1
|
Herrera-Martínez AD, Rebollo Román Á, Pascual Corrales E, Idrobo C, Parra Ramírez P, Martín Rojas-Marcos P, Robles Lázaro C, Marginean DL, Araujo-Castro M. Adrenal Incidentalomas and Other Endocrine-Related Adenomas: How Much Does Cortisol Secretion Matter? Cancers (Basel) 2023; 15:4735. [PMID: 37835429 PMCID: PMC10572012 DOI: 10.3390/cancers15194735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Background: Adrenal incidentalomas (AI) are frequent findings in clinical practice. About 40% of AIs are associated with hypercortisolism of variable severity. Although mild autonomous cortisol secretion (MACS) has been associated with the impaired clinical outcome of several diseases, its effect on the development of benign neoplasms is unknown. Aim: To compare the prevalence of adenomas (thyroid, parathyroid, pituitary and other locations) in patients with nonfunctioning AIs (NFAIs) and MACS. Methods: A multicenter, retrospective study of patients with AIs evaluated in four tertiary hospitals was performed. Results: A total of 923 patients were included. Most patients were male (53.6%), with a mean age at diagnosis of 62.4 ± 11.13 years; 21.7% presented with bilateral AIs. MACS was observed in 29.9% (n = 276) of patients, while 69.9% (n = 647) were NFAIs. Adenomas in locations other than the adrenal gland were observed in 36% of the studied population, with a similar distribution in patients with MACS and NFAIs (33% vs. 32%; p > 0.05). There were no statistically significant differences in the prevalence of pituitary, thyroid, parathyroid or other endocrine-related adenomas between both groups, but the prevalence of metabolic comorbidities and mortality was increased in patients with MACS, specifically in patients with thyroid and other endocrine-related adenomas (p < 0.05). Conclusions: Adenomas in locations other than the adrenal glands occur in one third of patients with AIs. Mild autonomous hypercortisolism does not affect the prevalence of other endocrine-related adenomas but is associated with increased metabolic comorbidities and mortality, especially in patients with thyroid adenomas and adenomas in other locations.
Collapse
Affiliation(s)
- Aura D. Herrera-Martínez
- Endocrinology & Nutrition Department, Hospital Reina Sofia, 14004 Córdoba, Spain; (Á.R.R.); (D.L.M.)
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Ángel Rebollo Román
- Endocrinology & Nutrition Department, Hospital Reina Sofia, 14004 Córdoba, Spain; (Á.R.R.); (D.L.M.)
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Eider Pascual Corrales
- Endocrinology & Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain (C.I.)
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Cindy Idrobo
- Endocrinology & Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain (C.I.)
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Paola Parra Ramírez
- Endocrinology & Nutrition Department, Hospital La Paz, 28034 Madrid, Spain (P.M.R.-M.)
| | | | | | - Delia Lavinia Marginean
- Endocrinology & Nutrition Department, Hospital Reina Sofia, 14004 Córdoba, Spain; (Á.R.R.); (D.L.M.)
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
| | - Marta Araujo-Castro
- Endocrinology & Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain (C.I.)
