1
|
Mir MA, Banik BK. Heterocyclic Phytochemicals as Anticancer Agents. Curr Top Med Chem 2025; 25:533-553. [PMID: 39350414 DOI: 10.2174/0115680266314693240914070250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 04/25/2025]
Abstract
Cancer continues to be a major global health challenge, driving the need for the discovery of novel therapeutic agents. Among these, heterocyclic phytochemicals have gained significant attention for their potential as anticancer agents. This review offers a detailed analysis of various classes of heterocyclic compounds with proven anticancer properties, shedding light on their mechanisms of action. The study draws from a diverse array of natural product sources, detailing the chemical structures and bioactivities of these compounds. Key heterocyclic classes such as alkaloids, flavonoids, coumarins, and terpenoids are emphasized due to their potent anticancer effects. Heterocyclic phytochemicals exhibit diverse anticancer mechanisms, including the modulation of cellular pathways like apoptosis, angiogenesis, and cell cycle progression. The combination of heterocyclic phytochemicals with conventional cancer therapies has shown promising synergistic effects, enhanced treatment efficacy and reducing side effects. The review systematically evaluates both preclinical and clinical studies, revealing the efficacy, safety profiles, and pharmacokinetics of selected heterocyclic compounds. The promising outcomes highlighted in this review underscore the critical need for ongoing research to fully realize the therapeutic potential of heterocyclic phytochemicals in cancer treatment.
Collapse
Affiliation(s)
- M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| | - Bimal Krishna Banik
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| |
Collapse
|
2
|
K Karunakar K, Cheriyan BV, R K, M G, B A. "Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles". BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:64-79. [PMID: 39416696 PMCID: PMC11446369 DOI: 10.1016/j.biotno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology has the advantages of enhanced bioactivity, reduced toxicity, target specificity, and sustained release and NPs can penetrate cell membranes. The small size of silver nanoparticles, AgNPs, large surface area, and unique physicochemical properties contribute to cell lysis and increased permeability of cell membranes used in the field of biomedicine. Functional precursors integrate with phytochemicals to create distinctive therapeutic properties and the stability of the nanoparticles can be enhanced by Surface coatings and encapsulation methods, The current study explores the various synthesis methods and characterization techniques of silver nanoparticles (AgNPs) and highlights their intrinsic activity in therapeutic applications, Anti-cancer activity noted at a concentration range of 5-50 μg/ml and angiogenesis is mitigated at a dosage range of 10-50 μg/ml, Diabetes is controlled within the same concentration. Wound healing is improved at concentrations of 10-50 μg/ml and with a typical range of 10-08 μg/ml for bacteria with antimicrobial capabilities. Advancement of silver nanoparticles with a focus on the future use of AgNPs-coated wound dressings and medical devices to decrease the risk of infection. Chemotherapeutic drugs can be administered by AgNPs, which reduces adverse effects and an improvement in treatment outcomes. AgNPs have been found to improve cell proliferation and differentiation, making them beneficial for tissue engineering and regenerative medicine. Our study highlights emerging patterns and developments in the field of medicine, inferring potential future paths.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Krithikeshvaran R
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Gnanisha M
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Abinavi B
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| |
Collapse
|
3
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
4
|
Hashem HE, Amr AEGE, Almehizia AA, Naglah AM, Kariuki BM, Eassa HA, Nossier ES. Nanoparticles of a Pyrazolo-Pyridazine Derivative as Potential EGFR and CDK-2 Inhibitors: Design, Structure Determination, Anticancer Evaluation and In Silico Studies. Molecules 2023; 28:7252. [PMID: 37959672 PMCID: PMC10648062 DOI: 10.3390/molecules28217252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
The strategic planning of this study is based upon using the nanoformulation method to prepare nanoparticles 4-SLNs and 4-LPHNPs of the previously prepared 4,5-diphenyl-1H-pyrazolo[3,4-c]pyridazin-3-amine (4) after confirming its structure with single crystal X-ray analysis. These nanoparticles exhibited promising cytotoxic activity against HepG-2, HCT-116 and MCF-7 cancer cell lines in comparison with the reference doxorubicin and the original derivative 4. Moreover, their inhibitory assessment against EGFR and CDK-2/cyclin A2 displayed improved and more favorable impact than the parent 4 and the references. Detection of their influence upon cancer biomarkers revealed upregulation of Bax, p53 and caspase-3 levels and downregulation of Bcl-2 levels. The docking simulation demonstrated that the presence of the pyrazolo[3,4-c]pyridazin-3-amine scaffold is amenable to enclosure and binding well within EGFR and CDK-2 receptors through different hydrophilic interactions. The pharmacokinetic and physicochemical properties of target 4 were also assessed with ADME investigation, and the outcome indicated good drug-like characteristics.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Heba A. Eassa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
- Department of Pharmaceutical Sciences, School of Pharmacy and Physician Assistant Studies, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo 11516, Egypt
| |
Collapse
|
5
|
Lewis A, Nagrial A. Systematic Review of Single-Agent vs. Multi-Agent Chemotherapy for Advanced Pancreatic Adenocarcinoma in Elderly vs. Younger Patients. Cancers (Basel) 2023; 15:2289. [PMID: 37190218 PMCID: PMC10136963 DOI: 10.3390/cancers15082289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE To systematically review all studies comparing multi-agent to single-agent chemotherapy in the first and second-line setting for unresectable pancreatic adenocarcinoma, so as to compare the outcomes of young and elderly patients. METHODS This review searched three databases for relevant studies. The inclusion criteria were diagnosis of locally advanced or metastatic pancreatic adenocarcinoma, comparison of an elderly versus young population, comparison of single-agent versus multi-agent chemotherapy, data on survival outcomes, and randomised controlled trials. The exclusion criteria were phase I trials, incomplete studies, retrospective analyses, systematic reviews, and case reports. A meta-analysis was performed on second-line chemotherapy in elderly patients. RESULTS Six articles were included in this systematic review. Three of these studies explored first-line treatment and three explored second-line treatment. In the subgroup analysis, the meta-analysis showed statistically improved overall survival for elderly patients receiving single-agent second-line treatment. CONCLUSIONS This systematic review confirmed that combination chemotherapy improved survival in the first-line treatment of advanced pancreatic adenocarcinoma, regardless of age. The benefit of combination chemotherapy in second-line studies for elderly patients with advanced pancreas cancer was less clear.
Collapse
Affiliation(s)
- Alison Lewis
- School of Medicine, The University of Sydney, Camperdown, NSW 2006, Australia
| | | |
Collapse
|
6
|
Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM. Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines 2022; 10:2792. [PMID: 36359308 PMCID: PMC9687463 DOI: 10.3390/biomedicines10112792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.
Collapse
Affiliation(s)
- Sohail Simon
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Health Platform Diagnostic Unit, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jamie Josephs
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
7
|
Rudloff U. Emerging kinase inhibitors for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Emerg Drugs 2022; 27:345-368. [PMID: 36250721 PMCID: PMC9793333 DOI: 10.1080/14728214.2022.2134346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the deadliest solid organ cancers. In the absence of specific warning symptoms pancreatic cancer is diagnosed notoriously late. Current systemic chemotherapy regimens extend survival by a mere few months. With the advances in genetic, proteomic, and immunological profiling there is strong rationale to test kinase inhibitors to improve outcome. AREAS COVERED This review article provides a comprehensive summary of approved treatments and past, present, and future developments of kinase inhibitors in pancreatic cancer. Emerging roles of protein kinase inhibitors are discussed in the context of the unique stroma, the lack of high-prevalence therapeutic targets and rapid emergence of acquired resistance, novel immuno-oncology kinase targets, and recent medicinal chemistry advances. EXPERT OPINION Due to the to-date frequent failure of protein kinase inhibitors indiscriminately administered to unselected pancreatic cancer patients, there is a shift toward the development of these agents in molecularly defined subgroups which are more likely to respond. The development of accurate biomarkers to select patients who are the best candidates based on a detailed understanding of mechanism of action, pro-survival roles, and mediation of resistance of targeted kinases will be critical for the future development of protein kinase inhibitors in this disease.
