1
|
Ligasová A, Kociánová M, Koberna K. A Rapid Approach for Identifying Cell Lines Lacking Functional Cytidine Deaminase. Int J Mol Sci 2025; 26:3344. [PMID: 40244204 PMCID: PMC11989883 DOI: 10.3390/ijms26073344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
CDD plays a pivotal role within the pyrimidine salvage pathway. In this study, a novel, rapid method for the identification of cell lines lacking functional cytidine deaminase was developed. This innovative method utilizes immunocytochemical detection of the product of 5-fluorocytidine deamination, 5-fluorouridine in cellular RNA, enabling the identification of these cells within two hours. The approach employs an anti-bromodeoxyuridine antibody that also specifically binds to 5-fluorouridine and its subsequent detection by a fluorescently labeled antibody. Our results also revealed a strong correlation between the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio and cytidine deaminase content. On the other hand, no correlation was observed between the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio and deoxycytidine monophosphate deaminase content. Similarly, no correlation was observed between this ratio and equilibrative nucleoside transporters 1 or 2. Finally, concentrative nucleoside transporters 1, 2, or 3 also do not correlate with the 5-fluorouridine/5-fluorocytidine cytotoxicity ratio.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacký University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Markéta Kociánová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacký University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Budka J, Debowski D, Mai S, Narajczyk M, Hac S, Rolka K, Vrettos EI, Tzakos AG, Inkielewicz-Stepniak I. Design, Synthesis, and Antitumor Evaluation of an Opioid Growth Factor Bioconjugate Targeting Pancreatic Ductal Adenocarcinoma. Pharmaceutics 2024; 16:283. [PMID: 38399336 PMCID: PMC10892429 DOI: 10.3390/pharmaceutics16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dawid Debowski
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| | - Stanislaw Hac
- Department of General Endocrine and Transplant Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina, Institute of Materials Science and Computing, 45110 Ioannina, Greece
| | | |
Collapse
|
3
|
Mager DE, Straubinger RM. Contributions of William Jusko to Development of Pharmacokinetic and Pharmacodynamic Models and Methods. J Pharm Sci 2024; 113:2-10. [PMID: 37778439 DOI: 10.1016/j.xphs.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA.
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
4
|
Ligasová A, Piskláková B, Friedecký D, Koberna K. A new technique for the analysis of metabolic pathways of cytidine analogues and cytidine deaminase activities in cells. Sci Rep 2023; 13:20530. [PMID: 37993628 PMCID: PMC10665361 DOI: 10.1038/s41598-023-47792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Deoxycytidine analogues (dCas) are widely used for the treatment of malignant diseases. They are commonly inactivated by cytidine deaminase (CDD), or by deoxycytidine monophosphate deaminase (dCMP deaminase). Additional metabolic pathways, such as phosphorylation, can substantially contribute to their (in)activation. Here, a new technique for the analysis of these pathways in cells is described. It is based on the use of 5-ethynyl 2'-deoxycytidine (EdC) and its conversion to 5-ethynyl 2'-deoxyuridine (EdU). Its use was tested for the estimation of the role of CDD and dCMP deaminase in five cancer and four non-cancer cell lines. The technique provides the possibility to address the aggregated impact of cytidine transporters, CDD, dCMP deaminase, and deoxycytidine kinase on EdC metabolism. Using this technique, we developed a quick and cheap method for the identification of cell lines exhibiting a lack of CDD activity. The data showed that in contrast to the cancer cells, all the non-cancer cells used in the study exhibited low, if any, CDD content and their cytidine deaminase activity can be exclusively attributed to dCMP deaminase. The technique also confirmed the importance of deoxycytidine kinase for dCas metabolism and indicated that dCMP deaminase can be fundamental in dCas deamination as well as CDD. Moreover, the described technique provides the possibility to perform the simultaneous testing of cytotoxicity and DNA replication activity.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Barbora Piskláková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical Chemistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - David Friedecký
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical Chemistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Xu C, Ye Q, Ye C, Liu S. circACTR2 attenuates gemcitabine chemoresiatance in pancreatic cancer through PTEN mediated PI3K/AKT signaling pathway. Biol Direct 2023; 18:14. [PMID: 36991449 PMCID: PMC10061898 DOI: 10.1186/s13062-023-00368-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Recently, accumulating studies have unveiled that circRNAs exert critical function in a variety of tumor biological processes including chemoresistance. Our previous study has found circACTR2 is significantly down-regulated in acquired gemcitabine (GEM)- resistant pancreatic cancer (PC) cells, which has not been well-explored. Our study aimed to research the function and molecular mechanism of circACTR2 in PC chemoresistance. METHODS qRT-PCR and western blot analysis was performed to detect gene expression. The effect of circACTR2 on PC GEM resistance were examined by CCK-8 and flow cytometry assays. Whether circACTR2 could sponge miR-221-3p and regulate PTEN expression were determined by bioinformatics analysis, RNA pull-down, and Dual-luciferase reporter assay. RESULTS circACTR2 was notably down-regulated in a panel of GEM-resistant PC cells lines, and negatively associated with aggressive phenotype and poor prognosis of PC. circACTR2 downregulation contributed to GEM chemoresistance of PC cells with decreased S phase ratio of cell cycle and cell apoptosis, as confirmed by gain- and loss-of-function assays in vitro. In addition, circACTR2 overexpression retarded GEM resistance in vivo. Further, circACTR2 acted as a ceRNA against miR-221-3p, which directly targeted PTEN. The mechanistic studies revealed that loss of circACTR2 promoted GEM resistance in PC through activating the PI3K/AKT signaling pathway by downregulating PTEN expression in a miR-221-3p dependent manner. CONCLUSIONS circACTR2 reversed the chemoresistance of PC cells to GEM through inhibiting PI3K/AKT signaling pathway by sponging miR-221-3p and upregulating PTEN expression.
Collapse
Affiliation(s)
- Chao Xu
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China.
| | - Qinwen Ye
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China
| | - Chao Ye
- Department of Gastroenterology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China
| | - Shaojun Liu
- Department of Gastrointestinal surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Extracellular vesicles derived from dental mesenchymal stem/stromal cells with gemcitabine as a cargo have an inhibitory effect on the growth of pancreatic carcinoma cell lines in vitro. Mol Cell Probes 2023; 67:101894. [PMID: 36706931 DOI: 10.1016/j.mcp.2023.101894] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.
Collapse
|
7
|
Beutel AK, Halbrook CJ. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am J Physiol Cell Physiol 2023; 324:C540-C552. [PMID: 36571444 PMCID: PMC9925166 DOI: 10.1152/ajpcell.00331.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has become one of the leading causes of cancer-related deaths across the world. A lack of durable responses to standard-of-care chemotherapies renders its treatment particularly challenging and largely contributes to the devastating outcome. Gemcitabine, a pyrimidine antimetabolite, is a cornerstone in PDA treatment. Given the importance of gemcitabine in PDA therapy, extensive efforts are focusing on exploring mechanisms by which cancer cells evade gemcitabine cytotoxicity, but strategies to overcome them have not been translated into patient care. Here, we will introduce the standard treatment paradigm for patients with PDA, highlight mechanisms of gemcitabine action, elucidate gemcitabine resistance mechanisms, and discuss promising strategies to circumvent them.
Collapse
Affiliation(s)
- Alica K Beutel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Department of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, Orange, California
| |
Collapse
|
8
|
Sally Á, McGowan R, Finn K, Moran BM. Current and Future Therapies for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14102417. [PMID: 35626020 PMCID: PMC9139531 DOI: 10.3390/cancers14102417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Pancreatic cancer is the fourth leading cause of cancer-related mortality worldwide. The poor survival associated with this disease is due to delayed diagnosis, a lack of reliable biomarkers, and tumour resistance to treatment. Currently, surgery is the only curative treatment option, but few patients are eligible for this procedure. Developing resistance to current chemotherapies such as gemcitabine has led to a reduction in effective therapy options for patients and an urgent requirement for the development of novel therapeutic avenues. Potential success has been noted in therapeutic approaches such as synthetic lethality and immunotherapy. An array of clinical trials are currently recruiting, primarily in the area of monoclonal antibodies in combination with other therapies such as chemotherapy and immune checkpoint inhibitors. This review article aims to highlight the potential these therapies have to improve patient prognosis and survival. Abstract Pancreatic cancer is one of the leading causes of cancer-related death worldwide. This is due to delayed diagnosis and resistance to traditional chemotherapy. Delayed diagnosis is often due to the broad range of non-specific symptoms that are associated with the disease. Resistance to current chemotherapies, such as gemcitabine, develops due to genetic mutations that are either intrinsic or acquired. This has resulted in poor patient prognosis and, therefore, justifies the requirement for new targeted therapies. A synthetic lethality approach, that targets specific loss-of-function mutations in cancer cells, has shown great potential in pancreatic ductal adenocarcinoma (PDAC). Immunotherapies have also yielded promising results in the development of new treatment options, with several currently undergoing clinical trials. The utilisation of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell transfer, and vaccines have shown success in several neoplasms such as breast cancer and B-cell malignancies and, therefore, could hold the same potential in PDAC treatment. These therapeutic strategies could have the potential to be at the forefront of pancreatic cancer therapy in the future. This review focuses on currently approved therapies for PDAC, the challenges associated with them, and future directions of therapy including synthetically lethal approaches, immunotherapy, and current clinical trials.
Collapse
Affiliation(s)
- Áine Sally
- Department of Analytical, Biopharmaceutical and Medical Sciences, School of Science and Computing, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland; (Á.S.); (R.M.); (K.F.)
| | - Ryan McGowan
- Department of Analytical, Biopharmaceutical and Medical Sciences, School of Science and Computing, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland; (Á.S.); (R.M.); (K.F.)
- Department of Life Sciences, School of Science, Atlantic Technological University Sligo, Ash Lane, Ballytivnan, F91 YW50 Sligo, Ireland
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, School of Science and Computing, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland; (Á.S.); (R.M.); (K.F.)
| | - Brian Michael Moran
- Department of Analytical, Biopharmaceutical and Medical Sciences, School of Science and Computing, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland; (Á.S.); (R.M.); (K.F.)