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
2
|
Zhang Y, Li N, Li H, Chen M, Jiang W, Guo W. Thiram, an inhibitor of 11ß-hydroxysteroid dehydrogenase type 2, enhances the inhibitory effects of hydrocortisone in the treatment of osteosarcoma through Wnt/β-catenin pathway. BMC Pharmacol Toxicol 2023; 24:20. [PMID: 36978114 PMCID: PMC10045229 DOI: 10.1186/s40360-023-00655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Background The anti-osteosarcoma effects of hydrocortisone and thiram, an inhibitor of type 2 11ß-hydroxysteroid dehydrogenase (11HSD2), have not been reported. The purpose of this study was to investigate the effects of hydrocortisone alone or the combination of hydrocortisone with thiram on osteosarcoma and the molecular mechanism, and determine whether they can be as new therapeutic agents for osteosarcoma. Methods Normal bone cells and osteosarcoma cells were treated with hydrocortisone or thiram alone or in combination. The cell proliferation, migration, cell cycle and apoptosis were detected by using CCK8 assay, wound healing assay, and flow cytometry, respectively. An osteosarcoma mouse model was established. The effect of drugs on osteosarcoma in vivo was assessed by measuring tumor volume. Transcriptome sequencing, bioinformatics analysis, RT–qPCR, Western blotting (WB), enzymelinked immunosorbent assay (ELISA) and siRNA transfection were performed to determine the molecular mechanisms. Results Hydrocortisone inhibited the proliferation and migration, and induced apoptosis and cell cycle arrest of osteosarcoma cells in vitro. Hydrocortisone also reduced the volume of osteosarcoma in mice in vivo. Mechanistically, hydrocortisone decreased the levels of Wnt/β-catenin pathway-associated proteins, and induced the expression of glucocorticoid receptor α (GCR), CCAAT enhancer-binding protein β (C/EBP-beta) and 11HSD2, resulting in a hydrocortisone resistance loop. Thiram inhibited the activity of the 11HSD2 enzyme, the combination of thiram and hydrocortisone further enhanced the inhibition of osteosarcoma through Wnt/β-catenin pathway. Conclusions Hydrocortisone inhibits osteosarcoma through the Wnt/β-catenin pathway. Thiram inhibits 11HSD2 enzyme activity, reducing hydrocortisone inactivation and promoting the effect of hydrocortisone through the same pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-023-00655-0.
Collapse
Affiliation(s)
- You Zhang
- grid.412901.f0000 0004 1770 1022Clinical Translational Innovation Center/Molecular Medicine Research Center, West China Hospital, Sichuan Univicity, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - Nanjing Li
- grid.13291.380000 0001 0807 1581Division of of Radiotherapy, Cancer Center,West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - He Li
- grid.13291.380000 0001 0807 1581West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610044 People’s Republic of China
| | - Maojia Chen
- grid.412901.f0000 0004 1770 1022Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, 610000 People’s Republic of China
| | - Wei Jiang
- grid.412901.f0000 0004 1770 1022Clinical Translational Innovation Center/Molecular Medicine Research Center, West China Hospital, Sichuan Univicity, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - Wenhao Guo
- grid.412901.f0000 0004 1770 1022Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, Medical School, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, Sichuan Province 610041 People’s Republic of China
| |
Collapse
|
3
|
Martens B, Drebert Z. Glucocorticoid-mediated effects on angiogenesis in solid tumors. J Steroid Biochem Mol Biol 2019; 188:147-155. [PMID: 30654109 DOI: 10.1016/j.jsbmb.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Angiogenesis is essential in tumor development to maintain the oxygen and nutrient supply. Glucocorticoids have shown both direct and indirect angiostatic properties in various types of solid cancers. In most of the reported cases glucocorticoid-mediated actions involved suppression of multiple pro-angiogenic factors expression by cancer cells. The anti-angiogenic properties of glucocorticoids correlated with diminished tumor vasculature and reduced tumor growth in multiple in vivo studies. However, when glucocorticoid treatment is considered, possible adverse events should be taken into account. Additional research is needed to further test the use of these steroidal drugs in cancer therapy.
Collapse
Affiliation(s)
- Broes Martens
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
4
|
He PP, Jiang T, OuYang XP, Liang YQ, Zou JQ, Wang Y, Shen QQ, Liao L, Zheng XL. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480:126-137. [PMID: 29453968 DOI: 10.1016/j.cca.2018.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/20/2023]
Abstract
Lipoprotein lipase (LPL) is a rate-limiting enzyme that catalyzes hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins including chylomicrons (CM), low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL). A variety of parenchymal cells can synthesize and secrete LPL. Recent studies have demonstrated that complicated processes are involved in LPL biosynthesis, secretion and transport. The enzyme activity of LPL is regulated by many factors, such as apolipoproteins, angiopoietins, hormones and miRNAs. In this article, we also reviewed the roles of LPL in atherosclerosis, coronary heart disease, cerebrovascular accident, Alzheimer disease and chronic lymphocytic leukemia. LPL in different tissues exerts differential physiological functions. The role of LPL in atherosclerosis is still controversial as reported in the literature. Here, we focused on the properties of LPL derived from macrophages, endothelial cells and smooth muscle cells in the vascular wall. We also explore the existence of crosstalk between LPL and those cells when the molecule mainly plays a proatherogenic role. This review will provide insightful knowledge of LPL and open new therapeutic perspectives.