Collapse
Affiliation(s)
- Udo Rudloff
- Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Mishra VS, Patil S, Reddy PC, Lochab B. Combinatorial delivery of CPI444 and vatalanib loaded on PEGylated graphene oxide as an effective nanoformulation to target glioblastoma multiforme: In vitro evaluation. Front Oncol 2022; 12:953098. [PMID: 36052261 PMCID: PMC9426685 DOI: 10.3389/fonc.2022.953098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is known as the primary malignant and most devastating form of tumor found in the central nervous system of the adult population. The active pharmaceutical component in current chemotherapy regimens is mostly hydrophobic and poorly water-soluble, which hampers clinical implications. Nanodrug formulations using nanocarriers loaded with such drugs assisted in water dispersibility, improved cellular permeability, and drug efficacy at a low dose, thus adding to the overall practical value. Here, we successfully developed a water-dispersible and biocompatible nanocargo (GO-PEG) based on covalently modified graphene oxide (GO) with a 6-armed poly(ethylene glycol) amine dendrimer for effective loading of the two hydrophobic anticancer drug molecules, CPI444 and vatalanib. These drug molecules target adenosine receptor (A2AR), vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and type III stem cell receptor tyrosine kinase (c-KIT), which plays a crucial role in cancers. The effective cellular delivery of the drugs when loaded on GO-PEG is attributed to the increased permeability of the drug-nanoconjugate formulation. We observed that this combinatorial drug treatment with nanocargo resulted in a significant reduction in the overall cell survival as supported by reduced calcium levels and stem cell markers such as Oct4 and Nanog, which are two of the prime factors for GBM stem cell proliferation. Furthermore, reduced expression of CD24 upon treatment with nanoformulation impeded cellular migration. Cellular assays confirmed inhibition of cell proliferation, migration, and angiogenic potential of GBM treated with GO-PEG–Drug conjugates. Ultimately, GBM U87 cells assumed programmed cell death at a very low concentration due to nanocarrier-mediated drug delivery along with the chosen combination of drugs. Together, this study demonstrated the advantage of GO-PEG mediated combined delivery of CPI444 and vatalanib drugs with increased permeability, a three-pronged combinatorial strategy toward effective GBM treatment.
Collapse
Affiliation(s)
- Vishnu S. Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi, India
| | - Sachin Patil
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi, India
- *Correspondence: Puli Chandramouli Reddy, ; Bimlesh Lochab,
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi, India
- *Correspondence: Puli Chandramouli Reddy, ; Bimlesh Lochab,
| |
Collapse
|
9
|
In Vitro Angiogenesis Inhibition and Endothelial Cell Growth and Morphology. Int J Mol Sci 2022; 23:ijms23084277. [PMID: 35457095 PMCID: PMC9025250 DOI: 10.3390/ijms23084277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
A co-culture assay with human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts (NHDFs) was used to study whether selected angiogenesis inhibitors were able to inhibit differentiation and network formation of HUVECs in vitro. The effect of the inhibitors was determined by the morphology and the calculated percentage area covered by HUVECs. Neutralizing VEGF with avastin and polyclonal goat anti-VEGF antibody and inhibiting VEGFR2 with sorafenib and vatalanib resulted in the formation of HUVEC clusters of variable sizes as a result of inhibited EC differentiation. Furthermore, numerous inhibitors of the VEGF signaling pathways were tested for their effect on the growth and differentiation of HUVECs. The effects of these inhibitors did not reveal a cluster morphology, either individually or when combined to block VEGFR2 downstream pathways. Only the addition of N-methyl-p-bromolevamisole revealed a similar morphology as when targeting VEGF and VEGFR2, meaning it may have an inhibitory influence directly on VEGFR signaling. Additionally, several nuclear receptor ligands and miscellaneous compounds that might affect EC growth and differentiation were tested, but only dexamethasone gave rise to cluster formation similarly to VEGF-neutralizing compounds. These results point to a link between angiogenesis, HUVEC differentiation and glucocorticoid receptor activation.
Collapse
|
10
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
11
|
Emerging Importance of Tyrosine Kinase Inhibitors against Cancer: Quo Vadis to Cure? Int J Mol Sci 2021; 22:ijms222111659. [PMID: 34769090 PMCID: PMC8584061 DOI: 10.3390/ijms222111659] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
GLOBOCAN 2020 estimated more than 19.3 million new cases, and about 10 million patients were deceased from cancer in 2020. Clinical manifestations showed that several growth factor receptors consisting of transmembrane and cytoplasmic tyrosine kinase (TK) domains play a vital role in cancer progression. Receptor tyrosine kinases (RTKs) are crucial intermediaries of the several cellular pathways and carcinogenesis that directly affect the prognosis and survival of higher tumor grade patients. Tyrosine kinase inhibitors (TKIs) are efficacious drugs for targeted therapy of various cancers. Therefore, RTKs have become a promising therapeutic target to cure cancer. A recent report shows that TKIs are vital mediators of signal transduction and cancer cell proliferation, angiogenesis, and apoptosis. In this review, we discuss the structure and function of RTKs to explore their prime role in cancer therapy. Various TKIs have been developed to date that contribute a lot to treating several types of cancer. These TKI based anticancer drug molecules are also discussed in detail, incorporating their therapeutic efficacy, mechanism of action, and side effects. Additionally, this article focuses on TKIs which are running in the clinical trial and pre-clinical studies. Further, to gain insight into the pathophysiological mechanism of TKIs, we also reviewed the impact of RTK resistance on TKI clinical drugs along with their mechanistic acquired resistance in different cancer types.
Collapse
|
12
|
Malinowski Z, Fornal E, Sumara A, Kontek R, Bukowski K, Pasternak B, Sroczyński D, Kusz J, Małecka M, Nowak M. Amino- and polyaminophthalazin-1(2 H)-ones: synthesis, coordination properties, and biological activity. Beilstein J Org Chem 2021; 17:558-568. [PMID: 33727979 PMCID: PMC7934800 DOI: 10.3762/bjoc.17.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
Amino- and polyaminophthalazinones were synthesized by the palladium‐catalyzed amination (alkyl- and arylamines, polyamines) of 4-bromophthalazinones in good yields. The coordinating properties of selected aminophthalazinones towards Cu(II) ions were investigated and the participation of the nitrogen atoms in the complexation of the metal ion was shown. A biological screening of the potential cytotoxicity of selected synthesized compounds on HT-29 and PC-3 cell lines, as well as on the L-929 cell line, proved that some amino derivatives of phthalazinone show interesting anticancer activities. The detailed synthesis, spectroscopic data, and biological assays are reported.
Collapse
Affiliation(s)
- Zbigniew Malinowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | - Beata Pasternak
- Laboratory of Molecular Spectroscopy, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland
| | - Dariusz Sroczyński
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Magdalena Małecka
- Department of Physical Chemistry, Theoretical and Structural Chemistry Group, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland
| | - Monika Nowak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
13
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Melone MAB, Montesarchio D. Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics. Med Res Rev 2020; 41:464-506. [PMID: 33038031 DOI: 10.1002/med.21737] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, Naples, Italy
| | - Mariarosa A B Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Kosmas K, Mitropoulou G, Stamoulas M, Marouga A. Expression of cyclooxygenase-2 in imprint smears of endometrial carcinoma. Diagn Cytopathol 2020; 48:1086-1092. [PMID: 32433831 DOI: 10.1002/dc.24481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Worldwide, endometrial carcinoma is one of the most frequently diagnosed cancers among women and a considerable cause of death. The aims of this study were to determine the expression of cyclooxygenase-2 (COX-2) in endometrial adenocarcinoma in imprint smears as an alternative technique and to correlate the results with clinicopathologic parameters of primary untreated endometrial cancer patients. METHODS One hundred twenty-six patients with endometrial carcinoma were evaluated with samples freshly resected after a total abdominal hysterectomy during a 29-month period. The cytologic imprint smears were obtained by touching the cut surface of cancer tissues and the expression of COX-2 was assessed by immunocytochemistry. RESULTS The positive expression of COX-2 in malignant cells, was accompanied by morphologic features of more aggressiveness (pathogenetic type II, advanced clinical stage, mainly high grade, deep myometrial involvement >1/2) tumors and the affected from the disease lymph nodes cases showed higher positivity (41.2%) than the non-affected (13.4%). CONCLUSION Immunocytochemical findings from COX-2 stain in cancer cells could be a predictor of prognosis in most cases in endometrial cytology with imprint smears. Furthermore, positive expression of COX-2 in cancer cells was related to morphologic features of more aggressiveness tumors.