- Correspondence:
| |
Collapse
|
9
|
Chen ZW, Hu JF, Wang ZW, Liao CY, Kang FP, Lin CF, Huang Y, Huang L, Tian YF, Chen S. Circular RNA circ-MTHFD1L induces HR repair to promote gemcitabine resistance via the miR-615-3p/RPN6 axis in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41:153. [PMID: 35459186 PMCID: PMC9034615 DOI: 10.1186/s13046-022-02343-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemoresistance of pancreatic cancer is the main reason for the poor treatment effect of pancreatic cancer patients. Exploring chemotherapy resistance-related genes has been a difficult and hot topic of oncology. Numerous studies implicate the key roles of circular RNAs (circRNAs) in the development of pancreatic cancer. However, the regulation of circRNAs in the process of pancreatic ductal adenocarcinoma (PDAC) chemotherapy resistance is not yet fully clear. METHODS Based on the cross-analysis of the Gene Expression Omnibus (GEO) database and the data of our center, we explored a new molecule, hsa_circ_0078297 (circ-MTHFD1L), related to chemotherapy resistance. QRT-PCR was used to detect the expression of circRNAs, miRNAs, and mRNAs in human PDAC tissues and their matched normal tissues. The interaction between circ-MTHFD1L and miR-615-3p/RPN6 signal axis was confirmed by a series of experiments such as Dual-luciferase reporter assay, fluorescence in situ hybridization (FISH) RNA immunoprecipitation (RIP) assays. RESULTS Circ-MTHFD1L was significantly increased in PDAC tissues and cells. And in PDAC patients, the higher the expression level of circ-MTHFD1L, the worse the prognosis. Mechanism analysis showed that circ-MTHFD1L, as an endogenous miR-615-3p sponge, upregulates the expression of RPN6, thereby promoting DNA damage repair and exerting its effect on enhancing gemcitabine chemotherapy resistance. More importantly, we also found that Silencing circ-MTHFD1L combined with olaparib can increase the sensitivity of pancreatic cancer to gemcitabine. CONCLUSION Circ-MTHFD1L maintains PDAC gemcitabine resistance through the miR-615-3p/RPN6 signal axis. Circ-MTHFD1L may be a molecular marker for the effective treatment of PDAC.
Collapse
Affiliation(s)
- Zhi-Wen Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Feng-Ping Kang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
- Department of Hepatobiliary Surgery, Jinshan Branch of Fujian Province Hospital, Fuzhou, 350007, Fujian Province, People's Republic of China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China.
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
10
|
Song J, Xu J, Guo J, Shang Y, Wang J, Wang T. The enhancement of Tetrandrine to gemcitabine-resistant PANC-1 cytochemical sensitivity involves the promotion of PI3K/Akt/mTOR-mediated apoptosis and AMPK-regulated autophagy. Acta Histochem 2021; 123:151769. [PMID: 34416437 DOI: 10.1016/j.acthis.2021.151769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the process of tumor development, the resistance of pancreatic cancer cells to gemcitabine (GEM) is mainly due to the suppression and dysregulation of apoptosis signals to a large extent. Therefore, it is very necessary to develop pro-apoptotic drugs for combined treatment of pancreatic cancer to increase the activity of GEM and improve the prognosis of pancreatic cancer. METHODS AND RESULTS GEM-resistant PANC-1 cells were treated with increasing doses of GEM. The effects of GEM and TET on apoptosis were evaluated by flow cytometry and Hoechst 33258 staining. We also evaluated the expression of survivin by real-time PCR, and the expression levels of proteins involved in apoptosis, autophagy, and PI3K/Akt/mTOR signaling were detected by western blotting. The results showed that TET downregulated expression of survivin by inhibiting the PI3K/Akt/mTOR signaling pathway to promote pancreatic cancer cell apoptosis, thereby enhancing pancreatic cancer cell sensitivity to GEM. Moreover, TET enhanced cytotoxic and autophagy-dependent cell death by upregulating the AMPK-autophagy axis, and this effect was reversed by inhibition of AMPK. CONCLUSIONS TET promotes apoptosis by inhibiting the PI3K/Akt/mTOR signaling pathway and promotes autophagy via up-regulating the AMPK signaling pathway to play an anti-tumor effect in GEM-resistant pancreatic cancer cells, which represents a new therapeutic strategy for the treatment of GEM-resistant pancreatic cancer.
Collapse
|
11
|
Lin Q, Qian Z, Jusko WJ, Mager DE, Ma WW, Straubinger RM. Synergistic Pharmacodynamic Effects of Gemcitabine and Fibroblast Growth Factor Receptor Inhibitors on Pancreatic Cancer Cell Cycle Kinetics and Proliferation. J Pharmacol Exp Ther 2021; 377:370-384. [PMID: 33753538 PMCID: PMC9885358 DOI: 10.1124/jpet.120.000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Median survival of pancreatic ductal adenocarcinoma cancer (PDAC) is 6 months, with 9% 5-year survival. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and combination therapies integrating novel targeted agents could improve outcomes. Fibroblast growth factor (FGF) receptors (FGFRs) play important roles in PDAC growth and invasion. Therefore, FGFR inhibitors (FGFRi) merit further investigation. Efficacy of Gem combined with NVP-BGJ398, a pan-FGFRi, was investigated in multiple PDAC cell lines exposed to the drugs alone and combined. Cell cycle distribution and cell numbers were quantified over time. Two pharmacodynamic models were developed to investigate Gem/BGJ398 interactions quantitatively: a drug-mediated cell proliferation/death model, and a drug-perturbed cell cycle progression model. The models captured temporal changes in cell numbers, cell cycle progression, and cell death during drug exposure. Simultaneous fitting of all data provided reasonable parameter estimates. Therapeutic efficacy was then evaluated in a PDAC mouse model. Compared with Gem alone, combined Gem + FGFRi significantly downregulated ribonucleotide-diphosphate reductase large subunit 1 (RRM1), a gemcitabine resistance (GemR) biomarker, suggesting the FGFRi inhibited GemR emergence. The cell proliferation/death pharmacodynamic model estimated the drug interaction coefficient ψ death = 0.798, suggesting synergistic effects. The mechanism-based cell cycle progression model estimated drug interaction coefficient ψ cycle = 0.647, also suggesting synergy. Thus, FGFR inhibition appears to synergize with Gem in PDAC cells and tumors by sensitizing cells to Gem-mediated inhibition of proliferation and cell cycle progression. SIGNIFICANCE STATEMENT: An integrated approach of quantitative modeling and experimentation was employed to investigate the nature of fibroblast growth factor receptor inhibitor (FGFRi)/gemcitabine (Gem) interaction, and to identify mechanisms by which FGFRi exposure reverses Gem resistance in pancreatic cancer cells. The results show that FGFRi interacts synergistically with Gem to sensitize pancreatic cancer cells and tumors to Gem-mediated inhibition of proliferation and cell cycle progression. Thus, addition of FGFRi to standard-of-care Gem treatment could be a clinically deployable approach to enhance therapeutic benefit to pancreatic cancer patients.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Zhicheng Qian
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Wen Wee Ma
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| |
Collapse
|
12
|
Panebianco C, Trivieri N, Villani A, Terracciano F, Latiano TP, Potenza A, Perri F, Binda E, Pazienza V. Improving Gemcitabine Sensitivity in Pancreatic Cancer Cells by Restoring miRNA-217 Levels. Biomolecules 2021; 11:639. [PMID: 33925948 PMCID: PMC8146031 DOI: 10.3390/biom11050639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance is a major problem in the therapeutic management of pancreatic cancer, concurring to poor clinical outcome. A number of mechanisms have been proposed to explain resistance to gemcitabine, a standard of care for this malignancy, among which is included aberrant miRNA expression. In the current study, we investigated the role of miR-217, which is strongly down-regulated in cancerous, compared to normal, pancreatic tissues or cells, in sensitizing human pancreatic cancer cell lines to this drug. The low expression of miR-217 in pancreatic cancer patients was confirmed in two gene expression datasets (GSE41372 and GSE60980), and the prognostic value of two target genes (ANLN and TRPS1), was estimated on clinical data from the Tumor Cancer Genome Atlas (TCGA). Transfecting miR-217 mimic in pancreatic cancer cells reduced viability, enhanced apoptosis, and affected cell cycle by promoting a S phase arrest in gemcitabine-treated cells. Moreover, in drug-exposed cells subjected to miR-217 forced expression, a down-regulation for several genes involved in cancer drug resistance was observed, many of which are cell cycle regulators, such as CCND1, CCNE1, CDK2, CDKN1A, CDKN1B, while others, such as ARNT, BRCA1, BRCA2, ELK1, EGFR, ERBB4, and RARA are involved in proliferation and cell cycle progression. Our results support the notion that miR-217 enhances pancreatic cancer sensitivity to gemcitabine, mainly impairing cell cycle progression.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Nadia Trivieri
- Cancer Stem Cell Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Fulvia Terracciano
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Tiziana Pia Latiano
- Oncology Unit Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Francesco Perri
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Elena Binda
- Cancer Stem Cell Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| |
Collapse
|
13
|
Cardilin T, Lundh T, Jirstrand M. Optimization of additive chemotherapy combinations for an in vitro cell cycle model with constant drug exposures. Math Biosci 2021; 338:108595. [PMID: 33831415 DOI: 10.1016/j.mbs.2021.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/25/2022]
Abstract
Proliferation of an in vitro population of cancer cells is described by a linear cell cycle model with n states, subject to provocation with m chemotherapeutic compounds. Minimization of a linear combination of constant drug exposures is considered, with stability of the system used as a constraint to ensure a stable or shrinking cell population. The main result concerns the identification of redundant compounds, and an explicit solution formula for the case where all exposures are nonzero. The orthogonal case, where each drug acts on a single and different stage of the cell cycle, leads to a version of the classic inequality between the arithmetic and geometric means. Moreover, it is shown how the general case can be solved by converting it to the orthogonal case using a linear invertible transformation. The results are illustrated with two examples corresponding to combination treatment with two and three compounds, respectively.
