1
|
Law D, Magrini MA, Siedlik JA, Eckerson J, Drescher KM, Bredahl EC. Creatine and Resistance Training: A Combined Approach to Attenuate Doxorubicin-Induced Cardiotoxicity. Nutrients 2023; 15:4048. [PMID: 37764831 PMCID: PMC10536171 DOI: 10.3390/nu15184048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Doxorubicin (DOX), a potent chemotherapy agent, useful in the treatment of solid tumors, lymphomas, and leukemias, is limited by its potentially lethal cardiotoxicity. However, exercise has been consistently shown to mitigate the side effects of DOX, including cardiotoxicity. To date, most studies examining the relationship between exercise and DOX-induced cardiotoxicity have focused on aerobic exercise, with very few examining the role of anerobic activity. Therefore, this investigation explored the potential of creatine (CR) and resistance training (RT) in preserving cardiac health during DOX therapy. Male Sprague-Dawley rats were grouped into RT, RT + CR, sedentary (SED), and SED + CR, with each division further branching into saline (SAL) or DOX-treated subsets post-10 weeks of RT or SED activity. RT comprised progressive training utilizing specialized cages for bipedal stance feeding. CR-treated groups ingested water mixed with 1% CR monohydrate and 5% dextrose, while control animals received 5% dextrose. At week 10, DOX was administered (2 mg/kg/week) over 4-weeks to an 8 mg/kg cumulative dose. Cardiac function post-DOX treatment was assessed via transthoracic echocardiography. Left ventricular diameter during diastole was lower in DOX + CR, RT + DOX, and RT + CR + DOX compared to SED + DOX (p < 0.05). Additionally, cardiac mass was significantly greater in RT + CR + DOX SED + DOX animals (p < 0.05). These results suggest RT and CR supplementation, separately and in combination, could attenuate some measures of DOX-induced cardiotoxicity and may offer a cost-effective way to complement cancer treatments and enhance patient outcomes. More investigations are essential to better understand CR's prolonged effects during DOX therapy and its clinical implications.
Collapse
Affiliation(s)
- David Law
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Mitchel A Magrini
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jacob A Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| | - Joan Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| | - Eric C Bredahl
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| |
Collapse
|
2
|
Naaktgeboren WR, Binyam D, Stuiver MM, Aaronson NK, Teske AJ, van Harten WH, Groen WG, May AM. Efficacy of Physical Exercise to Offset Anthracycline-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. J Am Heart Assoc 2021; 10:e021580. [PMID: 34472371 PMCID: PMC8649276 DOI: 10.1161/jaha.121.021580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background Physical exercise is an intervention that might protect against doxorubicin‐induced cardiotoxicity. In this meta‐analysis and systematic review, we aimed to estimate the effect of exercise on doxorubicin‐induced cardiotoxicity and to evaluate mechanisms underlying exercise‐mediated cardioprotection using (pre)clinical evidence. Methods and Results We conducted a systematic search in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Cochrane's and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk‐of‐bias tools were used to assess the validity of human and animal studies, respectively. Cardiotoxicity outcomes reported by ≥3 studies were pooled and structured around the type of exercise intervention. Forty articles were included, of which 3 were clinical studies. Overall, in humans (sample sizes ranging from 24 to 61), results were indicative of exercise‐mediated cardioprotection, yet they were not sufficient to establish whether physical exercise protects against doxorubicin‐induced cardiotoxicity. In animal studies (n=37), a pooled analysis demonstrated that forced exercise interventions significantly mitigated in vivo and ex vivo doxorubicin‐induced cardiotoxicity compared with nonexercised controls. Similar yet slightly smaller effects were found for voluntary exercise interventions. We identified oxidative stress and related pathways, and less doxorubicin accumulation as mechanisms underlying exercise‐induced cardioprotection, of which the latter could act as an overarching mechanism. Conclusions Animal studies indicate that various exercise interventions can protect against doxorubicin‐induced cardiotoxicity in rodents. Less doxorubicin accumulation in cardiac tissue could be a key underlying mechanism. Given the preclinical evidence and limited availability of clinical data, larger and methodologically rigorous clinical studies are needed to clarify the role of physical exercise in preventing cardiotoxicity in patients with cancer. Registration URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42019118218.