Collapse
Affiliation(s)
- Konstantinos Kosmas
- Department of Cytopathology, General Chest Diseases Hospital of Athens "SOTIRIA", Athens, Greece
| | - Georgia Mitropoulou
- Department of Pathology, "Agia Sofia" Children's Hospital of Athens, Athens, Greece
| | - Marios Stamoulas
- Department of Obstetrics and Gynaecology, Chesterfield Royal Hospital, Derbyshire, UK
| | - Anna Marouga
- Department of Cytopathology, Athens University, Medical School, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
16
|
Marková I, Koníčková R, Vaňková K, Leníček M, Kolář M, Strnad H, Hradilová M, Šáchová J, Rasl J, Klímová Z, Vomastek T, Němečková I, Nachtigal P, Vítek L. Anti-angiogenic effects of the blue-green alga Arthrospira platensis on pancreatic cancer. J Cell Mol Med 2020; 24:2402-2415. [PMID: 31957261 PMCID: PMC7028863 DOI: 10.1111/jcmm.14922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Arthrospira platensis, a blue-green alga, is a popular nutraceutical substance having potent antioxidant properties with potential anti-carcinogenic activities. The aim of our study was to assess the possible anti-angiogenic effects of A platensis in an experimental model of pancreatic cancer. The effects of an A platensis extract were investigated on human pancreatic cancer cells (PA-TU-8902) and immortalized endothelial-like cells (Ea.hy926). PA-TU-8902 pancreatic tumours xenografted to athymic mice were also examined. In vitro migration and invasiveness assays were performed on the tested cells. Multiple angiogenic factors and signalling pathways were analysed in the epithelial, endothelial and cancer cells, and tumour tissue. The A platensis extract exerted inhibitory effects on both migration and invasion of pancreatic cancer as well as endothelial-like cells. Tumours of mice treated with A platensis exhibited much lesser degrees of vascularization as measured by CD31 immunostaining (P = .004). Surprisingly, the VEGF-A mRNA and protein expressions were up-regulated in pancreatic cancer cells. A platensis inhibited ERK activation upstream of Raf and suppressed the expression of ERK-regulated proteins. Treatment of pancreatic cancer with A platensis was associated with suppressive effects on migration and invasiveness with various anti-angiogenic features, which might account for the anticancer effects of this blue-green alga.
Collapse
Affiliation(s)
- Ivana Marková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Renata Koníčková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Kateřina Vaňková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Michal Kolář
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Informatics and ChemistryFaculty of Chemical TechnologyUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jana Šáchová
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Rasl
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Cell BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Zuzana Klímová
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivana Němečková
- Department of Biological and Medical SciencesFaculty of Pharmacy in Hradec KraloveCharles UniversityHradec KrálovéCzech Republic
| | - Petr Nachtigal
- Department of Biological and Medical SciencesFaculty of Pharmacy in Hradec KraloveCharles UniversityHradec KrálovéCzech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
- 4th Department of Internal MedicineFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
17
|
Sun J, Russell CC, Scarlett CJ, McCluskey A. Small molecule inhibitors in pancreatic cancer. RSC Med Chem 2020; 11:164-183. [PMID: 33479626 PMCID: PMC7433757 DOI: 10.1039/c9md00447e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer (PC), with a 5 year survival of <7%, is one of the most fatal of all human cancers. The highly aggressive and metastatic character of this disease poses a challenge that current therapies are failing, despite significant efforts, to meet. This review examines the current status of the 35 small molecule inhibitors targeting pancreatic cancer in clinical trials and the >50 currently under investigation. These compounds inhibit biological targets spanning protein kinases, STAT3, BET, HDACs and Bcl-2 family proteins. Unsurprisingly, protein kinase inhibitors are overrepresented. Some trials show promise; a phase I combination trial of vorinostat 11 and capecitabine 17 gave a median overall survival (MoS) of 13 months and a phase II study of pazopanib 15 showed a MoS of 25 months. The current standard of care for metastatic pancreatic ductal adenocarcinoma, fluorouracil/folic acid (5-FU, Adrucil®), and gemcitabine (GEMZAR®) afforded a MoS of 23 and 23.6 months (EPAC-3 study), respectively. In patients who can tolerate the FOLFIRINOX regime, this is becoming the standard of treatment with a MoS of 11.1 months. Clinical study progress has been slow with limited improvement in patient survival relative to gemcitabine 1 monotherapy. A major cause of low PC survival is the late stage of diagnosis, occurring in patients who consider typical early stage warning signs of aches and pains normal. The selection of patients with specific disease phenotypes, the use of improved efficient drug combinations, the identification of biomarkers to specific cancer subtypes and more effective designs of investigation have improved outcomes. To move beyond the current dire condition and paucity of PC treatment options, determination of the best regimes and new treatment options is a challenge that must be met. The reasons for poor PC prognosis have remained largely unchanged for 20 years. This is arguably a consequence of significant changes in the drug discovery landscape, and the increasing pressure on academia to deliver short term 'media' friendly short-term news 'bites'. PC research sits at a pivotal point. Perhaps the greatest challenge is enacting a culture change that recognises that major breakthroughs are a result of blue sky, truly innovative and curiosity driven research.
Collapse
Affiliation(s)
- Jufeng Sun
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
- Medicinal Chemistry , School of Pharmacy , Binzhou Medical University , Yantai , 264003 , China
| | - Cecilia C Russell
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| | - Christopher J Scarlett
- Applied Sciences , School of Environmental & Life Sciences , The University of Newcastle , Ourimbah NSW 2258 , Australia
| | - Adam McCluskey
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| |
Collapse
|
18
|
Cañete-Molina Á, Espinosa-Bustos C, González-Castro M, Faúndez M, Mella J, Tapia RA, Cabrera AR, Brito I, Aguirre A, Salas CO. Design, synthesis, cytotoxicity and 3D-QSAR analysis of new 3,6-disubstituted-1,2,4,5-tetrazine derivatives as potential antitumor agents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Lu Z, Weniger M, Jiang K, Boeck S, Zhang K, Bazhin A, Miao Y, Werner J, D'Haese JG. Therapies Targeting the Tumor Stroma and the VEGF/VEGFR Axis in Pancreatic Ductal Adenocarcinoma: a Systematic Review and Meta-Analysis. Target Oncol 2019; 13:447-459. [PMID: 30062609 DOI: 10.1007/s11523-018-0578-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abundant tumor stroma is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and is suggested to play a role in the resistance of this deadly disease to systemic treatment. Despite promising results from preclinical studies, clinical trials with therapies targeting the tumor stroma and the vascular endothelial growth factor (VEGF) and its receptor VEGFR yielded conflicting results. With this systematic review and meta-analysis, we aim to summarize the existing evidence in this important field with a special focus on anti-VEGF/VEGFR therapy. A total of 24 clinical studies were included in the qualitative synthesis, and six randomized controlled trials (RCTs) investigating anti-VEGF/VEGFR agents were further included in the quantitative synthesis. The qualitative synthesis revealed a treatment advantage of combined therapy with nab-paclitaxel, while the meta-analysis on anti-VEGF/VEGFR drugs demonstrated marginal improvement of objective response rates and progression-free survival, but not overall survival. Stroma targeting is a promising and rapidly-developing treatment strategy in PDAC. However, novel drugs balancing stroma depletion and modulation are needed.