Collapse
Affiliation(s)
- Tim Cardilin
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
| | - Torbjörn Lundh
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Mats Jirstrand
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden
| |
Collapse
|
14
|
Garcia-Gil M, Turri B, Gabriele M, Pucci L, Agnarelli A, Lai M, Freer G, Pistello M, Vignali R, Batistoni R, Marracci S. Protopine/Gemcitabine Combination Induces Cytotoxic or Cytoprotective Effects in Cell Type-Specific and Dose-Dependent Manner on Human Cancer and Normal Cells. Pharmaceuticals (Basel) 2021; 14:ph14020090. [PMID: 33530428 PMCID: PMC7912662 DOI: 10.3390/ph14020090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The natural alkaloid protopine (PRO) exhibits pharmacological properties including anticancer activity. We investigated the effects of PRO, alone and in combination with the chemotherapeutic gemcitabine (GEM), on human tumor cell lines and non-tumor human dermal fibroblasts (HDFs). We found that treatments with different PRO/GEM combinations were cytotoxic or cytoprotective, depending on concentration and cell type. PRO/GEM decreased viability in pancreatic cancer MIA PaCa-2 and PANC-1 cells, while it rescued the GEM-induced viability decline in HDFs and in tumor MCF-7 cells. Moreover, PRO/GEM decreased G1, S and G2/M phases, concomitantly with an increase of subG1 phase in MIA PaCa-2 and PANC-1 cells. Differently, PRO/GEM restored the normal progression of the cell cycle, altered by GEM, and decreased cell death in HDFs. PRO alone increased mitochondrial reactive oxygen species (ROS) in MIA PaCa-2, PANC-1 cells and HDFs, while PRO/GEM increased both intracellular and mitochondrial ROS in the three cell lines. These results indicate that specific combinations of PRO/GEM may be used to induce cytotoxic effects in pancreatic tumor MIA PaCa-2 and PANC-1 cells, but have cytoprotective or no effects in HDFs.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Benedetta Turri
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Alessandro Agnarelli
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Giulia Freer
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Robert Vignali
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Renata Batistoni
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
- Correspondence:
| |
Collapse
|
15
|
A quantitative systems pharmacological approach identified activation of JNK signaling pathway as a promising treatment strategy for refractory HER2 positive breast cancer. J Pharmacokinet Pharmacodyn 2021; 48:273-293. [PMID: 33389550 DOI: 10.1007/s10928-020-09732-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023]
Abstract
HER2-positive breast cancer (BC) is a rapidly growing and aggressive BC subtype that predominantly affects younger women. Despite improvements in patient outcomes with anti-HER2 therapy, primary and/or acquired resistance remain a major clinical challenge. Here, we sought to use a quantitative systems pharmacological (QSP) approach to evaluate the efficacy of lapatinib (LAP), abemaciclib (ABE) and 5-fluorouracil (5-FU) mono- and combination therapies in JIMT-1 cells, a HER2+ BC cell line exhibiting intrinsic resistance to trastuzumab. Concentration-response relationships and temporal profiles of cellular viability were assessed upon exposure to single agents and their combinations. To quantify the nature and intensity of drug-drug interactions, pharmacodynamic cellular response models were generated, to characterize single agent and combination time course data. Temporal changes in cell-cycle phase distributions, intracellular protein signaling, and JIMT-1 cellular viability were quantified, and a systems-based protein signaling network model was developed, integrating protein dynamics to drive the observed changes in cell viability. Global sensitivity analyses for each treatment arm were performed, to identify the most influential parameters governing cellular responses. Our QSP model was able to adequately characterize protein dynamic and cellular viability trends following single and combination drug exposure. Moreover, the model and subsequent sensitivity analyses suggest that the activation of the stress pathway, through pJNK, has the greatest impact over the observed declines of JIMT-1 cell viability in vitro. These findings suggest that dual HER2 and CDK 4/6 inhibition may be a promising novel treatment strategy for refractory HER2+ BC, however, proof-of-concept in vivo studies are needed to further evaluate the combined use of these therapies.
Collapse
|
16
|
Ye ZQ, Chen HB, Zhang TY, Chen Z, Tian L, Gu DN. MicroRNA-7 modulates cellular senescence to relieve gemcitabine resistance by targeting PARP1/NF-κB signaling in pancreatic cancer cells. Oncol Lett 2020; 21:139. [PMID: 33552258 PMCID: PMC7798037 DOI: 10.3892/ol.2020.12400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Senescence is activated in response to gemcitabine to prevent the propagation of cancer cells. However, there is little evidence on whether senescence is involved in gemcitabine resistance in pancreatic cancer. Increasing evidence has demonstrated that microRNAs (miRs) are potential regulators of cellular senescence. The present study aimed to investigate whether aberrant miR-7 expression modulated senescence to influence pancreatic cancer resistance to chemotherapy. In the present study, cell senescence assay, ALDEFLUOR™ assay, luciferase reporter assay, flow cytometry, quantitative PCR, immunohistochemistry and western blot analysis were performed to explore the association between senescence and gemcitabine therapy response, and to clarify the underlying mechanisms. The present study revealed that gemcitabine-induced chronically existing senescent pancreatic cells possessed stemness markers. Therapy-induced senescence led to gemcitabine resistance. Additionally, it was found that miR-7 expression was decreased in gemcitabine-resistant pancreatic cancer cells, and that miR-7 acted as an important regulator of cellular senescence by targeting poly (ADP-ribose) polymerase 1 (PARP1)/NF-κB signaling. When miR-7 expression was restored, it was able to sensitize pancreatic cancer cells to gemcitabine. In conclusion, the present study demonstrated that miR-7 regulated cellular senescence and relieved gemcitabine resistance by targeting the PARP1/NF-κB axis in pancreatic cancer cells.
Collapse
Affiliation(s)
- Zhi-Qiang Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Han-Bin Chen
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tai-Yu Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Zhi Chen
- Department of Chemoradiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Dian-Na Gu
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
17
|
Namima D, Fujihara S, Iwama H, Fujita K, Matsui T, Nakahara M, Okamura M, Hirata M, Kono T, Fujita N, Yamana H, Kato K, Kamada H, Morishita A, Kobara H, Tsutsui K, Masaki T. The Effect of Gemcitabine on Cell Cycle Arrest and microRNA Signatures in Pancreatic Cancer Cells. In Vivo 2020; 34:3195-3203. [PMID: 33144424 DOI: 10.21873/invivo.12155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Gemcitabine, an inhibitor of DNA synthesis, is the gold standard chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miRNAs) play critical roles in cancers, including PDAC. However, less is known about the effect of gemcitabine on PDAC cells and miRNA expression in PDAC. We evaluated the effect of gemcitabine on the cell cycle of PDAC cells in vitro and in vivo and on the miRNA expression profile. MATERIALS AND METHODS Effects of gemcitabine on PK-1 and PK-9 cell growth were evaluated using a cell counting kit-8 assay. Xenografted mouse models were used to assess gemcitabine effects in vivo. RESULTS Gemcitabine inhibited the proliferation and tumour growth of PK-1 cells, and induced S phase cell cycle arrest. Numerous miRNAs were altered upon gemcitabine treatment of PK-1 cells and xenograft models. CONCLUSION Altered miRNAs may serve as potential therapeutic targets for improving the efficacy of gemcitabine in PDAC.
Collapse
Affiliation(s)
- Daisuke Namima
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Takanori Matsui
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Megumi Okamura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Masahiro Hirata
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Toshiaki Kono
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Naoki Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hiroki Yamana
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Kiyohito Kato
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | | | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| |
Collapse
|
18
|
A Severe Case of Drug-Induced Liver Injury after Gemcitabine Administration: A Highly Probable Causality Grading as Assessed by the Updated RUCAM Diagnostic Scoring System. Case Reports Hepatol 2020; 2020:8812983. [PMID: 33083070 PMCID: PMC7556098 DOI: 10.1155/2020/8812983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 01/13/2023] Open
Abstract
Gemcitabine is an antineoplastic drug used in several forms of advanced pancreatic, lung, breast, ovarian, and bladder cancer. Common side effects include bone marrow suppression, fatigue, diarrhea, nausea, gastrointestinal upset, rash, alopecia, and stomatitis. Transient serum enzyme elevations could be observed during therapy, but clinically significant acute liver injury has been rarely associated with its use. Few cases of acute liver injury have been reported in the literature. We reported the clinical case of a 73--year-old man who developed clinically significant acute hepatic injury after using gemcitabine. Possible causes, clinical presentation, and treatments are discussed. According to the updated RUCAM score, the case was rated 10 points and became a suspected drug-induced liver injury. Moreover, on the liver biopsy, there were histological findings of mild-to-moderate portal hepatitis, eosinophilia, bile duct injury, and mild perisinusoidal fibrosis, suggesting drug damage.