Collapse
Affiliation(s)
- Willeke R Naaktgeboren
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - David Binyam
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Martijn M Stuiver
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Center for Quality of Life The Netherlands Cancer Institute Amsterdam The Netherlands.,Centre of Expertise Urban Vitality Faculty of Health Amsterdam University of Applied Sciences Amsterdam The Netherlands
| | - Neil K Aaronson
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Arco J Teske
- Department of Cardiology University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Wim H van Harten
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Department of Health Technology and Services Research University of Twente Enschede The Netherlands
| | - Wim G Groen
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
3
|
Al-Horani RA, Mohammad MA, Haifawi S, Ihsan M. Changes in myocardial myosin heavy chain isoform composition with exercise and post-exercise cold-water immersion. J Muscle Res Cell Motil 2021; 42:183-191. [PMID: 33826086 DOI: 10.1007/s10974-021-09603-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the changes in myocardial myosin heavy chain (MHC) isoforms, MHC-α and MHC-β composition in young healthy rodents following endurance training, with and without post-exercise cold-water immersion (CWI). Male rats were either trained on a treadmill for 10 weeks with (CWI) or without (Ex) regular CWI after each running session, or left sedentary (CON). Left ventricular mRNA of MHC-α, MHC-β, thyroid receptor α1 (TR-α1) and β (TR-β) were analyzed using rt-PCR and semiquantitative PCR analysis. MHC isoform protein composition was determined using SDS-PAGE electrophoresis. MHC-α isoform protein was predominant in all groups. The relative expression of MHC-β (%MHC-β) protein was not different between groups (CWI 34.7 ± 6.9%; Ex 32 ± 5.3%; CON 35.5 ± 10%; P = 0.7). MHC-β mRNA was reduced in Ex (0.7 ± 0.3-fold) compared to CWI (1.3 ± 0.2-fold; P < 0.001) and CON (1.01 ± 0.2-fold; P = 0.03). TRα1 mRNA was lower in CWI (0.4 ± 0.05-fold) than Ex (1.02 ± 0.3-fold) and CON (1.01 ± 0.2-fold) (P < 0.001 for both). CWI exhibited greater %MHC-β mRNA (56.8 ± 4.1%) than Ex (44.4 ± 7.7%; P = 0.001) and CON (48.5 ± 7.8%; P = 0.03). Neither exercise nor post-exercise CWI demonstrated a distinct effect on myocardial MHC protein isoform composition. However, CWI increased the relative expression of MHC-β mRNA compared with Ex and CON. Although this implicates a potential negative long-term impact of post-exercise CWI, future studies should include measures of cardiac function to better understand the effect of such isoform mRNA shifts following regular use of CWI.
Collapse
Affiliation(s)
| | - Mukhallad A Mohammad
- Department of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saja Haifawi
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed Ihsan
- Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
4
|
Lee Y, Kwon I, Jang Y, Cosio-Lima L, Barrington P. Endurance Exercise Attenuates Doxorubicin-induced Cardiotoxicity. Med Sci Sports Exerc 2020; 52:25-36. [PMID: 31318716 DOI: 10.1249/mss.0000000000002094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Endurance exercise (EXE) preconditioning before DOX treatment confers cardioprotection; however, whether EXE postconditioning (i.e., EXE intervention after the completion of DOX treatment) is cardioprotective remains unknown. Thus, the aim of the present study was to investigate if EXE postconditioning provides cardioprotection by testing the hypothesis that EXE-autophagy upregulation and NADPH oxidase 2 (NOX2) downregulation would be linked to cardioprotection against DOX-induced cardiotoxicity. METHODS C57BL/6 male mice were assigned into three groups: control (CON, n = 10), doxorubicin (DOX, n = 10), and doxorubicin + endurance exercise (DOX + EXE, n = 10). Animals assigned to DOX and DOX + EXE groups were intraperitoneally injected with DOX (5 mg·kg each week for 4 wk). Forty-eight hours after the last DOX treatment, the mice assigned to DOX + EXE performed EXE on a motorized treadmill at a speed of 13-15 m·min for 60 min·d for 4 wk. RESULTS EXE prevented DOX-induced apoptosis and mitigated tissue damages. Although DOX did not modulate auto/mitophagy, EXE significantly enhanced its flux (increased LC3-II levels, reduced p62 levels, and increased autophagosomes with mitochondria) along with increased mitochondrial fission (DRP1) and reduced fusion markers (OPA1 and MFN2). Interestingly, EXE-induced autophagy against DOX occurred in the absence of alterations of autophagy inducer AMPK or autophagy inhibitor mTOR signaling. EXE prohibited DOX-induced oxidative damages by suppressing NOX2 levels but without modulating other key antioxidant enzymes including MnSOD, CuZnSOD, catalase, and GPX1/2. CONCLUSION Our data provide novel findings that EXE-induced auto/mitophagy promotion and NOX2 downregulation are linked to cardioprotection against DOX-induced cardiotoxicity. Importantly, our study shows that EXE postconditioning intervention is effective and efficacious to prevent DOX-induced cardiac injuries.