Collapse
Affiliation(s)
- Zipeng Lu
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
- Department of General, Visceral, and Transplantation Surgery, Ludwig Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany
| | - Maximilian Weniger
- Department of General, Visceral, and Transplantation Surgery, Ludwig Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany
| | - Kuirong Jiang
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Ludwig Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
| | - Kai Zhang
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Alexander Bazhin
- Department of General, Visceral, and Transplantation Surgery, Ludwig Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany
| | - Yi Miao
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Jens Werner
- Department of General, Visceral, and Transplantation Surgery, Ludwig Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplantation Surgery, Ludwig Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
20
|
El-Gazzar MG, El-Hazek RM, Zaher NH, El-Ghazaly MA. Design and synthesis of novel pyridazinoquinazoline derivatives as potent VEGFR-2 inhibitors: In vitro and in vivo study. Bioorg Chem 2019; 92:103251. [PMID: 31525526 DOI: 10.1016/j.bioorg.2019.103251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Worldwide, Hepatocellular Carcinoma (HCC) endures to be a prominent cause of cancer death. Treatment of HCC follows multiple therapies which are not entirely applicable for treatment of all patients. HCC usually arises contextual to chronic liver diseases and is often discovered at later stages which makes treatment options more complex. The present study aimed at design, synthesis & evaluation of new pyridazinoquinazoline derivatives as potential nontoxic anti-hepatocellular carcinoma (HCC) agents, through inhibition of Vascular endothelial growth factor -2 (VEGFR-2). Novel Pyridazino[3, 4, 5-de]quinazoline derivatives (2-6) were designed & synthesized. Their structures were confirmed via spectral and microanalytical data. They were tested for their in vitro VEGFR-2 inhibition & anticancer activity against human liver cancer cell line (HEPG-2). Molecular docking was investigated into VEGFR-2 site. In vivo studies of VEGRF-2 inhibition and the anti-apoptotic effect of the new compounds were determined in liver of irradiated rats. Toxicity of synthesized compounds was also assessed. The results showed that compounds 3-6 have significant antitumor activity and proved to be non-toxic. The ethoxy aniline derivative 6, exhibited the highest activity both in vitro and in vivo compared to the reference drug used, sorafenib. Compound 6 could be considered a promising nontoxic anti HCC agent and this could be partially attributed to its VEGFR-2 inhibition. Future preclinical investigation would be carried out to confirm the specific and exact mechanism of action of these derivatives especially compound 6 as an effective pharmaceutical agent after full toxicological and pharmacological assessment.
Collapse
Affiliation(s)
- Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo 11765, Egypt
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo 11765, Egypt
| | - Nashwa H Zaher
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo 11765, Egypt.
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo 11765, Egypt
| |
Collapse
|
21
|
Farran B, Nagaraju GP. The dynamic interactions between the stroma, pancreatic stellate cells and pancreatic tumor development: Novel therapeutic targets. Cytokine Growth Factor Rev 2019; 48:11-23. [PMID: 31331827 DOI: 10.1016/j.cytogfr.2019.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023]
|
22
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer-Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is an aggressive carcinoma and the fourth cause of cancer deaths in Western countries. Although surgery is the most effective therapeutic option for PC, the management of unresectable, locally advanced disease is highly challenging. Our improved understanding of pancreatic tumor biology and associated pathways has led to the development of various treatment modalities that can control the metastatic spread of PC. This review intends to present trials of small molecule tyrosine kinase inhibitors (TKIs) in PC management and the troubles encountered due to inevitable acquired resistance to TKIs.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Saikrishna Lakkakula
- Department of Zoology, Visvodaya Government Degree College, Venkatagiri, AP-524132, India
| | - Sujatha Peela
- Department of Biotechnology, Dr.B.R.Ambedkar University, Srikakulam, Andhra Pradesh, India
| | - Nagendra Sastry Yarla
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP- 500004, India
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA.
| |
Collapse
|
23
|
Galvano A, Guarini A, Iacono F, Castiglia M, Rizzo S, Tarantini L, Gori S, Novo G, Bazan V, Russo A. An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy. Expert Opin Drug Saf 2019; 18:485-496. [PMID: 31062991 DOI: 10.1080/14740338.2019.1613371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The angiogenesis mechanism is considered a crucial point in neoplastic development. A growing number of multi-targeted tyrosine kinase inhibitors (TKI) has been developed and approved for cancer treatment during the last few years. Cardiac side effects still remain an issue to manage nowadays. These drugs mechanisms and toxicities have already been discussed, hence the authors will report updates on these already available drugs. AREAS COVERED This manuscript provides an updated review on the new mechanisms involved in angiogenesis and cardiotoxicity that are TKI-related. Here is reported an overview of the already available and the most recent TKIs under investigation in the oncology field. A literature review has been performed, focusing on the most relevant phase II and phase III trial results. EXPERT OPINION TKIs represent a new and important resource in the oncology field. Since the use and the number of VEGFR-TKI is constantly increasing, a specific focus on cardiotoxicity development and management appears as justified. Oncologists must record cardiovascular risk factors at baseline in order to stratify patients' risk before undergoing TKI-VEGFRs. A collaboration between oncologists and cardio-oncologists is strongly recommended to earlier manage cardiovascular events (i.e. arterial hypertension) that could interfere with oncological results.
Collapse
Affiliation(s)
- Antonio Galvano
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Aurelia Guarini
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Federica Iacono
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Marta Castiglia
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Sergio Rizzo
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| | - Luigi Tarantini
- b Department of Cardiology , San Martino Hospital, ASL , Belluno , Italy
| | - Stefania Gori
- c Medical Oncology , Ospedale Sacro Cuore don Calabria , Verona , Italy
| | - Giuseppina Novo
- d Department of Cardiology , University Hospital Paolo Giaccone , Palermo , Italy
| | - Viviana Bazan
- e Department of Biomedicine, Neuroscience and Advanced Diagnostics - BIND , University of Palermo , Palermo , Italy
| | - Antonio Russo
- a Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences , University of Palermo , Palermo , Italy
| |
Collapse
|
24
|
van Mackelenbergh MG, Stroes CI, Spijker R, van Eijck CHJ, Wilmink JW, Bijlsma MF, van Laarhoven HWM. Clinical Trials Targeting the Stroma in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:E588. [PMID: 31035512 PMCID: PMC6562438 DOI: 10.3390/cancers11050588] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays an important role in the initiation and progression of pancreatic adenocarcinoma (PDAC). In this systematic review, we provide an overview of clinical trials with stroma-targeting agents. We systematically searched MEDLINE/PubMed and the EMBASE database, using the PRISMA guidelines, for eligible clinical trials. In total, 2330 records were screened, from which we have included 106 articles. A meta-analysis could be performed on 51 articles which describe the targeting of the vascular endothelial growth factor (VEGF) pathway, and three articles which describe the targeting of hyaluronic acid. Anti-VEGF therapies did not show an increase in median overall survival (OS) with combined hazard ratios (HRs) of 1.01 (95% confidence interval (CI) 0.90-1.13). Treatment with hyaluronidase PEGPH20 showed promising results, but, thus far, only in combination with gemcitabine and nab-paclitaxel in selected patients with hyaluronic acid (HA)high tumors: An increase in median progression free survival (PFS) of 2.9 months, as well as a HR of 0.51 (95% CI 0.26-1.00). In conclusion, we found that anti-angiogenic therapies did not show an increased benefit in median OS or PFS in contrast to promising results with anti-hyaluronic acid treatment in combination with gemcitabine and nab-paclitaxel. The PEGPH20 clinical trials used patient selection to determine eligibility based on tumor biology, which underlines the importance to personalize treatment for pancreatic cancer patients.
Collapse
Affiliation(s)
- Madelaine G van Mackelenbergh
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Charlotte I Stroes
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Cochrane Netherlands, Julius Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, The Netherlands.
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Le BT, Raguraman P, Kosbar TR, Fletcher S, Wilton SD, Veedu RN. Antisense Oligonucleotides Targeting Angiogenic Factors as Potential Cancer Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:142-157. [PMID: 30594893 PMCID: PMC6307321 DOI: 10.1016/j.omtn.2018.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of death worldwide, and conventional cancer therapies such as surgery, chemotherapy, and radiotherapy do not address the underlying molecular pathologies, leading to inadequate treatment and tumor recurrence. Angiogenic factors, such as EGF, PDGF, bFGF, TGF-β, TGF-α, VEGF, endoglin, and angiopoietins, play important roles in regulating tumor development and metastasis, and they serve as potential targets for developing cancer therapeutics. Nucleic acid-based therapeutic strategies have received significant attention in the last two decades, and antisense oligonucleotide-mediated intervention is a prominent therapeutic approach for targeted manipulation of gene expression. Clinical benefits of antisense oligonucleotides have been recognized by the U.S. Food and Drug Administration, with full or conditional approval of Vitravene, Kynamro, Exondys51, and Spinraza. Herein we review the scope of antisense oligonucleotides that target angiogenic factors toward tackling solid cancers.