Collapse
|
19
|
Jiang S, Wang R, Zhang X, Wu F, Li S, Yuan Y. Combination treatment of gemcitabine and sorafenib exerts a synergistic inhibitory effect on non-small cell lung cancer in vitro and in vivo via the epithelial-to-mesenchymal transition process. Oncol Lett 2020; 20:346-356. [PMID: 32537024 PMCID: PMC7291674 DOI: 10.3892/ol.2020.11536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/02/2020] [Indexed: 01/13/2023] Open
Abstract
Standard chemotherapy is commonly used in clinical practice for the treatment of non-small cell lung cancer (NSCLC). However, its therapeutic efficacy remains low. Combination therapy for cancer treatment has attracted attention in recent years. The present study aimed to investigate the antitumor effect of the combination treatment with gemcitabine and sorafenib on NSCLC in vitro and in vivo, and to determine its underlying molecular mechanisms. The anti-NSCLC effects of combination therapy were analyzed by flow cytometry analysis, MTT, western blotting, reverse transcription-quantitative PCR, wound healing and Transwell invasion assays. A549 cells subjected to combination treatment with gemcitabine and sorafenib demonstrated a more irregular cellular morphology and lower cell viability compared with the monotherapy groups. Combination of gemcitabine and sorafenib significantly induced cell cycle arrest and apoptosis in A549 cells. Additionally, combination therapy was demonstrated to restrain the migration and invasion of tumor cells by suppressing epithelial-to-mesenchymal transition (EMT) of A549 cells. In vivo analyses confirmed that co-treatment with gemcitabine and sorafenib decreased NSCLC tumor growth and tumor weight in nude mice. Taken together, the results of the present study suggested that combination treatment with gemcitabine and sorafenib exerted a synergistic inhibitory effect on NSCLC in vitro and in vivo via the EMT process.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xuan Zhang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Feihua Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Shengnan Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
20
|
Garcia-Cremades M, Melillo N, Troconiz IF, Magni P. Mechanistic Multiscale Pharmacokinetic Model for the Anticancer Drug 2',2'-difluorodeoxycytidine (Gemcitabine) in Pancreatic Cancer. Clin Transl Sci 2020; 13:608-617. [PMID: 32043298 PMCID: PMC7214642 DOI: 10.1111/cts.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022] Open
Abstract
The aim of this work is to build a mechanistic multiscale pharmacokinetic model for the anticancer drug 2’,2’‐difluorodeoxycytidine (gemcitabine, dFdC), able to describe the concentrations of dFdC metabolites in the pancreatic tumor tissue in dependence of physiological and genetic patient characteristics, and, more in general, to explore the capabilities and limitations of this kind of modeling strategy. A mechanistic model characterizing dFdC metabolic pathway (metabolic network) was developed using in vitro literature data from two pancreatic cancer cell lines. The network was able to describe the time course of extracellular and intracellular dFdC metabolites concentrations. Moreover, a physiologically‐based pharmacokinetic model was developed to describe clinical dFdC profiles by using enzymatic and physiological information available in the literature. This model was then coupled with the metabolic network to describe the dFdC active metabolite profile in the pancreatic tumor tissue. Finally, global sensitivity analysis was performed to identify the parameters that mainly drive the interindividual variability for the area under the curve (AUC) of dFdC in plasma and of its active metabolite (dFdCTP) in tumor tissue. From this analysis, cytidine deaminase (CDA) concentration was identified as the main driver of plasma dFdC AUC interindividual variability, whereas CDA and deoxycytidine kinase concentration mainly explained the tumor dFdCTP AUC variability. However, the lack of in vitro and in vivo information needed to characterize key model parameters hampers the development of this kind of mechanistic approach. Further studies to better characterize pancreatic cell lines and patient enzymes polymorphisms are encouraged to refine and validate the current model.
Collapse
Affiliation(s)
- Maria Garcia-Cremades
- Pharmacometrics & Systems Pharmacology, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Nicola Melillo
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Iñaki F Troconiz
- Pharmacometrics & Systems Pharmacology, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Paolo Magni
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Turner A, Bond DR, Vuong QV, Chalmers A, Beckett EL, Weidenhofer J, Scarlett CJ. Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro. Mol Biol Rep 2020; 47:2073-2084. [PMID: 32065323 DOI: 10.1007/s11033-020-05307-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Abstract
Treatment options for pancreatic cancer (PC) are severely limited due to late diagnosis, early metastasis and the inadequacy of chemotherapy and radiotherapy to combat the aggressive biology of the disease. In recent years, plant-derived bioactive compounds have emerged as a source of novel, anti-cancer agents. Used in traditional medicine worldwide, Elaeocarpus species have reported anti-inflammatory, antioxidant and anti-cancer properties. This study aimed to isolate and identify potential anti-PC compounds in the fruit of Elaeocarpus reticulatus Sm. A 50% acetone crude extract significantly decreased the viability of four pancreatic cell lines (≥ 10 µg/mL for BxPC-3 cells) and induced apoptosis in BxPC-3 and HPDE cells. Analysis by HPLC identified the triterpenoid Cucurbitacin I as a likely component of the extract. Furthermore, treatment with Cucurbitacin I significantly reduced the viability of HPDE and BxPC-3 cells, with results comparable to the same concentration of gemcitabine. Interestingly, attempts to isolate bioactive compounds revealed that the crude extract was more effective at reducing PC-cell viability than the fractionated extracts. This study provides initial insight into the bioactive constituents of E. reticulatus fruits.
Collapse
Affiliation(s)
- Alexandria Turner
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.
| | - Danielle R Bond
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.,Hunter Medical Research Institute, New Lambton Heights, 2305, Australia
| | - Quan V Vuong
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Anita Chalmers
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Emma L Beckett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.,Hunter Medical Research Institute, New Lambton Heights, 2305, Australia
| | - Judith Weidenhofer
- Hunter Medical Research Institute, New Lambton Heights, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, 2258, Australia
| | - Christopher J Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| |
Collapse
|
22
|
Masoudi M, Seki M, Yazdanparast R, Yachie N, Aburatani H. A genome-scale CRISPR/Cas9 knockout screening reveals SH3D21 as a sensitizer for gemcitabine. Sci Rep 2019; 9:19188. [PMID: 31844142 PMCID: PMC6915784 DOI: 10.1038/s41598-019-55893-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
Gemcitabine, 2',2'-difluoro-2'-deoxycytidine, is used as a pro-drug in treatment of variety of solid tumour cancers including pancreatic cancer. After intake, gemcitabine is transferred to the cells by the membrane nucleoside transporter proteins. Once inside the cells, it is converted to gemcitabine triphosphate followed by incorporation into DNA chains where it causes inhibition of DNA replication and thereby cell cycle arrest and apoptosis. Currently gemcitabine is the standard drug for treatment of pancreatic cancer and despite its widespread use its effect is moderate. In this study, we performed a genome-scale CRISPR/Cas9 knockout screening on pancreatic cancer cell line Panc1 to explore the genes that are important for gemcitabine efficacy. We found SH3D21 as a novel gemcitabine sensitizer implying it may act as a therapeutic target for improvement of gemcitabine efficacy in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mohammad Masoudi
- Molecular Biology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, 153-8904, Japan
- Genome Science Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
- Molecular Biology Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Motoaki Seki
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Razieh Yazdanparast
- Molecular Biology Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran.
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroyuki Aburatani
- Molecular Biology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, 153-8904, Japan.
- Genome Science Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan.
| |
Collapse
|
23
|
Effendi WI, Nagano T, Tachihara M, Umezawa K, Kiriu T, Dokuni R, Katsurada M, Yamamoto M, Kobayashi K, Nishimura Y. Synergistic interaction of gemcitabine and paclitaxel by modulating acetylation and polymerization of tubulin in non-small cell lung cancer cell lines. Cancer Manag Res 2019; 11:3669-3679. [PMID: 31118789 PMCID: PMC6500879 DOI: 10.2147/cmar.s193789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background: The combination of gemcitabine (GEM) and paclitaxel (PTX) was appealing for clinical exploration due to different mechanisms of action and partially non-overlapping toxicities. Purpose: The aim of this study was to elucidate a potential effect of this combination on the proliferation of two non-small cell lung cancer (NSCLC) cell lines, A549 and H520. Materials and methods: Cell lines were treated with GEM and PTX for 48 hours to evaluate the half maximal inhibitory concentration (IC50). To determine the combination index (CI), cell lines were exposed to GEM and PTX, in a constant ratio of IC50, by various combination treatments. GEM`s effect on tubulin was assessed by western blotting and immunofluorescent staining. GEM was combined with nanoparticle albumin-bound-paclitaxel (NP) in evaluating tumor growth inhibition. Results: The IC50 of GEM and PTX in A549 and H520 were 6.6 nM and 46.1 nM, and 1.35 nM and 7.59 nM, respectively. Among the sequences explored (GEM→PTX, PTX→GEM, and GEM plus PTX simultaneously [GEM+PTX]), GEM→PTX produced a mean CI <1 in both cell lines. Western blotting and immunofluorescent staining revealed the intention expressions of acetylated tubulin protein and enhancement of tubulin polymerization within GEM→PTX group. A combination order GEM→NP also worked synergistically to suppress tumor growth. Conclusion: The GEM→PTX sequence may represent a promising candidate regimen for the treatment of NSLCL.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.,Department of Pulmonology and Respiratory Medicine, Airlangga University Medical Faculty, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsunori Kiriu
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
24
|
Sanhaji M, Göring J, Couleaud P, Aires A, Cortajarena AL, Courty J, Prina-Mello A, Stapf M, Ludwig R, Volkov Y, Latorre A, Somoza Á, Miranda R, Hilger I. The phenotype of target pancreatic cancer cells influences cell death by magnetic hyperthermia with nanoparticles carrying gemicitabine and the pseudo-peptide NucAnt. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101983. [PMID: 30940505 DOI: 10.1016/j.nano.2018.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
In this paper we show that conjugation of magnetic nanoparticles (MNPs) with Gemcitabine and/or NucAnt (N6L) fostered their internalization into pancreatic tumor cells and that the coupling procedure did not alter the cytotoxic potential of the drugs. By treating tumor cells (BxPC3 and PANC-1) with the conjugated MNPs and magnetic hyperthermia (43 °C, 60 min), cell death was observed. The two pancreatic tumor cell lines showed different reactions against the combined therapy according to their intrinsic sensitivity against Gemcitabine (cell death, ROS production, ability to activate ERK 1/2 and JNK). Finally, tumors (e.g. 3 mL) could be effectively treated by using almost 4.2 × 105 times lower Gemcitabine doses compared to conventional therapies. Our data show that this combinatorial therapy might well play an important role in certain cell phenotypes with low readiness of ROS production. This would be of great significance in distinctly optimizing local pancreatic tumor treatments.