Collapse
Affiliation(s)
- Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florid, Pensacola, FL
| | | | | | | | | |
Collapse
|
5
|
Abstract
Although highly effective, doxorubicin (DOX) use is limited by a dose-dependent cardiotoxicity. The purpose of this study was to determine whether resistance training (RT) would protect against DOX-induced cardiac dysfunction and determine whether any observed functional preservation is a result of reduced lipid peroxidation or a preservation of the cardiac myosin heavy chain (MHC) isoform distribution. Rats were resistance-trained or remained sedentary for 12 weeks, then treated with 12.5 mg/kg DOX or 0.9% saline. Five days after DOX exposure, cardiac function, lipid peroxidation, and MHC isoform expression were quantified. RT preserved cardiac function and attenuated the α-to β-MHC shift that occurs with DOX treatment. No significant differences in lipid peroxidation were observed between sedentary and RT animals treated with DOX. These data suggest that resistance-type exercise can provide protection against DOX-induced cardiac dysfunction, which may be a result of a preservation of the cardiac MHC isoform distribution.
Collapse
|
6
|
Squires RW, Shultz AM, Herrmann J. Exercise Training and Cardiovascular Health in Cancer Patients. Curr Oncol Rep 2018. [DOI: 10.1007/s11912-018-0681-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Tao L, Bei Y, Zhang H, Xiao J, Li X. Exercise for the heart: signaling pathways. Oncotarget 2016; 6:20773-84. [PMID: 26318584 PMCID: PMC4673228 DOI: 10.18632/oncotarget.4770] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
Physical exercise, a potent functional intervention in protecting against cardiovascular diseases, is a hot topic in recent years. Exercise has been shown to reduce cardiac risk factors, protect against myocardial damage, and increase cardiac function. This improves quality of life and decreases mortality and morbidity in a variety of cardiovascular diseases, including myocardial infarction, cardiac ischemia/reperfusion injury, diabetic cardiomyopathy, cardiac aging, and pulmonary hypertension. The cellular adaptation to exercise can be associated with both endogenous and exogenous factors: (1) exercise induces cardiac growth via hypertrophy and renewal of cardiomyocytes, and (2) exercise induces endothelial progenitor cells to proliferate, migrate and differentiate into mature endothelial cells, giving rise to endothelial regeneration and angiogenesis. The cellular adaptations associated with exercise are due to the activation of several signaling pathways, in particular, the growth factor neuregulin1 (NRG1)-ErbB4-C/EBPβ and insulin-like growth factor (IGF)-1-PI3k-Akt signaling pathways. Of interest, microRNAs (miRNAs, miRs) such as miR-222 also play a major role in the beneficial effects of exercise. Thus, exploring the mechanisms mediating exercise-induced benefits will be instrumental for devising new effective therapies against cardiovascular diseases.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yihua Bei
- Regeneration and Ageing Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Junjie Xiao
- Regeneration and Ageing Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
8
|
Exercise Prevention of Cardiovascular Disease in Breast Cancer Survivors. JOURNAL OF ONCOLOGY 2015; 2015:917606. [PMID: 26339243 PMCID: PMC4539168 DOI: 10.1155/2015/917606] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
Thanks to increasingly effective treatment, breast cancer mortality rates have significantly declined over the past few decades. Following the increase in life expectancy of women diagnosed with breast cancer, it has been recognized that these women are at an elevated risk for cardiovascular disease due in part to the cardiotoxic side effects of treatment. This paper reviews evidence for the role of exercise in prevention of cardiovascular toxicity associated with chemotherapy used in breast cancer, and in modifying cardiovascular risk factors in breast cancer survivors. There is growing evidence indicating that the primary mechanism for this protective effect appears to be improved antioxidant capacity in the heart and vasculature and subsequent reduction of treatment-related oxidative stress in these structures. Further clinical research is needed to determine whether exercise is a feasible and effective nonpharmacological treatment to reduce cardiovascular morbidity and mortality in breast cancer survivors, to identify the cancer therapies for which it is effective, and to determine the optimal exercise dose. Safe and noninvasive measures that are sensitive to changes in cardiovascular function are required to answer these questions in patient populations. Cardiac strain, endothelial function, and cardiac biomarkers are suggested outcome measures for clinical research in this field.
