1
|
An ultra-performance LC-MS/MS method for determination of JRF103 in human plasma: application in first-in-patient study. Bioanalysis 2022; 14:1165-1175. [PMID: 36251611 DOI: 10.4155/bio-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: JRF103, a novel pan-HER inhibitor, has shown potent activity against HER1, HER2, HER4 and EGFR in vitro. To support its first-in-patient trial, a sensitive and rapid method was developed and validated using ultra-performance LC-MS/MS. Materials & methods: JRF103 was extracted from plasma using protein precipitation. Extracts were subjected to ultra-performance LC-MS/MS with electrospray ionization. Results: Separation of analyte was achieved using a 1.7-μm C18 column (2.1 × 50-mm internal diameter) with a gradient elution. The developed method was fully validated following the international guides. Conclusion: The developed method was sensitive, specific and suitable for measuring JRF103 concentration in patients with advanced solid tumors in the first-in-patient study of JRF103.
Collapse
|
2
|
Jiao X, Zhang Q, Zhang Y, Shao J, Ding L, Tang C, Feng B. Synthesis and biological evaluation of new series of quinazoline derivatives as EGFR/HER2 dual-target inhibitors. Bioorg Med Chem Lett 2022; 67:128703. [PMID: 35364239 DOI: 10.1016/j.bmcl.2022.128703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
It is generally believed that EGFR/HER2 dual-target inhibitors may overcome the resistance of EGFR TKIs caused by HER2 overexpression. The structure-based synthesis and biological evaluation of quinazoline derivatives as EGFR/HER2 dual-target inhibitors has been studied in this paper. II-1, II-2, III-3, III-4 displayed comparable inhibitory potency against EGFR and HER2 and II-1 showed remarkable antiproliferative activities against NCI-H358/PC-9/Calu-3/NCI-H1781 (EGFR IC50 = 0.30 nM, HER2 IC50 = 6.07 nM, NCI-H358 GI50 = 23.30 nM, PC-9 GI50 = 1.95 nM, Calu-3 GI50 = 23.13 nM NCI-H1781 GI50 = 41.61 nM).
Collapse
Affiliation(s)
- Xiaoyu Jiao
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Qing Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Yue Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Junlan Shao
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Lei Ding
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China.
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Hu F, Santagostino SF, Danilenko DM, Tseng M, Brumm J, Zehnder P, Wu KC. Assessment of Skin Toxicity in an in Vitro Reconstituted Human Epidermis Model Using Deep Learning. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:687-700. [PMID: 35063406 DOI: 10.1016/j.ajpath.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Skin toxicity is a common safety concern associated with drugs that inhibit epidermal growth factor receptors as well as other targets involved in epidermal growth and differentiation. Recently, the use of a three-dimensional reconstructed human epidermis model enabled large-scale drug screening and showed potential for predicting skin toxicity. Although a decrease in epidermal thickness was often observed when the three-dimensional reconstructed tissues were exposed to drugs causing skin toxicity, the thickness evaluation of epidermal layers from a pathologist was subjective and not easily reproducible or scalable. In addition, the subtle differences in thickness among tissues, as well as the large number of samples tested, made cross-study comparison difficult when a manual evaluation strategy was used. The current study used deep learning and image-processing algorithms to measure the viable epidermal thickness from multiple studies and found that the measured thickness was not only significantly correlated with a pathologist's semi-quantitative evaluation but was also in close agreement with the quantitative measurement performed by pathologists. Moreover, a sensitivity of 0.8 and a specificity of 0.75 were achieved when predicting the toxicity of 18 compounds with clinical observations with these epidermal thickness algorithms. This approach is fully automated, reproducible, and highly scalable. It not only shows reasonable accuracy in predicting skin toxicity but also enables cross-study comparison and high-throughput compound screening.
Collapse
Affiliation(s)
- Fangyao Hu
- Department of Safety Assessment, Genentech, South San Francisco, California.
| | | | | | - Min Tseng
- Department of Safety Assessment, Genentech, South San Francisco, California
| | - Jochen Brumm
- Department of Nonclinical Biostatistics, Genentech, South San Francisco, California
| | - Philip Zehnder
- Department of Safety Assessment, Genentech, South San Francisco, California
| | - Kai Connie Wu
- Department of Safety Assessment, Genentech, South San Francisco, California.