Collapse
Affiliation(s)
- Mourad Sanhaji
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Julia Göring
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Pierre Couleaud
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Antonio Aires
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Aitziber L Cortajarena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Courty
- Laboratoire CRRET, Université Paris EST Créteil, 61 Avenue du Général de Gaulle, Créteil, France
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Marcus Stapf
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Robert Ludwig
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Yuri Volkov
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Ingrid Hilger
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
25
|
Hailan WAQ, Abou-Tarboush FM, Al-Anazi KM, Ahmad A, Qasem A, Farah MA. Gemcitabine induced cytotoxicity, DNA damage and hepatic injury in laboratory mice. Drug Chem Toxicol 2018; 43:158-164. [PMID: 30203996 DOI: 10.1080/01480545.2018.1504957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study was conducted to demonstrate cytotoxicity, apoptosis and hepatic damage induced by gemcitabine in laboratory mice. Animals were treated with a single dose of gemcitabine (415 mg/kg body wt), equivalent to a human therapeutic dose, and sacrificed after 1, 2 and 3 weeks. A significant decrease in mean body weight and absolute liver weight was registered. The levels of alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased as a result of this induced stress. Various structural changes were observed in the liver tissue of treated mice, as evident in the histological sections. Specifically, gemcitabine exposure was able to induce apoptosis in liver cells, and the incidence of TUNEL positive liver cells was increased compared to the control group. DNA fragmentation appeared on agarose gel and flow cytometry analysis confirmed the induction of apoptosis. These findings in gemcitabine-treated animal tissues suggest that inhibition or disruption of cells' DNA synthesis may be the mechanism by which this drug induces toxicity in the animal body.
Collapse
Affiliation(s)
- Waleed A Q Hailan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Khalid M Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Areeba Ahmad
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Ahmed Qasem
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Puls TJ, Tan X, Husain M, Whittington CF, Fishel ML, Voytik-Harbin SL. Development of a Novel 3D Tumor-tissue Invasion Model for High-throughput, High-content Phenotypic Drug Screening. Sci Rep 2018; 8:13039. [PMID: 30158688 PMCID: PMC6115445 DOI: 10.1038/s41598-018-31138-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
While much progress has been made in the war on cancer, highly invasive cancers such as pancreatic cancer remain difficult to treat and anti-cancer clinical trial success rates remain low. One shortcoming of the drug development process that underlies these problems is the lack of predictive, pathophysiologically relevant preclinical models of invasive tumor phenotypes. While present-day 3D spheroid invasion models more accurately recreate tumor invasion than traditional 2D models, their shortcomings include poor reproducibility and inability to interface with automated, high-throughput systems. To address this gap, a novel 3D tumor-tissue invasion model which supports rapid, reproducible setup and user-definition of tumor and surrounding tissue compartments was developed. High-cell density tumor compartments were created using a custom-designed fabrication system and standardized oligomeric type I collagen to define and modulate ECM physical properties. Pancreatic cancer cell lines used within this model showed expected differential invasive phenotypes. Low-passage, patient-derived pancreatic cancer cells and cancer-associated fibroblasts were used to increase model pathophysiologic relevance, yielding fibroblast-mediated tumor invasion and matrix alignment. Additionally, a proof-of-concept multiplex drug screening assay was applied to highlight this model's ability to interface with automated imaging systems and showcase its potential as a predictive tool for high-throughput, high-content drug screening.
Collapse
Affiliation(s)
- T J Puls
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaohong Tan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mahera Husain
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Catherine F Whittington
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Oncology, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Melissa L Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Pancreatic Cancer Signature Center, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
27
|
Daifuku R, Koratich M, Stackhouse M. Vitamin E Phosphate Nucleoside Prodrugs: A Platform for Intracellular Delivery of Monophosphorylated Nucleosides. Pharmaceuticals (Basel) 2018; 11:ph11010016. [PMID: 29415423 PMCID: PMC5874712 DOI: 10.3390/ph11010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 02/04/2023] Open
Abstract
Vitamin E phosphate (VEP) nucleoside prodrugs are designed to bypass two mechanisms of tumor resistance to therapeutic nucleosides: nucleoside transport and kinase downregulation. Certain isoforms of vitamin E (VE) have shown activity against solid and hematologic tumors and result in chemosensitization. Because gemcitabine is one of the most common chemotherapeutics for the treatment of cancer, it was used to demonstrate the constructs utility. Four different VE isoforms were conjugated with gemcitabine at the 5′ position. Two of these were δ-tocopherol-monophosphate (MP) gemcitabine (NUC050) and δ-tocotrienol-MP gemcitabine (NUC052). NUC050 was shown to be able to deliver gemcitabine-MP intracellularly by a nucleoside transport independent mechanism. Its half-life administered IV in mice was 3.9 h. In a mouse xenograft model of non-small cell lung cancer (NSCLC) NCI-H460, NUC050 at a dose of 40 mg/kg IV qwk × 4 resulted in significant inhibition to tumor growth on days 11–31 (p < 0.05) compared to saline control (SC). Median survival was 33 days (NUC050) vs. 25.5 days (SC) ((hazard ratio) HR = 0.24, p = 0.017). Further, NUC050 significantly inhibited tumor growth compared to historic data with gemcitabine at 135 mg/kg IV q5d × 3 on days 14–41 (p < 0.05). NUC052 was administered at a dose of 40 mg/kg IV qwk × 2 followed by 50 mg/kg qwk × 2. NUC052 resulted in inhibition to tumor growth on days 14–27 (p < 0.05) and median survival was 34 days (HR = 0.27, p = 0.033). NUC050 and NUC052 have been shown to be safe and effective in a mouse xenograft of NSCLC.
Collapse
Affiliation(s)
- Richard Daifuku
- Epigenetics Pharma, 9270 SE 36th Pl, Mercer Island, WA 98040, USA.
| | - Michael Koratich
- Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA.
| | - Murray Stackhouse
- Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA.
| |
Collapse
|
28
|
Wang F, Tian X, Zhang Z, Ma Y, Xie X, Liang J, Yang C, Yang Y. Demethylzeylasteral (ZST93) inhibits cell growth and enhances cell chemosensitivity to gemcitabine in human pancreatic cancer cells via apoptotic and autophagic pathways. Int J Cancer 2018; 142:1938-1951. [PMID: 29238973 DOI: 10.1002/ijc.31211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/28/2017] [Accepted: 12/05/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Feng Wang
- Department of General Surgery; Peking University First Hospital; Beijing People's Republic of China
- Department of Endoscopy Center; Peking University First Hospital; Beijing People's Republic of China
| | - Xiaodong Tian
- Department of General Surgery; Peking University First Hospital; Beijing People's Republic of China
| | - Zhengkui Zhang
- Department of General Surgery; Peking University First Hospital; Beijing People's Republic of China
| | - Yongsu Ma
- Department of General Surgery; Peking University First Hospital; Beijing People's Republic of China
| | - Xuehai Xie
- Department of General Surgery; Peking University First Hospital; Beijing People's Republic of China
| | - Jian Liang
- Department of Pharmaceutical Chemistry; Zhongshan Hospital, Fudan University; Shanghai People's Republic of China
| | - Chunxin Yang
- Department of Pharmaceutical Chemistry; Zhongshan Hospital, Fudan University; Shanghai People's Republic of China
| | - Yinmo Yang
- Department of General Surgery; Peking University First Hospital; Beijing People's Republic of China
| |
Collapse
|
29
|
Glenn JD, Xue P, Whartenby KA. Gemcitabine directly inhibits effector CD4 T cell activation and prevents experimental autoimmune encephalomyelitis. J Neuroimmunol 2017; 316:7-16. [PMID: 29274729 DOI: 10.1016/j.jneuroim.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023]
Abstract
Pro-inflammatory T cells are critical to the pathogenesis of multiple sclerosis (MS). We investigated the potential for the anti-proliferative, pro-apoptotic drug gemcitabine to affect development of MS-relevant effector TH1, TH17, and Treg cells. Gemcitabine directly suppressed proliferation, activation, and induced apoptosis of all effector subsets in subtype and dose-dependent fashion. This drug also prevented development of disease in the MS model experimental autoimmune encephalomyelitis (EAE) and significantly reduced the abundance of TH1 and TH17 cells. Our results indicate that pathogenic CD4+ T cells may be viable targets by gemcitabine for therapeutic benefit in MS.
Collapse
Affiliation(s)
- Justin D Glenn
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Patrick Xue
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Katharine A Whartenby
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
30
|
Puls TJ, Tan X, Whittington CF, Voytik-Harbin SL. 3D collagen fibrillar microstructure guides pancreatic cancer cell phenotype and serves as a critical design parameter for phenotypic models of EMT. PLoS One 2017; 12:e0188870. [PMID: 29190794 PMCID: PMC5708668 DOI: 10.1371/journal.pone.0188870] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer, one of the deadliest cancers, is characterized by high rates of metastasis and intense desmoplasia, both of which are associated with changes in fibrillar type I collagen composition and microstructure. Epithelial to mesenchymal transition (EMT), a critical step of metastasis, also involves a change in extracellular matrix (ECM) context as cells detach from basement membrane (BM) and engage interstitial matrix (IM). The objective of this work was to develop and apply an in-vitro three-dimensional (3D) tumor-ECM model to define how ECM composition and biophysical properties modulate pancreatic cancer EMT. Three established pancreatic ductal adenocarcinoma (PDAC) lines were embedded within 3D matrices prepared with type I collagen Oligomer (IM) at various fibril densities to control matrix stiffness or Oligomer and Matrigel combined at various ratios while maintaining constant matrix stiffness. Evaluation of cell morphology and protein expression at both the cellular- and population-levels revealed a spectrum of matrix-driven EMT phenotypes that were dependent on ECM composition and architecture as well as initial PDAC phenotype. In general, exposure to fibrillar IM was sufficient to drive EMT, with cells displaying spindle-shaped morphology and mesenchymal markers, and non-fibrillar BM promoted more epithelial behavior. When cultured within low density Oligomer, only a subpopulation of epithelial BxPC-3 cells displayed EMT while mesenchymal MiaPaCa-2 cells displayed more uniform spindle-shaped morphologies and mesenchymal marker expression. Interestingly, as IM fibril density increased, associated changes in spatial constraints and matrix stiffness resulted in all PDAC lines growing as tight clusters; however mesenchymal marker expression was maintained. Collectively, the comparison of these results to other in-vitro tumor models highlights the role of IM fibril microstructure in guiding EMT heterogeneity and showcases the potential of standardized 3D matrices such as Oligomer to serve as robust platforms for mechanistic study of metastasis and creation of predictive drug screening models.