Collapse
|
9
|
Min K, Kwon OS, Smuder AJ, Wiggs MP, Sollanek KJ, Christou DD, Yoo JK, Hwang MH, Szeto HH, Kavazis AN, Powers SK. Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol 2015; 593:2017-36. [PMID: 25643692 DOI: 10.1113/jphysiol.2014.286518] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 11/08/2022] Open
Abstract
Although doxorubicin (DOX) is a highly effective anti-tumour agent used to treat a variety of cancers, DOX administration is associated with significant side effects, including myopathy of both cardiac and skeletal muscles. The mechanisms responsible for DOX-mediated myopathy remain a topic of debate. We tested the hypothesis that both increased mitochondrial reactive oxygen species (ROS) emission and activation of the cysteine protease calpain are required for DOX-induced myopathy in rat cardiac and skeletal muscle. Cause and effect was determined by administering a novel mitochondrial-targeted anti-oxidant to prevent DOX-induced increases in mitochondrial ROS emission, whereas a highly-selective pharmacological inhibitor was exploited to inhibit calpain activity. Our findings reveal that mitochondria are a major site of DOX-mediated ROS production in both cardiac and skeletal muscle fibres and the prevention of DOX-induced increases in mitochondrial ROS emission protects against fibre atrophy and contractile dysfunction in both cardiac and skeletal muscles. Furthermore, our results indicate that DOX-induced increases in mitochondrial ROS emission are required to activate calpain in heart and skeletal muscles and, importantly, calpain activation is a major contributor to DOX-induced myopathy. Taken together, these findings show that increased mitochondrial ROS production and calpain activation are significant contributors to the development of DOX-induced myopathy in both cardiac and skeletal muscle fibres.
Collapse
Affiliation(s)
- Kisuk Min
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jensen BT, Lien CY, Hydock DS, Schneider CM, Hayward R. Exercise mitigates cardiac doxorubicin accumulation and preserves function in the rat. J Cardiovasc Pharmacol 2014; 62:263-9. [PMID: 23644988 DOI: 10.1097/fjc.0b013e3182982ce0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Doxorubicin (DOX) is an effective antineoplastic agent with well-characterized cardiotoxic effects. Although exercise has been shown to protect against DOX cardiotoxicity, a clear and concise mechanism to explain its cardioprotective effects is lacking. The purpose of this study was to determine if exercise training reduces cardiac DOX accumulation, thereby providing a possible mechanism to explain the cardioprotective effects of exercise against DOX toxicity. METHODS Sprague-Dawley rats were randomly assigned to 1 of 3 primary experimental groups: sedentary (n = 77), wheel running (n = 65), or treadmill (n = 65). Animals in wheel running and treadmill groups completed 10 weeks of exercise before DOX treatment. DOX was administered 24 hours after the last training session as a bolus intraperitoneal injection at 10 mg/kg. Subgroups of rats from each primary group were killed at 1, 3, 5, 7, and 9 days after DOX exposure to assess cardiac function and DOX accumulation. RESULTS Ten weeks of exercise preconditioning reduced myocardial DOX accumulation, and this reduction in accumulation was associated with preserved cardiac function. CONCLUSIONS These data suggest that the cardioprotective effects of exercise against DOX-induced injury may be due, in part, to a reduction in myocardial DOX accumulation.