Collapse
Affiliation(s)
- Bao T Le
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Prithi Raguraman
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Tamer R Kosbar
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Susan Fletcher
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
26
|
Chang SM, Jain V, Chen TL, Patel AS, Pidugu HB, Lin YW, Wu MH, Huang JR, Wu HC, Shah A, Su TL, Lee TC. Design and Synthesis of 1,2-Bis(hydroxymethyl)pyrrolo[2,1-a]phthalazine Hybrids as Potent Anticancer Agents that Inhibit Angiogenesis and Induce DNA Interstrand Cross-links. J Med Chem 2019; 62:2404-2418. [DOI: 10.1021/acs.jmedchem.8b01689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Anamik Shah
- Center of Excellence in Drug Discovery, Saurashtra University, Rajkot 360005, India
| | | | | |
Collapse
|
27
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2019; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Diab M, Azmi A, Mohammad R, Philip PA. Pharmacotherapeutic strategies for treating pancreatic cancer: advances and challenges. Expert Opin Pharmacother 2018; 20:535-546. [PMID: 30592647 DOI: 10.1080/14656566.2018.1561869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Despite many efforts to improve the outcome of pancreatic ductal adenocarcinoma (PDAC), its prognosis remains poor, which is mostly related to late diagnosis and drug resistance. Improving systemic therapy is considered the major challenge in improving the outcome of this disease. AREAS COVERED This review covers novel chemotherapy and targeted agents in the treatment of PDAC, with a focus on advanced stage disease. EXPERT OPINION Current frontline therapies used in the treatment of patients with PDAC with favorable performance status are gemcitabine (GEM) and nab-paclitaxel or 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX). PDAC has a number of genetic mutations that may explain its biological behavior, such as KRAS, p53 and CDK2NA, which occur in more than 90% of cases. Unfortunately, to this day, a specific targeting agent to any of those frequent gene mutations is lacking. Emerging areas of targeted therapies include the DNA repair, stroma, metabolism, and stem cells. Immunotherapy with either vaccines or immune checkpoint inhibitors has not produced any significant improvements in outcome of PDAC. Incorporating different approaches in therapy, including conventional, immunological, and others, is key in offering patients with the best possible care.
Collapse
Affiliation(s)
- Maria Diab
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Asfar Azmi
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Ramzi Mohammad
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Philip A Philip
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA.,b Department of Pharmacology, School of Medicine , Wayne State University , Detroit , MI , USA
| |
Collapse
|
29
|
Hua J, Shi S, Liang D, Liang C, Meng Q, Zhang B, Ni Q, Xu J, Yu X. Current status and dilemma of second-line treatment in advanced pancreatic cancer: is there a silver lining? Onco Targets Ther 2018; 11:4591-4608. [PMID: 30122951 PMCID: PMC6084072 DOI: 10.2147/ott.s166405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer remains one of the most lethal malignant diseases worldwide. The majority of patients present with advanced disease and, therefore, need palliative chemotherapy. Some chemotherapeutic regimens have been well established as first-line therapies and have been shown to increase survival; however, almost all patients with advanced pancreatic cancer will experience disease progression after first-line therapy. Nevertheless, many patients who retain good performance status after initial treatment remain good candidates for additional therapy. Historically, few studies have assessed second-line therapy, with most reports representing small phase II trials with variable findings; however, clinical research for second-line treatment has increased in the past decade, and several randomized controlled trials using different regimens have been published. The current literature shows varying results on treatment efficacy and tolerability. Thus, we reviewed the published data on the use of chemotherapy in the second-line setting for the treatment of advanced pancreatic cancer.
Collapse
Affiliation(s)
- Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China, ;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China, ;
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China, ;
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China, ;
| |
Collapse
|
30
|
Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol 2018; 15:333-348. [PMID: 29717230 DOI: 10.1038/s41575-018-0005-x] [Citation(s) in RCA: 781] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The overall 5-year survival for pancreatic cancer has changed little over the past few decades, and pancreatic cancer is predicted to be the second leading cause of cancer-related mortality in the next decade in Western countries. The past few years, however, have seen improvements in first-line and second-line palliative therapies and considerable progress in increasing survival with adjuvant treatment. The use of biomarkers to help define treatment and the potential of neoadjuvant therapies also offer opportunities to improve outcomes. This Review brings together information on achievements to date, what is working currently and where successes are likely to be achieved in the future. Furthermore, we address the questions of how we should approach the development of pancreatic cancer treatments, including those for patients with metastatic, locally advanced and borderline resectable pancreatic cancer, as well as for patients with resected tumours. In addition to embracing newer strategies comprising genomics, stromal therapies and immunotherapies, conventional approaches using chemotherapy and radiotherapy still offer considerable prospects for greater traction and synergy with evolving concepts.
Collapse
Affiliation(s)
- John P Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany. .,Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
31
|
Messerli SM, Hoffman MM, Gnimpieba EZ, Bhardwaj RD. Therapeutic Targeting of PTK7 is Cytotoxic in Atypical Teratoid Rhabdoid Tumors. Mol Cancer Res 2017; 15:973-983. [PMID: 28442586 DOI: 10.1158/1541-7786.mcr-16-0432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/09/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Novel discoveries involving the evaluation of potential therapeutics are based on newly identified molecular targets for atypical teratoid rhabdoid tumors (ATRT), which are the most common form of infantile brain tumors. Central nervous system ATRTs are rare, aggressive, and fast growing tumors of the brain and spinal cord and carry a very poor prognosis. Currently, the standard of care for ATRT patients is based on surgical resection followed by systemic chemotherapy and radiotherapy, which result in severe side effects. As protein tyrosine kinases have proven to be actionable targets that reduce tumor growth in a number of cancers, we examined how inhibiting tyrosine kinases affected ATRT tumor growth. Here, we examine the therapeutic efficacy of the broad-spectrum tyrosine kinase inhibitor vatalanib in the treatment of ATRT. Vatalanib significantly reduced the growth of ATRT tumor cell lines, both in two-dimensional cell culture and in three-dimensional cell culture using a spheroid model. As vatalanib had a remarkable effect on the growth of ATRT, we decided to use a transcriptomic approach to therapy by examining new actionable targets, such as tyrosine kinases. Next-generation RNA-sequencing and NanoString data analysis showed a significant increase in PTK7 RNA expression levels in ATRT tumors. Inhibition of PTK7 by siRNA treatment significantly decreases the viability of ATRT patient-derived tumor cell lines.Implications: These studies provide the groundwork for future preclinical in vivo studies aiming to investigate the efficacy of PTK7 inhibition on ATRT tumor growth. Mol Cancer Res; 15(8); 973-83. ©2017 AACR.
Collapse
Affiliation(s)
- Shanta M Messerli
- Sanford Children's Health Research Center, Department of Pediatrics, University of South Dakota School of Medicine, Vermillion, South Dakota
| | - Mariah M Hoffman
- Biomedical Engineering Department, University of South Dakota, Vermillion, South Dakota.,BioSNTR, Brookings, South Dakota
| | - Etienne Z Gnimpieba
- Biomedical Engineering Department, University of South Dakota, Vermillion, South Dakota.,BioSNTR, Brookings, South Dakota
| | - Ratan D Bhardwaj
- Sanford Children's Health Research Center, Department of Pediatrics, University of South Dakota School of Medicine, Vermillion, South Dakota.
| |
Collapse
|
32
|
Kong LJ, Li H, Du YJ, Pei FH, Hu Y, Zhao LL, Chen J. Vatalanib, a tyrosine kinase inhibitor, decreases hepatic fibrosis and sinusoidal capillarization in CCl4-induced fibrotic mice. Mol Med Rep 2017; 15:2604-2610. [PMID: 28447731 PMCID: PMC5428398 DOI: 10.3892/mmr.2017.6325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/03/2017] [Indexed: 12/29/2022] Open
Abstract
Among the various consequence arising from lung injury, hepatic fibrosis is the most severe. Decreasing the effects of hepatic fibrosis remains one of the primary therapeutic challenges in hepatology. Dysfunction of hepatic sinusoidal endothelial cells is considered to be one of the initial events that occur in liver injury. Vascular endothelial growth factor signaling is involved in the progression of genotype changes. The aim of the present study was to determine the effect of the tyrosine kinase inhibitor, vatalanib, on hepatic fibrosis and hepatic sinusoidal capillarization in a carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis. Liver fibrosis was induced in BALB/c mice using CCl4 by intraperitoneal injection for 6 weeks. The four experimental groups included a control, and three experimental groups involving administration of CCl4, vatalanib and a combination of the two. Histopathological staining and measuring live hydroxyproline content evaluated the extent of liver fibrosis. The expression of α-smooth muscle actin (SMA) and cluster of differentiation (CD) 34 was detected by immunohistochemistry. Collagen type I, α-SMA, transforming growth factor (TGF)-β1 and vascular endothelial growth factor receptor (VEGFR) expression levels were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The average number of fenestrae per hepatic sinusoid was determined using transmission electron microscopy. Liver fibrosis scores and hydroxyproline content were decreased in both vatalanib groups. In addition, both doses of vatalanib decreased mRNA expression levels of hepatic α-SMA, TGF-β1, collagen-1, VEGFR1, and VEGFR2. Levels of α-SMA and CD34 protein were decreased in the vatalanib group compared with the CCl4 group. There were significant differences in the number of fenestrae per sinusoid between the groups. The present study identified that administration of vatalanib was associated with decreased liver fibrosis and hepatic sinusoidal capillarization in CCl4-induced mouse models, and is a potential compound for counteracting liver fibrosis.
