells. The first step on this long road therefore is to analyze genome-wide expression-profiles within the same type of cancer and then between different types of cancer, encircling those target genes and pathways, which are specific to these cells.
Collapse
Affiliation(s)
- C R A Regenbrecht
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics (Molecular Embryology and Aging group), Ihnestrasse 73, 14195 Berlin, Germany
| | | | | |
Collapse
|
26
|
Gelmini S, Mangoni M, Serio M, Romagnani P, Lazzeri E. The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Invest 2008; 31:809-19. [PMID: 18997494 DOI: 10.1007/bf03349262] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemokines exert their multifunctional role in several physiologic and pathologic processes through interaction with their specific receptors. Much evidence have revealed that metastatic spread tumor cells may use chemokine-mediated mechanisms. In particular, an involvement of stromal cell-derived factor-1 (SDF-1) in growth of primary tumors and in metastatic process has been demonstrated. Indeed, it has been suggested that CXCR4 expression by tumor cells, plays a critical role in cell metastasis by a chemotactic gradient to organs expressing the ligand SDF-1. Moreover, CXCR4 overexpression correlated with poor prognosis in many types of cancer. In physiologic condition, SDF-1 also plays an essential role modulating stem cell proliferation, survival, and homing through its canonical receptor CXCR4. Recently, several studies have demonstrated the existence of a small subset of cancer cells which share many characteristics with stem cells and named cancer stem cells (CSC). They constitute a reservoir of self-sustaining cells with the ability to maintain the tumor growth. In particular, most of them express CXCR4 receptor and respond to a chemotactic gradient of its specific ligand SDF-1, suggesting that CSC probably represent a subpopulation capable of initiating metastasis. This review focuses on the role of SDF-1/CXCR4 axis in cancer and in the metastatic progression by tumoral cells, as well as the role of CSC in tumor pathogenesis and in metastatic process. A better understanding of migratory mechanism involving cancer cells and CSC provides a powerful tool for developing novel therapies reducing both local and distant recurrences.
Collapse
Affiliation(s)
- S Gelmini
- Clinical Biochemistry Unit, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
27
|
Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008; 10:R10. [PMID: 18241344 PMCID: PMC2374965 DOI: 10.1186/bcr1855] [Citation(s) in RCA: 454] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/07/2008] [Accepted: 02/01/2008] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Whether cancer stem cells occur in BRCA1-associated breast cancer and contribute to therapeutic response is not known. METHODS We generated and characterized 16 cell lines from five distinct Brca1deficient mouse mammary tumors with respect to their cancer stem cell characteristics. RESULTS All cell lines derived from one tumor included increased numbers of CD44+/CD24- cells, which were previously identified as human breast cancer stem cells. All cell lines derived from another mammary tumor exhibited low levels of CD44+/CD24- cells, but they harbored 2% to 5.9% CD133+ cells, which were previously associated with cancer stem cells in other human and murine tumors. When plated in the absence of attachment without presorting, only those cell lines that were enriched in either stem cell marker formed spheroids, which were further enriched in cells expressing the respective cancer stem cell marker. In contrast, cells sorted for CD44+/CD24- or CD133+ markers lost their stem cell phenotype when cultured in monolayers. As few as 50 to 100 CD44+/CD24- or CD133+ sorted cells rapidly formed tumors in nonobese diabetic/severe combined immunodeficient mice, whereas 50-fold to 100-fold higher numbers of parental or stem cell depleted cells were required to form few, slow-growing tumors. Expression of stem cell associated genes, including Oct4, Notch1, Aldh1, Fgfr1, and Sox1, was increased in CD44+/CD24- and CD133+ cells. In addition, cells sorted for cancer stem cell markers and spheroid-forming cells were significantly more resistant to DNA-damaging drugs than were parental or stem cell depleted populations, and they were sensitized to the drugs by the heat shock protein-90 inhibitor 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride). CONCLUSION Brca1-deficient mouse mammary tumors harbor heterogeneous cancer stem cell populations, and CD44+/CD24- cells represent a population that correlates with human breast cancer stem cells.
Collapse
Affiliation(s)
- Mollie H Wright
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Anna Maria Calcagno
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Crystal D Salcido
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Marisa D Carlson
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Lyuba Varticovski
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 2007; 9:882-92. [PMID: 18030356 DOI: 10.1593/neo.07658] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 11/18/2022] Open
Abstract
Malignant primary brain tumors are characterized by a short median survival and an almost 100% tumor-related mortality. Despite the addition of new chemotherapy regimes, the overall survival has improved marginally, and radiotherapy is only transiently effective, illustrating the profound impact of treatment resistance on prognosis. Recent studies suggest that a small subpopulation of cancer stem cells (CSCs) has the capacity to repopulate tumors and drive malignant progression and mediate radio- and chemoresistance. This implies that future therapies should turn from the elimination of the rapidly dividing, but differentiated tumor cells, to specifically targeting the minority of tumor cells that repopulate the tumor. Although there exists some support for the CSC hypothesis, there remain many uncertainties regarding theoretical, technical, and interpretational aspects of the data supporting it. If correct, the CSC hypothesis could have profound implications for the way tumors are classified and treated. In this review of the literature, we provide original data and hypotheses supporting alternative explanations and outline some of the therapeutic implications that can be derived.