Collapse
Affiliation(s)
- Brock T Jensen
- *School of Sport and Exercise Science and the Rocky Mountain Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO; †Department of Exercise and Rehabilitative Sciences, Slippery Rock University, Slippery Rock, PA; and ‡Department of Athletics, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Pereira BC, Pauli JR, Antunes LMG, de Freitas EC, de Almeida MR, de Paula Venâncio V, Ropelle ER, de Souza CT, Cintra DE, Papoti M, da Silva ASR. Overtraining is associated with DNA damage in blood and skeletal muscle cells of Swiss mice. BMC PHYSIOLOGY 2013; 13:11. [PMID: 24099482 PMCID: PMC3852772 DOI: 10.1186/1472-6793-13-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 10/03/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND The alkaline version of the single-cell gel (comet) assay is a useful method for quantifying DNA damage. Although some studies on chronic and acute effects of exercise on DNA damage measured by the comet assay have been performed, it is unknown if an aerobic training protocol with intensity, volume, and load clearly defined will improve performance without leading to peripheral blood cell DNA damage. In addition, the effects of overtraining on DNA damage are unknown. Therefore, this study aimed to examine the effects of aerobic training and overtraining on DNA damage in peripheral blood and skeletal muscle cells in Swiss mice. To examine possible changes in these parameters with oxidative stress, we measured reduced glutathione (GSH) levels in total blood, and GSH levels and lipid peroxidation in muscle samples. RESULTS Performance evaluations (i.e., incremental load and exhaustive tests) showed significant intra and inter-group differences. The overtrained (OTR) group showed a significant increase in the percentage of DNA in the tail compared with the control (C) and trained (TR) groups. GSH levels were significantly lower in the OTR group than in the C and TR groups. The OTR group had significantly higher lipid peroxidation levels compared with the C and TR groups. CONCLUSIONS Aerobic and anaerobic performance parameters can be improved in training at maximal lactate steady state during 8 weeks without leading to DNA damage in peripheral blood and skeletal muscle cells or to oxidative stress in skeletal muscle cells. However, overtraining induced by downhill running training sessions is associated with DNA damage in peripheral blood and skeletal muscle cells, and with oxidative stress in skeletal muscle cells and total blood.
Collapse
Affiliation(s)
- Bruno Cesar Pereira
- Universidade de São Paulo (USP), Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP), Ribeirão Preto, São Paulo, Brasil
| | - José Rodrigo Pauli
- Universidade Estadual Paulista (UNESP), Curso de Pós-graduação em Ciências da Motricidade Humana, Rio Claro, São Paulo, Brasil
| | - Lusânia Maria Greggi Antunes
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Ribeirão Preto, São Paulo, Brasil
| | - Ellen Cristini de Freitas
- Universidade de São Paulo (USP), Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP), Ribeirão Preto, São Paulo, Brasil
| | - Mara Ribeiro de Almeida
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Ribeirão Preto, São Paulo, Brasil
| | - Vinícius de Paula Venâncio
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Ribeirão Preto, São Paulo, Brasil
| | - Eduardo Rochete Ropelle
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Aplicadas, Curso de Pós-graduação em Nutrição, Esporte e Metabolismo, Limeira, São Paulo, Brasil
| | - Claudio Teodoro de Souza
- Universidade do Extremo Sul Catarinense, Laboratório de Bioquímica e Fisiologia, Criciúma, Santa Catarina, Brasil
| | - Dennys Esper Cintra
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Aplicadas, Curso de Pós-graduação em Nutrição, Esporte e Metabolismo, Limeira, São Paulo, Brasil
| | - Marcelo Papoti
- Universidade de São Paulo (USP), Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP), Ribeirão Preto, São Paulo, Brasil
| | - Adelino Sanchez Ramos da Silva
- Universidade de São Paulo (USP), Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP), Ribeirão Preto, São Paulo, Brasil
| |
Collapse
|
12
|
Alishahi A, Roshan VD, Hedayyati M. Pretreatment effects of regular aerobic training on the IGF system and hepatotoxicity induced by doxorubicin in rats. Asian Pac J Cancer Prev 2013; 14:7427-7431. [PMID: 24460314 DOI: 10.7314/apjcp.2013.14.12.7427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIMS To examine the pretreatment effects of regular aerobic training on the IGF system (IGF-I, IGFBP-3 and IGF/IGFBP) and doxorubicin(DOX) induced hepatotoxicity in rats. MATERIALS AND METHODS Forty-eight male rats were divided into groups:(1) control+placebo (2)control+DOX10 mg.kg-1 (3)control+DOX20 mg.kg-1 (4) training+placebo (5) training+DOX10 mg.kg-1 (6) training+DOX20 mg.kg-1. Hepatotoxicity was induced by DOX with dosages of 10 and 20 mg.kg-1. The rats in groups 4, 5 and 6 performed treadmill running of 25-54 min/day and 15-20 m/min, 5 days/wk for 6 wks. At the end of the aerobic training protocol, rats in the 1 and 4 groups, in the 2 and 5 groups and in the 3 and 6 groups received saline solution, DOX10 mg.kg-1 and DOX20 mg.kg-1, respectively. RESULTS Administration of DOX20 mg.kg-1 caused a significant increase in IGF-1 and IGF-1/IGFBP-3, an insignificant decrease in IGFBP-3, as compared to the control+placebo group. However, after six weeks of aerobic training and DOX treatment with 10mg.kg-1 and or/ 20mg.kg-1 an insignificant decrease in IGF-1, an insignificant increase in IGFBP-3 and a significant decrease in IGF-1/IGFBP-3 were detected, in comparison to C+DOX10 and C+DOX20. CONCLUSIONS Hepatotoxicity of doxorubicin is dose-dependent and pretreatment with regular aerobic training may improve DOX-induced hepatotoxicity by up-regulation of IGFBP3.