Collapse
Affiliation(s)
- Ling-Jian Kong
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Li
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ya-Ju Du
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Feng-Hua Pei
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Liao-Liao Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
33
|
Lin Z, Zhang Q, Luo W. Angiogenesis inhibitors as therapeutic agents in cancer: Challenges and future directions. Eur J Pharmacol 2016; 793:76-81. [PMID: 27840192 DOI: 10.1016/j.ejphar.2016.10.039] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/08/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023]
Abstract
Angiogenesis has become an attractive target for cancer therapy since the US Food and Drug Administration (FDA) approved the first angiogenesis inhibitor (bevacizumab) for the treatment of metastatic colorectal cancer in 2004. In following years, a large number of angiogenesis inhibitors have been discovered and developed, ranging from monoclonal antibodies, endogenous peptides, to small organic molecules and microRNAs. Many of them are now entering the clinical trial, or achieving approval for clinical use. However, major limitations have been observed about angiogenesis inhibitors by continued clinical investigations, such as resistance, enhancing tumor hypoxia and reducing delivery of chemotherapeutic agents, which might be the main reason for poor improvement in overall survival after angiogenesis inhibitor administration in clinic. Therefore, optimal anti-angiogenic therapy strategies become critical. The present review summarizes recent researches in angiogenesis inhibitors, and proposes a perspective on future directions in this field.
Collapse
Affiliation(s)
- Zhexuan Lin
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Quanwei Zhang
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenhong Luo
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
34
|
Craven KE, Gore J, Wilson JL, Korc M. Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes. Oncotarget 2016; 7:323-41. [PMID: 26586478 PMCID: PMC4808001 DOI: 10.18632/oncotarget.6345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ∼12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ∼35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature.
Collapse
Affiliation(s)
- Kelly E Craven
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jesse Gore
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,The Pancreatic Cancer Signature Center at Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Julie L Wilson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Murray Korc
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,The Pancreatic Cancer Signature Center at Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
Molecular targeted therapy for pancreatic adenocarcinoma: A review of completed and ongoing late phase clinical trials. Cancer Genet 2016; 209:567-581. [PMID: 27613577 DOI: 10.1016/j.cancergen.2016.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023]
Abstract
Molecular targeted therapy is widely utilized and effective in a number of solid tumors. In pancreatic adenocarcinoma, targeted therapy has been extensively evaluated; however, survival improvement of this aggressive disease using a targeted strategy has been minimal. The purpose of this study is to review therapeutic molecular targets in completed and ongoing later phase (II and III) clinical trials to have a better understanding of the rationale and progress towards targeted molecular therapies for pancreatic cancer. The PubMed database and the NCDI clinical trial website (www.clinicaltrials.gov) were queried to identify phase II and III completed and published (PubMed) and ongoing (clinicaltrials.gov) trials using the keywords: pancreatic cancer and molecular targeted therapy. The search engines were further limited by adding Phase II or III, active enrollment and North American. A total of 14 completed and published phase II/III clinical trials and 17 ongoing trials were identified. Evaluated strategies included inhibition of growth factor receptors (EGFR, PDGFR, VGFR, IGF-1R), tyrosine kinase inhibitors, MEK1/2, mTOR blockade and PI3K and HER2-neu pathway inhibitors. Only one trial conducted by the National Cancer Institute of Canada and the PANTAR trial have demonstrated a survival improvement from EGFR inhibition using erlotinib. These trials ultimately led to FDA approval of erlotinib/Tarceva in advanced stage disease. It remains unclear whether new combinations of cytotoxic chemotherapy or immunotherapy plus molecular targeted therapy will be beneficial in management of pancreatic adenocarcinoma. Despite a number of phase II and III trials, to date, only erlotinib has emerged as an approved targeted therapy in pancreatic adenocarcinoma. There are several ongoing late phase trials evaluating a number of targets, the results of which will become available over the next 1 to 2 years.
Collapse
|
36
|
Combined targeting of TGF-β, EGFR and HER2 suppresses lymphangiogenesis and metastasis in a pancreatic cancer model. Cancer Lett 2016; 379:143-53. [PMID: 27267807 DOI: 10.1016/j.canlet.2016.05.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinomas (PDACs) are aggressive with frequent lymphatic spread. By analysis of data from The Cancer Genome Atlas, we determined that ~35% of PDACs have a pro-angiogenic gene signature. We now show that the same PDACs exhibit increased expression of lymphangiogenic genes and lymphatic endothelial cell (LEC) markers, and that LEC abundance in human PDACs correlates with endothelial cell microvessel density. Lymphangiogenic genes and LECs are also elevated in murine PDACs arising in the KRC (mutated Kras; deleted RB) and KIC (mutated Kras; deleted INK4a) genetic models. Moreover, pancreatic cancer cells (PCCs) derived from KRC tumors express and secrete high levels of lymphangiogenic factors, including the EGF receptor ligand, amphiregulin. Importantly, TGF-β1 increases lymphangiogenic genes and amphiregulin expression in KRC PCCs but not in murine PCCs that lack SMAD4, and combinatorial targeting of the TGF-β type I receptor (TβRI) with LY2157299 and EGFR/HER2 with lapatinib suppresses tumor growth and metastasis in a syngeneic orthotopic model, and attenuates tumor lymphangiogenesis and angiogenesis while reducing lymphangiogenic genes and amphiregulin and enhancing apoptosis. Therefore, this combination could be beneficial in PDACs with lymphangiogenic or angiogenic gene signatures.
Collapse
|
37
|
Shi L, Zhou J, Wu J, Cao J, Shen Y, Zhou H, Li X. Quinoxalinone (Part II). Discovery of (Z)-3-(2-(pyridin-4-yl)vinyl)quinoxalinone derivates as potent VEGFR-2 kinase inhibitors. Bioorg Med Chem 2016; 24:1840-52. [DOI: 10.1016/j.bmc.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/28/2022]
|
38
|
Increasing the binding affinity of VEGFR-2 inhibitors by extending their hydrophobic interaction with the active site: Design, synthesis and biological evaluation of 1-substituted-4-(4-methoxybenzyl)phthalazine derivatives. Eur J Med Chem 2016; 113:50-62. [PMID: 26922228 DOI: 10.1016/j.ejmech.2016.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/05/2023]
Abstract
A series of anilinophthalazine derivatives 4a-j was initially synthesized and tested for its VEGFR-2 inhibitory activity where it showed promising activity (IC50 = 0.636-5.76 μM). Molecular docking studies guidance was used to improve the binding affinity for series 4a-j towards VEGFR-2 active site. This improvement was achieved by increasing the hydrophobic interaction with the hydrophobic back pocket of the VEGFR-2 active site lined with the hydrophobic side chains of Ile888, Leu889, Ile892, Val898, Val899, Leu1019 and Ile1044. Increasing the hydrophobic interaction was accomplished by extending the anilinophthalazine scaffold with a substituted phenyl moiety through an uriedo linker which should give this extension the flexibility required to accommodate itself deeply into the hydrophobic back pocket. As planned, the designed uriedo-anilinophthalazines 7a-i showed superior binding affinity than their anilinophthalazine parents (IC50 = 0.083-0.473 μM). In particular, compounds 7g-i showed IC50 of 0.086, 0.083 and 0.086 μM, respectively, which are better than that of the reference drug sorafenib (IC50 = 0.09 μM).