Collapse
Affiliation(s)
- T. J. Puls
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Xiaohong Tan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Catherine F. Whittington
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Oncology, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Sherry L. Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
31
|
Curcumin Induces Autophagy, Apoptosis, and Cell Cycle Arrest in Human Pancreatic Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5787218. [PMID: 29081818 PMCID: PMC5610853 DOI: 10.1155/2017/5787218] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Objective Curcumin is an active extract from turmeric. The aim of this study was to identify the underlying mechanism of curcumin on PCa cells and the role of autophagy in this process. Methods The inhibitory effect of curcumin on the growth of PANC1 and BxPC3 cell lines was detected by CCK-8 assay. Cell cycle distribution and apoptosis were tested by flow cytometry. Autophagosomes were tested by cell immunofluorescence assay. The protein expression was detected by Western blot. The correlation between LC3II/Bax and cell viability was analyzed. Results Curcumin inhibited the cell proliferation in a dose- and time-dependent manner. Curcumin could induce cell cycle arrest at G2/M phase and apoptosis of PCa cells. The autophagosomes were detected in the dosing groups. Protein expression of Bax and LC3II was upregulated, while Bcl2 was downregulated in the high dosing groups of curcumin. There was a significant negative correlation between LC3II/Bax and cell viability. Conclusions Autophagy could be triggered by curcumin in the treatment of PCa. Apoptosis and cell cycle arrest also participated in this process. These findings imply that curcumin is a multitargeted agent for PCa cells. In addition, autophagic cell death may predominate in the high concentration groups of curcumin.
Collapse
|
32
|
Zhang L, Huo X, Liao Y, Yang F, Gao L, Cao L. Zeylenone, a naturally occurring cyclohexene oxide, inhibits proliferation and induces apoptosis in cervical carcinoma cells via PI3K/AKT/mTOR and MAPK/ERK pathways. Sci Rep 2017; 7:1669. [PMID: 28490807 PMCID: PMC5431878 DOI: 10.1038/s41598-017-01804-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/31/2017] [Indexed: 01/22/2023] Open
Abstract
There is a strong rationale to therapeutically target the PI3K/Akt/mTOR and MAPK/ERK pathways in cervical carcinoma since they are highly deregulated in this disease. Previous study by our group have demonstrated that Zeylenone (Zey) exhibited strong suppressive activity on PI3K/AKT/mTOR and MAPK/ERK signaling, providing a foundation to investigate its antitumor activity in cervical carcinoma. Herein, the present study aimed to investigate suppressive effect of Zey on HeLa and CaSki cells, and further explore the underlying mechanisms. Cells were treated with Zey for indicated time, followed by measuring its effects on cell viability, colony formation, cell cycle, cell apoptosis, and signal pathways. In vivo antitumor activity of Zey was then assessed with nude xenografts. We found that Zey substantially suppressed cell proliferation, induced cell cycle arrest, and increased cell apoptosis, accompanied by increased production of ROS, decreased mitochondrial membrane potential, activated caspase apoptotic cascade, and attenuated PI3K/Akt/mTOR and MAPK/ERK pathways. Additionally, in vivo experiments showed that Zey exerted good antitumor efficacy against HeLa bearing mice models via decreasing levels of p-PI3K and p-ERK. Collectively, these data clearly demonstrated the antitumor activity of Zey in cervical carcinoma cells, which is most likely via the regulation of PI3K/Akt/mTOR and MAPK/ERK pathways.
Collapse
Affiliation(s)
- Leilei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xiaowei Huo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Feifei Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Li Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
33
|
Jackson RC, Di Veroli GY, Koh SB, Goldlust I, Richards FM, Jodrell DI. Modelling of the cancer cell cycle as a tool for rational drug development: A systems pharmacology approach to cyclotherapy. PLoS Comput Biol 2017; 13:e1005529. [PMID: 28467408 PMCID: PMC5435348 DOI: 10.1371/journal.pcbi.1005529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/17/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
The dynamic of cancer is intimately linked to a dysregulation of the cell cycle and signalling pathways. It has been argued that selectivity of treatments could exploit loss of checkpoint function in cancer cells, a concept termed "cyclotherapy". Quantitative approaches that describe these dysregulations can provide guidance in the design of novel or existing cancer therapies. We describe and illustrate this strategy via a mathematical model of the cell cycle that includes descriptions of the G1-S checkpoint and the spindle assembly checkpoint (SAC), the EGF signalling pathway and apoptosis. We incorporated sites of action of four drugs (palbociclib, gemcitabine, paclitaxel and actinomycin D) to illustrate potential applications of this approach. We show how drug effects on multiple cell populations can be simulated, facilitating simultaneous prediction of effects on normal and transformed cells. The consequences of aberrant signalling pathways or of altered expression of pro- or anti-apoptotic proteins can thus be compared. We suggest that this approach, particularly if used in conjunction with pharmacokinetic modelling, could be used to predict effects of specific oncogene expression patterns on drug response. The strategy could be used to search for synthetic lethality and optimise combination protocol designs.
Collapse
Affiliation(s)
| | - Giovanni Y. Di Veroli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- QCP, Early Clinical Development—Innovative Medicines, AstraZeneca, Cambridge, United Kingdom
| | - Siang-Boon Koh
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goldlust
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Frances M. Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Duncan I. Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Yang J, Zhang H, Zhang H, Pan B, Wang W, Fan Y, Liu Y. S phase arrest in lymphocytes induced by urinary 1-hydroxypyrene and alcohol drinking in coke oven workers. Hum Exp Toxicol 2017; 37:229-239. [DOI: 10.1177/0960327116678296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arrest of the cell cycle after DNA damage is believed to promote DNA repair. We aim to investigate the main factors affecting cell cycle arrest of lymphocytes in coke oven workers. A total of 600 workers were included in this study, and their urinary levels of four polycyclic aromatic hydrocarbons (PAH) metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and cell cycle distribution were determined. Urinary PAH metabolites were significantly increased in coke oven workers ( p < 0.01). It was found that only urinary 2-hydroxynaphthalene and 1-hydroxypyrene showed significant positive linear dose–response effects on 8-OHdG in this study population ( ptrend = 0.025 and 0.017, respectively). The dose–response effect was also observed for smoking and drinking on 8-OHdG ( ptrend < 0.001 and 0.034, respectively). Multivariate logistic regression analysis revealed that high levels of urinary 1-hydroxypyrene were associated with a significantly increased risk of S phase arrest (odds ratio (OR) = 1.32, p = 0.03), so as heavy alcohol drinking (OR = 1.31, p = 0.02). Drinking can significantly modify the effects of urinary 1-hydroxypyrene on S phase arrest, during co-exposure to both heavy drinking and median or high 1-hydroxypyrene levels (OR = 3.31, 95% confidence interval (CI) = 1.21–7.63 and OR = 2.56, 95% CI = 1.08–6.06, respectively). Our findings demonstrate that coke oven workers with heavy drinking will cause S phase arrest so as to repair more serious DNA damage.
Collapse
Affiliation(s)
- J Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - H Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - H Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - B Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan, China
| | - W Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Y Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Y Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
Garcia-Cremades M, Pitou C, Iversen PW, Troconiz IF. Characterizing Gemcitabine Effects Administered as Single Agent or Combined with Carboplatin in Mice Pancreatic and Ovarian Cancer Xenografts: A Semimechanistic Pharmacokinetic/Pharmacodynamics Tumor Growth-Response Model. J Pharmacol Exp Ther 2017; 360:445-456. [PMID: 28028124 DOI: 10.1124/jpet.116.237610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/22/2016] [Indexed: 03/08/2025] Open
Abstract
In this work, a semimechanistic tumor growth-response model for gemcitabine in pancreatic (administered as single agent) and ovarian (given as single agent and in combination with carboplatin) cancer in mice was developed. Tumor profiles were obtained from nude mice, previously inoculated with KP4, ASPC1, MIA PACA2, PANC1 (pancreas), A2780, or SKOV3×luc (ovarian) cell lines, and then treated with different dosing schedules of gemcitabine and/or carboplatin. Data were fitted using the population approach with Nonlinear Mixed Effect Models 7.2. In addition to cell proliferation, the tumor progression model for both types of cancer incorporates a carrying capacity representing metabolite pool for DNA synthesis required to tumor growth. Analysis of data from the treated groups revealed that gemcitabine exerted its tumor effects by promoting apoptosis as well as decreasing the carrying capacity compartment. Pharmacodynamic parameters were cell-specific and overall had similar range values between cancer types. In pancreas, a linear model was used to describe both gemcitabine effects with parameter values between 3.26 × 10-2 and 4.2 × 10-1 L/(mg × d). In ovarian cancer, the apoptotic effect was driven by an EMAX model with an efficacy/potency ratio of 5.25-8.65 L/(mg × d). The contribution of carboplatin to tumor effects was lower than the response exerted by gemcitabine and was incorporated in the model as an inhibition of the carrying capacity. The model developed was consistent in its structure across different tumor cell lines and two tumor types where gemcitabine is approved. Simulation-based evaluation diagnostics showed that the model performed well in all experimental design scenarios, including dose, schedule, and tumor type.