Collapse
|
13
|
Hydock DS, Lien CY, Jensen BT, Parry TL, Schneider CM, Hayward R. Rehabilitative exercise in a rat model of doxorubicin cardiotoxicity. Exp Biol Med (Maywood) 2012; 237:1483-92. [DOI: 10.1258/ebm.2012.012137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of exercise to minimize doxorubicin (DOX)-induced cardiotoxicity is gaining attention. However, very few clinically relevant reports exist investigating the effects of exercise performed during and following DOX treatments. The purpose of this study, therefore, was to examine the effects of voluntary wheel running during and following DOX treatment using two models of late-onset DOX cardiotoxicity in the rat. Female Sprague-Dawley rats received either DOX or saline injections using one of two separate treatment regimens. These regimens involved either daily or weekly DOX injections with cumulative doses for both protocols totaling 15 mg/kg. Daily DOX injections were 1 mg/kg and lasted for 15 consecutive days while weekly DOX injections were 2.5 mg/kg and lasted for six consecutive weeks with control animals receiving matched saline injection regimens. Immediately following the initial DOX/saline injection, animals were randomly housed in cages with voluntary running wheels or standard rat cages throughout DOX/saline treatments and continued until reaching 10 weeks. Cardiac function was then assessed using echocardiography and an isolated working heart model, and myosin heavy chain (MHC) isoform distribution was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When compared wth controls, daily DOX treatment resulted in reduced running wheel distances at weeks 2-10 (P < 0.05), and weekly DOX treatment resulted in reduced running wheel distances at weeks 2, 6 and 10 (P < 0.05). Nonetheless, wheel running during and following daily and weekly DOX dosing protected against DOX-induced cardiotoxicity by preserving maximal mitral and aortic blood flow velocities, left ventricular developed pressure and MHC isoform expression. In conclusion, the overall reduced volume of activity during and following daily and weekly DOX treatments attenuated DOX-induced cardiac dysfunction suggesting that low-volume endurance training may be an effective rehabilitative approach in minimizing DOX cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- David S Hydock
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA
- Rocky Mountain Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO 80639, USA
| | - Chia-Ying Lien
- Athletic Department, National Taiwan University, Taipei 10617, Taiwan
| | - Brock T Jensen
- Department of Exercise and Rehabilitative Sciences, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Traci L Parry
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA
- Rocky Mountain Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO 80639, USA
| | - Carole M Schneider
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA
- Rocky Mountain Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO 80639, USA
| | - Reid Hayward
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA
- Rocky Mountain Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO 80639, USA
| |
Collapse
|
14
|
Hasinoff BB, Patel D, Wu X. The Dual-Targeted HER1/HER2 Tyrosine Kinase Inhibitor Lapatinib Strongly Potentiates the Cardiac Myocyte-Damaging Effects of Doxorubicin. Cardiovasc Toxicol 2012; 13:33-47. [DOI: 10.1007/s12012-012-9183-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Ashrafi J, Roshan VD. Is Short-term Exercise a Therapeutic Tool for Improvement of Cardioprotection Against DOX-induced Cardiotoxicity? An Experimental Controlled Protocol in Rats. Asian Pac J Cancer Prev 2012. [DOI: 10.7314/apjcp.2012.13.8.4025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Hayward R, Hydock D, Gibson N, Greufe S, Bredahl E, Parry T. Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function. J Physiol Biochem 2012; 69:177-87. [PMID: 22890792 DOI: 10.1007/s13105-012-0200-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/19/2012] [Indexed: 11/29/2022]
Abstract