Collapse
|
39
|
Bertoni N, Pereira LMS, Severino FE, Moura R, Yoshida WB, Reis PP. Integrative meta-analysis identifies microRNA-regulated networks in infantile hemangioma. BMC MEDICAL GENETICS 2016; 17:4. [PMID: 26772808 PMCID: PMC4715339 DOI: 10.1186/s12881-015-0262-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/12/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hemangioma is a common benign tumor in the childhood; however our knowledge about the molecular mechanisms of hemangioma development and progression are still limited. Currently, microRNAs (miRNAs) have been shown as gene expression regulators with an important role in disease pathogenesis. Our goals were to identify miRNA-mRNA expression networks associated with infantile hemangioma. METHODS We performed a meta-analysis of previously published gene expression datasets including 98 hemangioma samples. Deregulated genes were further used to identify microRNAs as potential regulators of gene expression in infantile hemangioma. Data were integrated using bioinformatics methods, and genes were mapped in proteins, which were then used to construct protein-protein interaction networks. RESULTS Deregulated genes play roles in cell growth and differentiation, cell signaling, angiogenesis and vasculogenesis. Regulatory networks identified included microRNAs miR-9, miR-939 and let-7 family; these microRNAs showed the most number of interactions with deregulated genes in infantile hemangioma, suggesting that they may have an important role in the molecular mechanisms of disease. Additionally, results were used to identify drug-gene interactions and druggable gene categories using Drug-Gene Interaction Database. We show that microRNAs and microRNA-target genes may be useful biomarkers for the development of novel therapeutic strategies for patients with infantile hemangioma. CONCLUSIONS microRNA-regulated pathways may play a role in infantile hemangioma development and progression and may be potentially useful for future development of novel therapeutic strategies for patients with infantile hemangioma.
Collapse
Affiliation(s)
- Natália Bertoni
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Lied M S Pereira
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Fábio E Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Regina Moura
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Winston B Yoshida
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Patricia P Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| |
Collapse
|
40
|
Ettrich TJ, Perkhofer L, von Wichert G, Gress TM, Michl P, Hebart HF, Büchner-Steudel P, Geissler M, Muche R, Danner B, Kächele V, Berger AW, Güthle M, Seufferlein T. DocOx (AIO-PK0106): a phase II trial of docetaxel and oxaliplatin as a second line systemic therapy in patients with advanced pancreatic ductal adenocarcinoma. BMC Cancer 2016; 16:21. [PMID: 26772812 PMCID: PMC4714522 DOI: 10.1186/s12885-016-2052-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/06/2016] [Indexed: 12/18/2022] Open
Abstract
Background The current study was conducted to examine the activity of a docetaxel/oxaliplatin (DocOx) combination as second line treatment for advanced pancreatic ductal adenocarcinoma (Trial registration: NCT00690300. Registered June 2, 2008) Methods DocOx is a prospective, multi-center, single arm, phase II trial using docetaxel (75 mg/m2, 60 min, d 1) and oxaliplatin (80 mg/m2, 120 min, d 2) in 21-day cycles. The treatment period was scheduled for up to 8 cycles. Primary endpoint was tumor response according to RECIST 1.0. Secondary endpoints were progression free survival, overall survival, safety/toxicity, quality of life and clinical benefit. Results Data represent the intention to treat analysis of 44 patients with chemorefractory pancreatic cancer enrolled between 2008 and 2012 at five institutions in Germany. The primary endpoint of tumor response was achieved in 15.9 % of the patients (7 partial remissions, no complete remission), with a disease control rate of 48 % after the first two treatment cycles. Median progression free survival (PFS) was 1.82 months (CI 95 % 1.5–3.96 months) and median overall survival (OS) was 10.1 months (CI 95 % 5.1–14.1 months). Conclusions This single-arm trial demonstrates that the combination of docetaxel and oxaliplatin yields promising results for the treatment of advanced pancreatic ductal adenocarcinoma patients. Selected patients had particular benefit from this treatment as indicated by long PFS and OS times. Even after 8 cycles of treatment with DocOx a partial response was observed in 2 patients and stable disease was observed in another 6 patients. The data obtained with the DocOx protocol compare well with other second line protocols such as OFF (oxaliplatin, 5-FU, leucovorin). The DocOx regimen could be an interesting option for patients who received gemcitabine as first line treatment for metastatic pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2052-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Goetz von Wichert
- Department of Internal Medicine, Schön-Klinik Hamburg-Eilbeck, Hamburg, Germany.
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Philipps University of Marburg, Marburg, Germany.
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther-University, Halle (Saale), Germany.
| | - Holger F Hebart
- Department of Internal Medicine, Stauferklinikum Schwaebisch-Gmuend, Mutlangen, Germany.
| | - Petra Büchner-Steudel
- Department of Internal Medicine I, Martin-Luther-University, Halle (Saale), Germany.
| | - Michael Geissler
- Department of Internal Medicine, Oncology/Hematology, Gastroenterology, Esslingen Hospital, Esslingen, Germany.
| | - Rainer Muche
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Bettina Danner
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | | | - Andreas W Berger
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081, Ulm, Germany.
| | - Melanie Güthle
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081, Ulm, Germany.
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081, Ulm, Germany.
| |
Collapse
|
41
|
Raval SH, Singh RD, Joshi DV, Patel HB, Mody SK. Recent developments in receptor tyrosine kinases targeted anticancer therapy. Vet World 2016; 9:80-90. [PMID: 27051190 PMCID: PMC4819356 DOI: 10.14202/vetworld.2016.80-90] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022] Open
Abstract
Novel concepts and understanding of receptors lead to discoveries and optimization of many small molecules and antibodies as anti-cancerous drugs. Receptor tyrosine kinases (RTKs) are such a promising class of receptors under the investigation in past three decades. RTKs are one of the essential mediators of cell signaling mechanism for various cellular processes. Transformations such as overexpression, dysregulation, or mutations of RTKs may result into malignancy, and thus are an important target for anticancer therapy. Numerous subfamilies of RTKs, such as epidermal growth factor receptor, vascular endothelial growth factor receptor, fibroblast growth factor receptors, insulin-like growth factor receptor, and hepatocyte growth factor receptor, have been being investigated in recent years as target for anticancer therapy. The present review focuses several small molecules drugs as well as monoclonal antibodies targeting aforesaid subfamilies either approved or under investigation to treat the various cancers.
Collapse
Affiliation(s)
- Samir H. Raval
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India
| | - Ratn D. Singh
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India
| | - Dilip V. Joshi
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India
| | - Hitesh B. Patel
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India
| | - Shailesh K. Mody
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India
| |
Collapse
|
42
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
43
|
Overview of pre-clinical and clinical studies targeting angiogenesis in pancreatic ductal adenocarcinoma. Cancer Lett 2015; 381:201-10. [PMID: 26723874 DOI: 10.1016/j.canlet.2015.11.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/13/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
Abstract
The importance of angiogenesis in pancreatic ductal adenocarcinoma (PDAC) and its therapeutic potential have been explored in both pre-clinical and clinical studies. Human PDACs overexpress a number of angiogenic factors and their cognate high-affinity receptors, and anti-angiogenic agents reduce tumor volume, metastasis, and microvessel density (MVD), and improve survival in subcutaneous and orthotopic pre-clinical models. Nonetheless, clinical trials using anti-angiogenic therapy have been overwhelmingly unsuccessful. This review will focus on these pre-clinical and clinical studies, the potential reasons for failure in the clinical setting, and ways these shortcomings could be addressed in future investigations of angiogenic mechanisms in PDAC.
Collapse
|
44
|
Ma X, Hui Y, Lin L, Wu Y, Zhang X, Liu P. Clinical significance of COX-2, GLUT-1 and VEGF expressions in endometrial cancer tissues. Pak J Med Sci 2015; 31:280-4. [PMID: 26101475 PMCID: PMC4476326 DOI: 10.12669/pjms.312.6604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To analyze the clinical significance of COX-2, GLUT-1 and VEGF expressions in endometrial cancer tissues. METHODS One hundred and eight tissue samples from the patients with endometrial cancer enrolled in our hospital from August 2011 to July 2014 were selected, including 60 normal tissue samples (normal group), 60 neoplastic tissue samples (neoplastic group) and 60 cancer tissue samples (cancer group). All the samples were subjected to immunohistochemical assay to detect the expressions of COX-2, GLUT-1 and VEGF. The clinical data were also investigated for correlation analysis. RESULTS The positive rates of COX-2 in normal group, neoplastic group and cancer groups were 3.3%, 21.7% and 55.0% respectively. The positive rates of GLUT-1 in normal group, neoplastic group and cancer groups were 3.3%, 25.0% and 70.0% respectively. The positive rates of VEGF in normal group, neoplastic group and cancer groups were 1.7%, 23.3% and 63.3% respectively. With increasing stage of such cancer, decreasing degree of differentiation and lymphatic metastasis, the positive expression rates of COX-2, GLUT-1 and VEGF proteins were raised significantly (P<0.05). Spearman's correlation analysis showed that the expressions of COX-2 and GLUT-1 (r=0.207, P<0.05), COX-2 and VEGF (r=0.243, P<0.05), as well as GLUT-1 and VEGF (r=0.758, P<0.05) were positively correlated. CONCLUSION COX-2, GLUT-1 and VEGF were highly prominent in endometrial cancer, especially in the patients with low degree of differentiation, late stage and metastasis. They functioned synergistically in the onset and progression of this cancer.