Collapse
Affiliation(s)
- Ping-Ping He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang 421001, Hunan, China; Nursing School, University of South China, Hengyang 421001, Hunan, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ting Jiang
- Department of Practice Educational, Office of Academic Affairs, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xin-Ping OuYang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang 421001, Hunan, China; Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan 421001, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ya-Qin Liang
- Nursing School, University of South China, Hengyang 421001, Hunan, China
| | - Jie-Qiong Zou
- Nursing School, University of South China, Hengyang 421001, Hunan, China; The Affiliated First Hospital, Hengyang 421001, Hunan, China
| | - Yan Wang
- Nursing School, University of South China, Hengyang 421001, Hunan, China; The Affiliated First Hospital, Hengyang 421001, Hunan, China
| | - Qian-Qian Shen
- Nursing School, University of South China, Hengyang 421001, Hunan, China
| | - Li Liao
- Nursing School, University of South China, Hengyang 421001, Hunan, China.
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
5
|
Mc Auley MT, Mooney KM. Lipid metabolism and hormonal interactions: impact on cardiovascular disease and healthy aging. Expert Rev Endocrinol Metab 2014; 9:357-367. [PMID: 30763995 DOI: 10.1586/17446651.2014.921569] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Populations in developed nations are aging gradually; it is predicted that by 2050 almost a quarter of the world's population will be over 60 years old, more than twice the figure at the turn of the 20th century. Although we are living longer, this does not mean the extra years will be spent in good health. Cardiovascular diseases are the primary cause of ill health and their prevalence increases with age. Traditionally, lipid biomarkers have been utilized to stratify disease risk and predict the onset of cardiovascular events. However, recent evidence suggests that hormonal interplay with lipid metabolism could have a significant role to play in modulating cardiovascular disease risk. This review will explore recent findings which have investigated the role hormones have on the dynamics of lipid metabolism. The aim is to offer an insight into potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mark T Mc Auley
- a School of Health Sciences, Liverpool Hope University, Taggart Avenue, Liverpool, L16 1JD, UK
| | - Kathleen M Mooney
- b Faculty of Health and Social Care, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4QP, UK
| |
Collapse
|
6
|
Podgornik H, Sok M, Kern I, Marc J, Cerne D. Lipoprotein lipase in non-small cell lung cancer tissue is highly expressed in a subpopulation of tumor-associated macrophages. Pathol Res Pract 2013; 209:516-20. [PMID: 23880163 DOI: 10.1016/j.prp.2013.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/13/2012] [Accepted: 06/18/2013] [Indexed: 01/18/2023]
Abstract
High lipoprotein lipase (LPL) activity in non-small cell lung cancer (NSCLC) tissue strongly predicts shorter patient survival. We tested the hypothesis that in NSCLC tissue, macrophages are the major site of LPL expression. LPL expression in the entire NSCLC tissue and in the adjacent non-cancer lung tissue was compared to the expression of genes preferentially expressed in macrophages. LPL expression at the cellular level was analyzed by mRNA fluorescence in situ hybridization. In the whole cancer tissue (but not in the adjacent non-cancer tissue), expression of LPL correlated with expression of genes preferentially expressed in macrophages (MSR1, CD163, FOLR2), but not with expression of genes preferentially expressed in tumor cells. All cells in the cancer and adjacent non-cancer tissue exhibit low LPL expression. However, in cancer tissue only, there were individual highly LPL-expressing cells which were macrophages. These LPL-overexpressing cells were approximately 10 times less abundant than anti-CD163-stained, tumor-associated macrophages. To conclude, in NSCLC tissue, a subpopulation of tumor-associated macrophages highly expresses LPL. Because tumor-associated macrophages are pro-tumorigenic, these cells should be further characterized to better understand the underlying nature of the close relationship between high LPL activity in NSCLC tissue and shorter patient survival.