Collapse
Affiliation(s)
- Maria Garcia-Cremades
- Pharmacometrics and Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, and Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain (M.G.-C., I.F.T.); Global Pharmacokinetic/Pharmacodynamics and Pharmacometrics, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (C.P.); and Lilly Research laboratories, Eli Lilly and Company, Indianapolis, Indiana (P.W.I.)
| | - Celine Pitou
- Pharmacometrics and Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, and Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain (M.G.-C., I.F.T.); Global Pharmacokinetic/Pharmacodynamics and Pharmacometrics, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (C.P.); and Lilly Research laboratories, Eli Lilly and Company, Indianapolis, Indiana (P.W.I.)
| | - Philip W Iversen
- Pharmacometrics and Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, and Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain (M.G.-C., I.F.T.); Global Pharmacokinetic/Pharmacodynamics and Pharmacometrics, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (C.P.); and Lilly Research laboratories, Eli Lilly and Company, Indianapolis, Indiana (P.W.I.)
| | - Iñaki F Troconiz
- Pharmacometrics and Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, and Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain (M.G.-C., I.F.T.); Global Pharmacokinetic/Pharmacodynamics and Pharmacometrics, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (C.P.); and Lilly Research laboratories, Eli Lilly and Company, Indianapolis, Indiana (P.W.I.)
| |
Collapse
|
36
|
Miao X, Koch G, Ait-Oudhia S, Straubinger RM, Jusko WJ. Pharmacodynamic Modeling of Cell Cycle Effects for Gemcitabine and Trabectedin Combinations in Pancreatic Cancer Cells. Front Pharmacol 2016; 7:421. [PMID: 27895579 PMCID: PMC5108803 DOI: 10.3389/fphar.2016.00421] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022] Open
Abstract
Combinations of gemcitabine and trabectedin exert modest synergistic cytotoxic effects on two pancreatic cancer cell lines. Here, systems pharmacodynamic (PD) models that integrate cellular response data and extend a prototype model framework were developed to characterize dynamic changes in cell cycle phases of cancer cell subpopulations in response to gemcitabine and trabectedin as single agents and in combination. Extensive experimental data were obtained for two pancreatic cancer cell lines (MiaPaCa-2 and BxPC-3), including cell proliferation rates over 0-120 h of drug exposure, and the fraction of cells in different cell cycle phases or apoptosis. Cell cycle analysis demonstrated that gemcitabine induced cell cycle arrest in S phase, and trabectedin induced transient cell cycle arrest in S phase that progressed to G2/M phase. Over time, cells in the control group accumulated in G0/G1 phase. Systems cell cycle models were developed based on observed mechanisms and were used to characterize both cell proliferation and cell numbers in the sub G1, G0/G1, S, and G2/M phases in the control and drug-treated groups. The proposed mathematical models captured well both single and joint effects of gemcitabine and trabectedin. Interaction parameters were applied to quantify unexplainable drug-drug interaction effects on cell cycle arrest in S phase and in inducing apoptosis. The developed models were able to identify and quantify the different underlying interactions between gemcitabine and trabectedin, and captured well our large datasets in the dimensions of time, drug concentrations, and cellular subpopulations.
Collapse
Affiliation(s)
- Xin Miao
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York Buffalo, NY, USA
| | - Gilbert Koch
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New YorkBuffalo, NY, USA; Pediatric Pharmacology and Pharmacometrics, University of Basel, Children's HospitalBasel, Switzerland
| | - Sihem Ait-Oudhia
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology (Orlando), College of Pharmacy, University of Florida Orlando, FL, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York Buffalo, NY, USA
| |
Collapse
|
37
|
Ait-Oudhia S, Mager DE. Array of translational systems pharmacodynamic models of anti-cancer drugs. J Pharmacokinet Pharmacodyn 2016; 43:549-565. [DOI: 10.1007/s10928-016-9497-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022]
|
38
|
Integrinβ1 modulates tumour resistance to gemcitabine and serves as an independent prognostic factor in pancreatic adenocarcinomas. Tumour Biol 2016; 37:12315-12327. [PMID: 27289231 DOI: 10.1007/s13277-016-5061-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/01/2016] [Indexed: 01/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies because of its broad resistance to chemotherapy. Numerous evidence indicates that integrinβ1 is upregulated in some human cancers, and it is correlated with resistance to various therapies. However, the role of integrinβ1 in chemotherapy is not clear in pancreatic cancer. The present study evaluates the potential of integrinβ1 to predict chemoresistance and prognosis in patients and to modulate resistance to gemcitabine in PDAC cells. Primary drug-resistance (DR) cancer cells were isolated, and DR cells from MiaPaCa-2 and AsPC-1 parent cell lines (PCL) were selected. Integrinβ1 expression was determined using immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and Western blotting. Changes in drug response after knockdown of integrinβ1 via RNA interference (RNAi) were evaluated using the viability of cancer cells as colon formation, proliferation using Western blot of Ki-67 and apoptosis using cleaved caspase-3 immunofluorescence. qRT-PCR and Western blot also detected variations in the activities of cdc42 and AKT after integrinβ1 suppression. Patient survival and relative factors were assessed using Kaplan-Meier and Cox regression analyses. Integrinβ1 expression was upregulated in PDAC, which was significantly associated with intrinsic and acquired gemcitabine resistance and worse outcomes. The downregulation of integrinβ1 attenuated PDAC chemoresistance, and this attenuation partially correlated with reduced Cdc42 and AKT activity, which are target molecules of integrinβ1 in some human cancers. These findings identified integrinβ1 as a special marker of drug resistance and a serious prognosis, and they furthermore support the use of integrinβ1 as a novel potential therapeutic target to overcome chemotherapy resistance. The results also suggest a possible drug-resistant signalling pathway of integrinβ1 in PDAC.
Collapse
|
39
|
Yang J, Chen W, Fan Y, Zhang H, Wang W, Zhang H. Ubiquitin Protein Ligase Ring2 Is Involved in S-phase Checkpoint and DNA Damage in Cells Exposed to Benzo[a]pyrene. J Biochem Mol Toxicol 2016; 30:481-488. [PMID: 27095601 DOI: 10.1002/jbt.21811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
Abstract
Previous studies in our laboratory demonstrated that Ring2 may affect DNA damage and repair through pathways other than through regulating the expression of the nucleotide excision repair protein. In a series of experiments using wild-type cell (16HBE and WI38) and small interfering RNA (siRNA) Ring2 cells exposed to benzo[a]pyrene (BaP), we evaluated the cell cycle and DNA damage. The benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE-DNA) adduct assay demonstrated that in vitro exposure to BaP increased DNA damage in a time- and dose-dependent manner in wild-type and siRNA Ring2 cells. Analysis of covariance showed that a decrease of Ring2 caused DNA hypersensitivity to BaP. Flow cytometry results and proliferating cell nuclear antigen levels indicated that inhibition of Ring2 attenuated the effect of BaP on S-phase arrest. Taken together, these data implied that the lower proportion of cells in the S phase induced by inhibition of Ring2 may play an important role in DNA hypersensitivity to BaP.
Collapse
Affiliation(s)
- Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 030001, Taiyuan, People's Republic of China.
| | - Wentao Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | - Yanfeng Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | - Huitao Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | - Wubin Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | - Hongjie Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| |
Collapse
|
40
|
Bonomi A, Sordi V, Dugnani E, Ceserani V, Dossena M, Coccè V, Cavicchini L, Ciusani E, Bondiolotti G, Piovani G, Pascucci L, Sisto F, Alessandri G, Piemonti L, Parati E, Pessina A. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells. Cytotherapy 2015; 17:1687-95. [PMID: 26481416 DOI: 10.1016/j.jcyt.2015.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Pancreatic cancer (pCa) is a tumor characterized by a fibrotic state and associated with a poor prognosis. The observation that mesenchymal stromal cells (MSCs) migrate toward inflammatory micro-environments and engraft into tumor stroma after systemic administration suggested new therapeutic approaches with the use of engineered MSCs to deliver and produce anti-cancer molecules directly within the tumor. Previously, we demonstrated that without any genetic modifications, MSCs are able to deliver anti-cancer drugs. MSCs loaded with paclitaxel by exposure to high concentrations release the drug both in vitro and in vivo, inhibiting tumor proliferation. On the basis of these observations, we evaluated the ability of MSCs (from bone marrow and pancreas) to uptake and release gemcitabine (GCB), a drug widely used in pCa treatment. METHODS MSCs were primed by 24-h exposure to 2000 ng/mL of GCB. The anti-tumor potential of primed MSCs was then investigated by in vitro anti-proliferation assays with the use of CFPAC-1, a pancreatic tumor cell line sensitive to GCB. The uptake/release ability was confirmed by means of high-performance liquid chromatography analysis. A cell-cycle study and secretome evaluation were also conducted to better understand the characteristics of primed MSCs. RESULTS GCB-releasing MSCs inhibit the growth of a human pCa cell line in vitro. CONCLUSIONS The use of MSCs as a "trojan horse" can open the way to a new pCa therapeutic approach; GCB-loaded MSCs that integrate into the tumor mass could deliver much higher concentrations of the drug in situ than can be achieved by intravenous injection.
Collapse
Affiliation(s)
- Arianna Bonomi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS S. Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute, IRCCS S. Raffaele Scientific Institute, Milan, Italy
| | - Valentina Ceserani
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Marta Dossena
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Loredana Cavicchini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Neurogenetic Medicine, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giovanna Piovani
- Biology and Genetics Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS S. Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
41
|
Krzyzanski W. Pharmacodynamic models of age-structured cell populations. J Pharmacokinet Pharmacodyn 2015; 42:573-89. [PMID: 26377617 DOI: 10.1007/s10928-015-9446-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
The purpose of this work is to review basic pharmacodynamic (PD) models describing drug effects on cell populations and expand them to age-structured models using the theory of physiologically structured populations. The plasma drug concentrations are interpreted as the environment affecting the cell production and mortality rates. An explicit solution to model equations provides the age density distribution that serves to establish a relationship between the cell lifespan distribution and the hazard of cell removal. Given the lifespan distributions, the age distributions for most commonly applied PD models of cell responses including basic cell turnover, transit compartments, and basic lifespan models have been derived both for the baseline conditions and drug treatment. The steady-state age distribution for basic indirect response models is exponential, and it is uniform for the basic lifespan model. As an example of more complex cell population, the age distribution of human red blood cells has been simulated based on a recent model of red blood cell survival. The age distribution for cells in the transit compartment model is the sum of the gamma functions. Means and variances of age distributions for all discussed models were calculated. A brief discussion of numerical challenges and possible future model developments is presented.