Collapse
Affiliation(s)
- Xiaoping Ma
- Xiaoping Ma, Department of Gynecology and Obstetrics, Qilu Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, P.R. China. Liaocheng People's Hospital and Clinical Teaching Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, P.R. China
| | - Yuzuo Hui
- Yuzuo Hui, Department of Neurosurgery, Liaocheng People's Hospital and Clinical Teaching Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, P.R. China
| | - Li Lin
- Li Lin, Department of Gynecology and Obstetrics, Qilu Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, P.R. China. Liaocheng People's Hospital and Clinical Teaching Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, P.R. China
| | - Yu Wu
- Yu Wu, Department of Gynecology and Obstetrics, Liaocheng People's Hospital and Clinical Teaching Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, P.R. China
| | - Xian Zhang
- Xian Zhang, Department of Gynecology and Obstetrics, Liaocheng People's Hospital and Clinical Teaching Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, P.R. China
| | - Peishu Liu
- Peishu Liu, Department of Gynecology and Obstetrics, Qilu Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, P.R. China. Liaocheng People's Hospital and Clinical Teaching Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, P.R. China
| |
Collapse
|
45
|
Seicean A, Petrusel L, Seicean R. New targeted therapies in pancreatic cancer. World J Gastroenterol 2015; 21:6127-6145. [PMID: 26034349 PMCID: PMC4445091 DOI: 10.3748/wjg.v21.i20.6127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.
Collapse
|
46
|
Gore J, Craven KE, Wilson JL, Cote GA, Cheng M, Nguyen HV, Cramer HM, Sherman S, Korc M. TCGA data and patient-derived orthotopic xenografts highlight pancreatic cancer-associated angiogenesis. Oncotarget 2015; 6:7504-21. [PMID: 25762644 PMCID: PMC4480696 DOI: 10.18632/oncotarget.3233] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinomas (PDACs) overexpress pro-angiogenic factors but are not viewed as vascular. Using data from The Cancer Genome Atlas we demonstrate that a subset of PDACs exhibits a strong pro-angiogenic signature that includes 37 genes, such as HDAC9, that are overexpressed in PDAC arising in KRC mice, which express mutated Kras and lack RB. Moreover, patient-derived orthotopic xenografts can exhibit tumor angiogenesis, whereas conditioned media (CM) from KRC-derived pancreatic cancer cells (PCCs) enhance endothelial cell (EC) growth and migration, and activate canonical TGF-β signaling and STAT3. Inhibition of the type I TGF-β receptor with SB505124 does not alter endothelial activation in vitro, but decreases pro-angiogenic gene expression and suppresses angiogenesis in vivo. Conversely, STAT3 silencing or JAK1-2 inhibition with ruxolitinib blocks CM-enhanced EC proliferation. STAT3 disruption also suppresses endothelial HDAC9 and blocks CM-induced HDAC9 expression, whereas HDAC9 re-expression restores CM-enhanced endothelial proliferation. Moreover, ruxolitinib blocks mitogenic EC/PCC cross-talk, and suppresses endothelial p-STAT3 and HDAC9, and PDAC progression and angiogenesis in vivo, while markedly prolonging survival of KRC mice. Thus, targeting JAK1-2 with ruxolitinib blocks a final pathway that is common to multiple pro-angiogenic factors, suppresses EC-mediated PCC proliferation, and may be useful in PDACs with a strong pro-angiogenic signature.
Collapse
Affiliation(s)
- Jesse Gore
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Cancer Center, and the Center for Pancreatic Cancer Research, Indianapolis, IN 46202, USA
| | - Kelly E. Craven
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julie L. Wilson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gregory A. Cote
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Cancer Center, and the Center for Pancreatic Cancer Research, Indianapolis, IN 46202, USA
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Monica Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hai V. Nguyen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harvey M. Cramer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stuart Sherman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Cancer Center, and the Center for Pancreatic Cancer Research, Indianapolis, IN 46202, USA
| | - Murray Korc
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Cancer Center, and the Center for Pancreatic Cancer Research, Indianapolis, IN 46202, USA
| |
Collapse
|
47
|
Bronte G, Bronte E, Novo G, Pernice G, Lo Vullo F, Musso E, Bronte F, Gulotta E, Rizzo S, Rolfo C, Silvestris N, Bazan V, Novo S, Russo A. Conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting tyrosine kinase inhibitor-based therapy. Expert Opin Drug Saf 2014; 14:253-67. [PMID: 25494575 DOI: 10.1517/14740338.2015.986092] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Angiogenesis is fundamental for tumor development and progression. Hence, anti-angiogenic drugs have been developed to target VEGF and its receptors (VEGFRs). Several tyrosine kinase inhibitors (TKIs) have been developed over the years and others are still under investigation, each anti-VEGFR TKI showing a different cardiotoxic profile. Knowledge of the cardiac side-effects of each drug and the magnitude of their expression and frequency can lead to a specific approach. AREAS COVERED This work reviews the mechanism of action of anti-VEGFR TKIs and the pathophysiological mechanisms leading to cardiotoxicity, followed by close examination of the most important drugs individually. A literature search was conducted on PubMed selecting review articles, original studies and clinical trials, with a focus on Phase III studies. EXPERT OPINION Side-effects on the cardiovascular system could lead both to the worsening of general health status of cancer patients and to the discontinuation of the cancer treatment affecting its efficacy. Cardiologists often have to face new triggers of heart disease in these patients. They need a specific approach, which must be carried out in cooperation with oncologists. It must start before cancer treatment, continue during it and extend after its completion.
Collapse
Affiliation(s)
- Giuseppe Bronte
- University of Palermo, Department of Surgical, Oncological and Oral Sciences , Palermo , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abdel-Rahman O. Targeting platelet-derived growth factor (PDGF) signaling in gastrointestinal cancers: preclinical and clinical considerations. Tumour Biol 2014; 36:21-31. [DOI: 10.1007/s13277-014-2797-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022] Open
|
49
|
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths in the Western world. Due to lack of specific symptoms and no accessible precursor lesions, primary diagnosis is commonly delayed, resulting in the identification of only 15-20% of patients with potentially curable disease. The major limiting factor is an already locally advanced or metastatic disease at the time of diagnosis. Consequently, systemic therapy forms the backbone of treatment strategy for the majority of patients. SUMMARY A deeper understanding of the molecular characteristics of pancreatic cancer has led to the identification of several potential therapeutic targets. A variety of targeted therapies are currently under clinical evaluation as single agents or in combination with chemotherapy for PDAC. This review highlights the current state of chemotherapy in pancreatic cancer and provides an outlook on its future perspectives. KEY MESSAGE This review focuses on the current chemotherapy regimens for the systemic treatment of PDAC. PRACTICAL IMPLICATIONS Various neoadjuvant approaches have been explored, including chemoradiation, chemotherapy followed by chemoradiation or intensified chemotherapy without defining a standard of care so far. The standard of care is gemcitabine or 5-fluorouracil. The oral fluoropyrimidine S-1 may be a promising new agent in this setting. For first-line treatment of metastatic pancreatic cancer, no targeted therapy has yet demonstrated clinical benefit apart from the combination of the tyrosine kinase inhibitor erlotinib plus gemcitabine. Recently, novel chemotherapeutic regimens such as FOLFIRINOX and gemcitabine plus nanoparticle albumin-bound paclitaxel have been introduced. Both combinations have proved to be superior to the standard gemcitabine regimen. For second-line treatment the combination of 5-fluorouracil/leucovorin and oxaliplatin yields improved results compared to best supportive care.
Collapse
Affiliation(s)
| | | | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|