Collapse
Affiliation(s)
- Helena Podgornik
- Department of Haematology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
7
|
Trost Z, Sok M, Marc J, Cerne D. Increased lipoprotein lipase activity in non-small cell lung cancer tissue predicts shorter patient survival. Arch Med Res 2009; 40:364-8. [PMID: 19766899 DOI: 10.1016/j.arcmed.2009.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/27/2009] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Cumulative evidence suggests the involvement of lipoprotein lipase (LPL) in tumor progression. We tested the hypothesis that increased LPL activity in resectable non-small cell lung cancer (NSCLC) tissue and the increased LPL gene expression in the surrounding non-cancer lung tissue found in our previous study are predictors of patient survival. METHODS Forty two consecutive patients with resected NSCLC were enrolled in the study. Paired samples of lung cancer tissue and adjacent non-cancer lung tissue were collected from resected specimens for baseline LPL activity and gene expression estimation. During a 4-year follow-up, 21 patients died due to tumor progression. One patient died due to a non-cancer reason and was not included in Cox regression analysis. RESULTS High LPL activity in cancer tissue (relative to the adjacent non-cancer lung tissue) predicted shorter survival, independently of standard prognostic factors (p=0.003). High gene expression in the non-cancer lung tissue surrounding the tumor had no predictive value. CONCLUSIONS Our study further underlines the involvement of cancer tissue LPL activity in tumor progression.
Collapse
Affiliation(s)
- Zoran Trost
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
8
|
Yokota T, Nagashima M, Ghazizadeh M, Kawanami O. Increased effect of fucoidan on lipoprotein lipase secretion in adipocytes. Life Sci 2009; 84:523-9. [PMID: 19302807 DOI: 10.1016/j.lfs.2009.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 12/08/2008] [Accepted: 01/27/2009] [Indexed: 11/15/2022]
Abstract
AIMS Fucoidan, a sulfated polysaccharide extracted from brown seaweed (F. vesiculosus) is recognized as an effective anticoagulant but its anti-lipidemic potency has not been well defined. We investigated the effect of fucoidan on lipoprotein lipase (LPL) secretion by human adipocytes. MAIN METHODS LPL mRNA and protein expressions were measured using semi-quantitative RT-PCR, ELISA and immunohistochemistry in cultured adipocytes with or without fucoidan treatment. LPL enzyme activity was determined by a fluorometric assay. KEY FINDINGS In cultured adipocytes, fucoidan induced LPL secretion in a dose- and time-dependent manner. An initial increase in LPL was maintained at a significant level but much slower than that in heparin-treated cells. Fucoidan also dose-dependently induced a cofactor of LPL, the apolipoprotein C-II (ApoC-II) secretion. In fucoidan-treated cells, LPL mRNA was time-dependently increased and LPL protein expression was also inceased. Treatment with both heparin and fucoidan showed no further increase in media LPL activity compared to heparin alone. In the conditioned medium from fucoidan-treated cells followed for 4 h, LPL activity decayed exponentially with half-life of about 180 min. In addition, the extracellular LPL mass in cycloheximide (a protein synthesis inhibitor) and fucoidan-treated cells did not change markedly, but LPL shifted significantly from active to inactive form. SIGNIFICANCE These results suggest that fucoidan acts like heparin by releasing LPL in addition to increasing the intracellular transport and decreasing the degradation of LPL in the medium. Furthermore, LPL and ApoC-II secretion induced by fucoidan may be involved in regulating plasma triglyceride lowering clearance.
Collapse
Affiliation(s)
- Takashi Yokota
- Department of Molecular Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki 211-0063, Japan.
| | | | | | | |
Collapse
|
9
|
Kavitha C, Nambiar M, Ananda Kumar C, Choudhary B, Muniyappa K, Rangappa KS, Raghavan SC. Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem Pharmacol 2009; 77:348-63. [DOI: 10.1016/j.bcp.2008.10.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/30/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
|