Collapse
Affiliation(s)
- Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, University at Buffalo, 370 Kapoor Hall, Buffalo, NY, 14214, USA.
| |
Collapse
|
42
|
Turco C, Jary M, Kim S, Moltenis M, Degano B, Manzoni P, Nguyen T, Genet B, Rabier MBV, Heyd B, Borg C. Gemcitabine-Induced Pulmonary Toxicity: A Case Report of Pulmonary Veno-Occlusive Disease. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:75-9. [PMID: 26380562 PMCID: PMC4559186 DOI: 10.4137/cmo.s26537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Gemcitabine is a chemotherapeutic agent frequently used by for the treatment of several malignancies both in the adjuvant and metastatic setting. Although myelosuppression is the most adverse event of this therapy, gemcitabine might induce severe pulmonary toxicities. We describe a case of pulmonary veno-occlusive disease (PVOD) related to gemcitabine. CASE PRESENTATION The patient was an 83-year-old man with a metastatic pancreatic cancer who was treated by gemcitabine as first-line therapy. He was in good health and received no other chemotherapy. A dose of 1000 mg/m(2) of gemcitabine was administered over a 30-minute intravenous infusion on days 1, 8, and 15 of a 28-day cycle. After a period of 6 months, a complete response was observed. Nevertheless, the patient developed a severe dyspnea, with arterial hypoxemia and very low lung diffusion for carbon monoxide. A CT scan showed diffuse ground glass opacities with septal lines, bilateral pleural effusion, and lymph node enlargement. On echocardiography, there was a suspicion of pulmonary hypertension with elevated systolic pulmonary artery pressure and normal left ventricular pressures. Right heart catheterization confirmed pulmonary hypertension and normal pulmonary artery occlusion pressure. Diagnosis of PVOD was made, and a gemcitabine-induced toxicity was suspected. A symptomatic treatment was started. At last follow-up, patient was in functional class I with near-normal of CT scan, arterial blood gases, and echocardiography. A gemcitabine-induced PVOD is the more likely diagnosis.
Collapse
Affiliation(s)
- Célia Turco
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France. ; Department of Digestive Surgery and Liver Transplantation, University Hospital of Besançon, Besançon, France. ; INSERM, Unit 1098, University of Franche-Comté, Besançon, France
| | - Marine Jary
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France. ; INSERM, Unit 1098, University of Franche-Comté, Besançon, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Mélanie Moltenis
- Regional center of Pharmacovigilance, University Hospital of Besançon, Besançon, France
| | - Bruno Degano
- Functional Explorations, University Hospital of Besançon, Besançon, France
| | - Philippe Manzoni
- Radiology and Interventional Pain Management Unit, University Hospital of Besançon, Besançon, France
| | - Thierry Nguyen
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Bruno Genet
- Department of Cardiology, University Hospital of Besançon, Besançon, France
| | | | - Bruno Heyd
- Department of Digestive Surgery and Liver Transplantation, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France. ; INSERM, Unit 1098, University of Franche-Comté, Besançon, France
| |
Collapse
|
43
|
Checkley S, MacCallum L, Yates J, Jasper P, Luo H, Tolsma J, Bendtsen C. Bridging the gap between in vitro and in vivo: Dose and schedule predictions for the ATR inhibitor AZD6738. Sci Rep 2015; 5:13545. [PMID: 26310312 PMCID: PMC4550834 DOI: 10.1038/srep13545] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/30/2015] [Indexed: 12/28/2022] Open
Abstract
Understanding the therapeutic effect of drug dose and scheduling is critical to inform the design and implementation of clinical trials. The increasing complexity of both mono, and particularly combination therapies presents a substantial challenge in the clinical stages of drug development for oncology. Using a systems pharmacology approach, we have extended an existing PK-PD model of tumor growth with a mechanistic model of the cell cycle, enabling simulation of mono and combination treatment with the ATR inhibitor AZD6738 and ionizing radiation. Using AZD6738, we have developed multi-parametric cell based assays measuring DNA damage and cell cycle transition, providing quantitative data suitable for model calibration. Our in vitro calibrated cell cycle model is predictive of tumor growth observed in in vivo mouse xenograft studies. The model is being used for phase I clinical trial designs for AZD6738, with the aim of improving patient care through quantitative dose and scheduling prediction.
Collapse
Affiliation(s)
| | | | - James Yates
- AstraZeneca, Alderley Park, Macclesfield, SK10 4TG. UK
| | | | | | | | | |
Collapse
|
44
|
Silencing of RUNX2 enhances gemcitabine sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the stimulation of TAp63-mediated cell death. Cell Death Discov 2015; 1:15010. [PMID: 27551445 PMCID: PMC4981025 DOI: 10.1038/cddiscovery.2015.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022] Open
Abstract
Runt-related transcription factor 2 (RUNX2) has been considered to be one of master regulators for osteoblast differentiation and bone formation. Recently, we have described that RUNX2 attenuates p53/TAp73-dependent cell death of human osteosarcoma U2OS cells bearing wild-type p53 in response to adriamycin. In this study, we have asked whether RUNX2 silencing could enhance gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells. Under our experimental conditions, GEM treatment increased the expression level of p53 family TAp63, whereas RUNX2 was reduced following GEM exposure, indicating that there exists an inverse relationship between the expression level of TAp63 and RUNX2 following GEM exposure. To assess whether TAp63 could be involved in the regulation of GEM sensitivity of AsPC-1 cells, small interfering RNA-mediated knockdown of TAp63 was performed. As expected, silencing of TAp63 significantly prohibited GEM-dependent cell death as compared with GEM-treated non-silencing cells. As TAp63 was negatively regulated by RUNX2, we sought to examine whether RUNX2 knockdown could enhance the sensitivity to GEM. Expression analysis demonstrated that depletion of RUNX2 apparently stimulates the expression of TAp63, as well as proteolytic cleavage of poly ADP ribose polymerase (PARP) after GEM exposure, and further augmented GEM-mediated induction of p53/TAp63-target genes, such as p21WAF1, PUMA and NOXA, relative to GEM-treated control-transfected cells, implying that RUNX2 has a critical role in the regulation of GEM resistance through the downregulation of TAp63. Notably, ablation of TAp63 gave a decrease in number of γH2AX-positive cells in response to GEM relative to control-transfected cells following GEM exposure. Consistently, GEM-dependent phosphorylation of ataxia telangiectasia-mutated protein was remarkably impaired in TAp63 knockdown cells. Collectively, our present findings strongly suggest that RUNX2-mediated repression of TAp63 contributes at least in part to GEM resistance of AsPC-1 cells, and thus silencing of RUNX2 may be a novel strategy to enhance the efficacy of GEM in p53-deficient pancreatic cancer cells.
Collapse
|
45
|
Zhu X, Straubinger RM, Jusko WJ. Mechanism-based mathematical modeling of combined gemcitabine and birinapant in pancreatic cancer cells. J Pharmacokinet Pharmacodyn 2015; 42:477-96. [PMID: 26252969 DOI: 10.1007/s10928-015-9429-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/24/2015] [Indexed: 01/05/2023]
Abstract
Combination chemotherapy is standard treatment for pancreatic cancer. However, current drugs lack efficacy for most patients, and selection and evaluation of new combination regimens is empirical and time-consuming. The efficacy of gemcitabine, a standard-of-care agent, combined with birinapant, a pro-apoptotic antagonist of Inhibitor of Apoptosis Proteins (IAPs), was investigated in pancreatic cancer cells. PANC-1 cells were treated with vehicle, gemcitabine (6, 10, 20 nM), birinapant (50, 200, 500 nM), and combinations of the two drugs. Temporal changes in cell numbers, cell cycle distribution, and apoptosis were measured. A basic pharmacodynamic (PD) model based on cell numbers, and a mechanism-based PD model integrating all measurements, were developed. The basic PD model indicated that synergistic effects occurred in both cell proliferation and death processes. The mechanism-based model captured key features of drug action: temporary cell cycle arrest in S phase induced by gemcitabine alone, apoptosis induced by birinapant alone, and prolonged cell cycle arrest and enhanced apoptosis induced by the combination. A drug interaction term Ψ was employed in the models to signify interactions of the combination when data were limited. When more experimental information was utilized, Ψ values approaching 1 indicated that specific mechanisms of interactions were captured better. PD modeling identified the potential benefit of combining gemcitabine and birinapant, and characterized the key interaction pathways. An optimal treatment schedule of pretreatment with gemcitabine for 24-48 h was suggested based on model predictions and was verified experimentally. This approach provides a generalizable modeling platform for exploring combinations of cytostatic and cytotoxic agents in cancer cell culture studies.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
46
|
Mo G, Gibbons F, Schroeder P, Krzyzanski W. Lifespan based pharmacokinetic-pharmacodynamic model of tumor growth inhibition by anticancer therapeutics. PLoS One 2014; 9:e109747. [PMID: 25333487 PMCID: PMC4204849 DOI: 10.1371/journal.pone.0109747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022] Open
Abstract
Accurate prediction of tumor growth is critical in modeling the effects of anti-tumor agents. Popular models of tumor growth inhibition (TGI) generally offer empirical description of tumor growth. We propose a lifespan-based tumor growth inhibition (LS TGI) model that describes tumor growth in a xenograft mouse model, on the basis of cellular lifespan T. At the end of the lifespan, cells divide, and to account for tumor burden on growth, we introduce a cell division efficiency function that is negatively affected by tumor size. The LS TGI model capability to describe dynamic growth characteristics is similar to many empirical TGI models. Our model describes anti-cancer drug effect as a dose-dependent shift of proliferating tumor cells into a non-proliferating population that die after an altered lifespan TA. Sensitivity analysis indicated that all model parameters are identifiable. The model was validated through case studies of xenograft mouse tumor growth. Data from paclitaxel mediated tumor inhibition was well described by the LS TGI model, and model parameters were estimated with high precision. A study involving a protein casein kinase 2 inhibitor, AZ968, contained tumor growth data that only exhibited linear growth kinetics. The LS TGI model accurately described the linear growth data and estimated the potency of AZ968 that was very similar to the estimate from an established TGI model. In the case study of AZD1208, a pan-Pim inhibitor, the doubling time was not estimable from the control data. By fixing the parameter to the reported in vitro value of the tumor cell doubling time, the model was still able to fit the data well and estimated the remaining parameters with high precision. We have developed a mechanistic model that describes tumor growth based on cell division and has the flexibility to describe tumor data with diverse growth kinetics.
Collapse
Affiliation(s)
- Gary Mo
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, United States of America
- DMPK Modeling and Simulation, Oncology, iMED, AstraZeneca, Waltham, Massachusetts, United States of America
| | - Frank Gibbons
- DMPK Modeling and Simulation, Oncology, iMED, AstraZeneca, Waltham, Massachusetts, United States of America
| | - Patricia Schroeder
- DMPK Modeling and Simulation, Oncology, iMED, AstraZeneca, Waltham, Massachusetts, United States of America
| | - Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|