Cancer-related fatigue is a pervasive syndrome experienced by a majority of cancer patients undergoing treatment, and muscular dysfunction may be a key component in the development and progression of this syndrome. Doxorubicin (DOX) is a commonly used antineoplastic agent used in the treatment of many cancers. The purpose of this study was to determine the effect of DOX exposure on the function of cardiac, skeletal, and smooth muscle tissues and examine the role accumulation of DOX may play in this process. In these studies, rats were treated with DOX and measurements of cardiac, skeletal, and smooth muscle function were assessed 1, 3, and 5 days after exposure. All muscular tissues showed significant and severe dysfunction, yet there was heterogeneity both in the time course of dysfunction and in the accumulation of DOX. Cardiac and skeletal muscle exhibited a time-dependent progressive decline in function during the 5 days following DOX treatment. In contrast, vascular function showed a decline in function that could be characterized as rapid onset and was sustained for the duration of the 5-day observation period. DOX accumulation was greatest in cardiac tissue, yet all muscular tissues showed a similar degree of dysfunction. Our data suggest that in muscular tissues both DOX-dependent and DOX-independent mechanisms may be involved with the muscular dysfunction observed following DOX treatment. Furthermore, this study highlights the fact that dysfunction of skeletal and smooth muscle may be an underappreciated aspect of DOX toxicity and may be a key component of cancer-related fatigue in these patients.
Collapse
Affiliation(s)
- Reid Hayward
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Hayward R, Lien CY, Jensen BT, Hydock DS, Schneider CM. Exercise training mitigates anthracycline-induced chronic cardiotoxicity in a juvenile rat model. Pediatr Blood Cancer 2012; 59:149-54. [PMID: 22052855 DOI: 10.1002/pbc.23392] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/20/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND Childhood cancer survivors are at greater risk of cardiovascular complications once they reach adulthood. Anthracyclines may be a major contributor to these delayed-onset complications, yet their use continues because of favorable clinical outcomes. Exercise has been shown to protect against anthracycline cardiotoxicity, yet it is unclear whether exercise can protect against delayed-onset cardiotoxicity when treatment is initiated in childhood. The aim of the present study was to determine if exercise training provides cardioprotection in a juvenile rat model of delayed-onset anthracycline cardiotoxicity. PROCEDURE At 25 days of age, male Sprague-Dawley rat pups were subjected to a treatment regimen with the anthracycline doxorubicin (DOX). Pups received DOX at 2 mg/kg on 7 consecutive days (cumulative dose 14 mg/kg) or saline as a control. At the time DOX treatment began, pups remained sedentary or were allowed to voluntarily exercise. Ten weeks after the initiation of exercise, cardiac function was assessed both in vivo and ex vivo. RESULTS DOX treatment stunted normal growth and significantly impaired cardiac function. While voluntary exercise did not offset changes in the growth curve, it did provide significant cardioprotection against DOX-induced cardiotoxicity. CONCLUSIONS Exercise training, initiated at the time treatment begins, can protect against delayed-onset anthracycline-induced cardiotoxicity in adult rats that were treated with anthracyclines as juveniles.
Collapse
Affiliation(s)
- Reid Hayward
- School of Sport and Exercise Science and the Rocky Mountain Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, Colorado 80639, USA.
| | | | | | | | | |
Collapse
|
18
|
Martins RA, Minari AL, Chaves MD, dos Santos RWT, Barbisan LF, Ribeiro DA. Exercise preconditioning modulates genotoxicity induced by doxorubicin in multiple organs of rats. Cell Biochem Funct 2012; 30:293-6. [PMID: 22287211 DOI: 10.1002/cbf.2799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 11/13/2011] [Accepted: 12/09/2011] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate the effects of exercise in multiple organs of rats treated with doxorubicin. Male adult Wistar rats were distributed into the following groups: sedentary + NaCl; exercise + NaCl; sedentary + doxorubicin; and exercise + doxorubicin. Animals were sacrificed 2 days following injections. Central fragments from heart, liver, and kidney were collected and minced in 0.9% NaCl being cellular suspensions used for the single-cell gel (comet) assay. The results showed that exercise was able to prevent genotoxicity induced by doxorubicin in heart cells. By contrast, exercise was not able to prevent genotoxicity induced by doxorubicin in liver cells. The same occurred to kidney cells, i.e. no statistically significant differences (p > 0.05) were found when compared with groups not exposed to doxorubicin. Taken together, our results support the idea that exercise could contribute to the protective effect against genotoxicity induced by doxorubicin in heart cells.