Collapse
|
29
|
Abstract
Although monoclonal in origin, most tumors appear to contain a heterogeneous population of cancer cells. This observation is traditionally explained by postulating variations in tumor microenvironment and coexistence of multiple genetic subclones, created by progressive and divergent accumulation of independent somatic mutations. An additional explanation, however, envisages human tumors not as mere monoclonal expansions of transformed cells, but rather as complex tridimensional tissues where cancer cells become functionally heterogeneous as a result of differentiation. According to this second scenario, tumors act as caricatures of their corresponding normal tissues and are sustained in their growth by a pathological counterpart of normal adult stem cells, cancer stem cells. This model, first developed in human myeloid leukemias, is today being extended to solid tumors, such as breast and brain cancer. We review the biological basis and the therapeutic implications of the stem cell model of cancer.
Collapse
Affiliation(s)
- Piero Dalerba
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94304, USA.
| | | | | |
Collapse
|
30
|
Hedley BD, Allan AL, Chambers AF. Tumor dormancy and the role of metastasis suppressor genes in regulating ectopic growth. Future Oncol 2007; 2:627-41. [PMID: 17026454 DOI: 10.2217/14796694.2.5.627] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Metastasis, or tumor growth in an ectopic site, may occur several years after apparently successful treatment of the primary malignancy. Clinical dormancy is seen in a large number of cancer patients, but once growth in an ectopic site initiates, current adjuvant therapies are inadequate and the majority of patients with metastatic disease will die. Many genes may regulate ectopic growth in a secondary site, including a small subset, termed the metastasis suppressor genes. Investigation into this class of genes holds promise in terms of gaining a greater understanding of tumor dormancy and how the process of metastasis may be naturally inhibited. This review will focus on the role of metastasis suppressor genes in tumor dormancy. Insights into the metastatic process from studies of metastasis suppressor genes may lead to novel targets for antimetastatic therapy through drug-induced reactivation of one or more of these genes and/or their respective signaling pathways.
Collapse
Affiliation(s)
- Benjamin D Hedley
- University of Western Ontario, Schulich School of Medicine & Dentistry, London Regional Cancer Program, Department of Oncology, London, Ontario, Canada.
| | | | | |
Collapse
|
31
|
Abstract
The history of stem cell research was started in the early 1900s in Europe where the researcher realized that various types of blood cells came from a particular "stem cells." However, it was not until 1963 that the first quantitative description of the self-renewal activities of transplanted mouse bone marrow cells were documented by Canadian scientist Ernest A McCulloch and James E Till in Toronto. The concept of cancer stem cells has been used over 50 years ago; whereas the strong evidence for the existence of a Cancer Stem Cells was obtained recently. Consequently, there is increasing attention in recent year about cancer stem cells. The findings from recent studies support the concept that stem cells are integral to the development of several forms of human cancer. Changes in stem cell behavior can contribute to tumor formation. Leukemia is a cancer of blood-forming tissue, including the bone marrow and lymphatic system. Leukemic stem cells represent the cancer stem cells in the leukemia. In this review, we summarize the recent advance in the study of leukemic stem cells.
Collapse
Affiliation(s)
- Gang-Ming Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| |
Collapse
|
32
|
van der Drift JF, Brocaar MP, van Zanten GA. The relation between the pure-tone audiogram and the click auditory brainstem response threshold in cochlear hearing loss. Clin Cancer Res 1987; 18:6634-47. [PMID: 3593096 DOI: 10.1158/1078-0432.ccr-12-1436] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Auditory brainstem response thresholds for 209 ears with cochlear hearing loss were compared with the pure-tone thresholds. It is shown that the pure-tone threshold in the 2- to 4-kHz region has a one-to-one relationship with the auditory brainstem response threshold. Estimating the pure-tone threshold from the auditory brainstem response threshold, the standard error of the estimate is 11 dB. A small part of this estimation error is due to errors in the measurement of the auditory brainstem response threshold and the mean of the pure-tone thresholds at 2 and 4 kHz. The major part is due to unknown factors that are involved in the physiological relationship between the two thresholds.
Collapse
|