Collapse
Affiliation(s)
- Renato Almeida Martins
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Ascensão A, Oliveira PJ, Magalhães J. Exercise as a beneficial adjunct therapy during Doxorubicin treatment--role of mitochondria in cardioprotection. Int J Cardiol 2011; 156:4-10. [PMID: 21636148 DOI: 10.1016/j.ijcard.2011.05.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/14/2011] [Accepted: 05/13/2011] [Indexed: 01/01/2023]
Abstract
One of the mostly used chemotherapeutic drugs is the highly effective anthracycline Doxorubicin. However, its clinical use is limited by the dose-related and cumulative cardiotoxicity and consequent dysfunction. It has been proposed that the etiology of this toxicity is related to mitochondrial dysfunction. The present review aimed to analyze the promising results regarding the effect of several types of physical exercise in cardiac tolerance of animals treated with acute and sub-chronic doses of Doxorubicin (DOX), highlighting the importance of cardiac mitochondrial-related mechanisms in the process. Physical exercise positively modulates some important cardiac defense systems to antagonize the toxic effects caused by DOX treatment, including antioxidant capacity, the overexpression of heat shock proteins and other anti-apoptotic proteins. An important role in this protective phenotype afforded by exercise should be attributed to mitochondrial plasticity, as related adaptations could be translated into improved cardiac function in the setting of the DOX cardiomyopathy.
Collapse
Affiliation(s)
- António Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | | | | |
Collapse
|
20
|
The iron chelator Dp44mT inhibits the proliferation of cancer cells but fails to protect from doxorubicin-induced cardiotoxicity in spontaneously hypertensive rats. Cancer Chemother Pharmacol 2011; 68:1125-34. [PMID: 21373894 DOI: 10.1007/s00280-011-1587-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The iron chelator Dp44mT is a potent topoisomerase IIα inhibitor with novel anticancer activity. Doxorubicin (Dox), the current front-line therapy for breast cancer, induces a dose-limiting cardiotoxicity, in part through an iron-mediated pathway. We tested the hypothesis that Dp44mT can improve clinical outcomes of treatment with Dox by alleviating cardiotoxicity. METHODS The general cardiac and renal toxicities induced by Dox were investigated in the presence and absence of Dp44mT. The iron chelating cardioprotectant Dexrazoxane (Drz), which is approved for this indication, was used as a positive control. In vitro studies were carried out with H9c2 rat cardiomyocytes and in vivo studies were performed using spontaneously hypertensive rats. RESULTS Testing of the GI(50) profile of Dp44mT in the NCI-60 panel confirmed activity against breast cancer cells. An acute, toxic dose of Dox caused the predicted cellular and cardiac toxicities, such as cell death and DNA damage in vitro and elevated cardiac troponin T levels, tissue damage, and apoptosis in vivo. Dp44mT alone caused insignificant changes in hematological and biochemical indices in rats, indicating that Dp44mT is not significantly cardiotoxic as a single agent. In contrast to Drz, Dp44mT failed to mitigate Dox-induced cardiotoxicity in vivo. CONCLUSIONS We conclude that although Dp44mT is a potent iron chelator, it is unlikely to be an appropriate cardioprotectant against Dox-induced toxicity. However, it should continue to be evaluated as a potential anticancer agent as it has a novel mechanism for inhibiting the growth of a broad range of malignant cell types while exhibiting very low intrinsic toxicity to healthy tissues.
Collapse
|
21
|
Treatment strategies for chemotherapy-induced peripheral neuropathy: potential role of exercise. Oncol Rev 2010. [DOI: 10.1007/s12156-010-0044-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
22
|
Matsuura C, Brunini TM, Carvalho LC, Resende AC, Carvalho JJ, de Castro JPW, Mendes-Ribeiro AC. Exercise training in doxorubicin-induced heart failure: effects on the L-arginine–NO pathway and vascular reactivity. ACTA ACUST UNITED AC 2010; 4:7-13. [DOI: 10.1016/j.jash.2009.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/05/2009] [Accepted: 10/20/2009] [Indexed: 11/25/2022]
|