| |
Collapse
|
4
|
Ji W, Shen J, Wang B, Chen F, Meng D, Wang S, Dai D, Zhou Y, Wang C, Zhou Q. Effects of dacomitinib on the pharmacokinetics of poziotinib in vivo and in vitro. PHARMACEUTICAL BIOLOGY 2021; 59:457-464. [PMID: 33899675 PMCID: PMC8079061 DOI: 10.1080/13880209.2021.1914114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Dacomitinib and poziotinib, irreversible ErbB family blockers, are often used for treatment of non-small cell lung cancer (NSCLC) in the clinic. OBJECTIVE This study investigates the effect of dacomitinib on the pharmacokinetics of poziotinib in rats. MATERIALS AND METHODS Twelve Sprague-Dawley rats were randomly divided into two groups: the test group (20 mg/kg dacomitinib for 14 consecutive days) and the control group (equal amounts of vehicle). Each group was given an oral dose of 10 mg/kg poziotinib 30 min after administration of dacomitinib or vehicle at the end of the 14 day administration. The concentration of poziotinib in plasma was quantified by UPLC-MS/MS. Both in vitro effects of dacomitinib on poziotinib and the mechanism of the observed inhibition were studied in rat liver microsomes and human liver microsomes. RESULTS When orally administered, dacomitinib increased the AUC, Tmax and decreased CL of poziotinib (p < 0.05). The IC50 values of M1 in RLM, HLM and CYP3A4 were 11.36, 30.49 and 19.57 µM, respectively. The IC50 values of M2 in RLM, HLM and CYP2D6 were 43.69, 0.34 and 0.11 µM, respectively, and dacomitinib inhibited poziotinib by a mixed way in CYP3A4 and CYP2D6. The results of the in vivo experiments were consistent with those of the in vitro experiments. CONCLUSIONS This research demonstrates that a drug-drug interaction between poziotinib and dacomitinib possibly exists when readministered with poziotinib; thus, clinicians should pay attention to the resulting changes in pharmacokinetic parameters and accordingly, adjust the dose of poziotinib in clinical settings.
Collapse
Affiliation(s)
- Weiping Ji
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Jiquan Shen
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Bo Wang
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Feifei Chen
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Deru Meng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Changxiong Wang
- Department of Gastroenterology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| |
Collapse
|
5
|
Validation of a multicellular tumor microenvironment system for modeling patient tumor biology and drug response. Sci Rep 2021; 11:5535. [PMID: 33692370 PMCID: PMC7946945 DOI: 10.1038/s41598-021-84612-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer rates are rising globally and non-small cell lung cancer (NSCLC) has a five year survival rate of only 24%. Unfortunately, the development of drugs to treat cancer is severely hampered by the inefficiency of translating pre-clinical studies into clinical benefit. Thus, we sought to apply a tumor microenvironment system (TMES) to NSCLC. Using microvascular endothelial cells, lung cancer derived fibroblasts, and NSCLC tumor cells in the presence of in vivo tumor-derived hemodynamic flow and transport, we demonstrate that the TMES generates an in-vivo like biological state and predicts drug response to EGFR inhibitors. Transcriptomic and proteomic profiling indicate that the TMES recapitulates the in vivo and patient molecular biological state providing a mechanistic rationale for the predictive nature of the TMES. This work further validates the TMES for modeling patient tumor biology and drug response indicating utility of the TMES as a predictive tool for drug discovery and development and potential for use as a system for patient avatars.
Collapse
|
6
|
Ma S, Wang L, Ouyang B, Bai X, Ji Q, Yao L. The Design, Synthesis and Preliminary Pharmacokinetic Evaluation of d3-Poziotinib Hydrochloride. Biol Pharm Bull 2019; 42:873-876. [PMID: 31155586 DOI: 10.1248/bpb.b19-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To establish a synthetic route to d3-poziotinib hydrochloride. Treatment of 4-chloro-7-hydroxyquinazolin-6-yl pivalate (1) with d3-methyliodide afforded the etherization product, which reacted with 3,4-dichloro-2-fluoroaniline to generate the key intermediate d3-4-(3,4-dichloro-2-fluorophenylamino)-7-methoxyquinazolin-6-yl pivalate (3). Followed the de-protection reaction, the nucleophilic substitution (SN2) reaction with tert-butyl 4-(tosyloxy)piperidine-1-carboxylate (TSP), and the de-protection reaction of t-butoxycarbonyl (Boc) group, and the amide formation reaction with acrylyl chloride, d3-poziotinib was obtained, which was converted to hydrochloride salt by treatment with concentrated hydrochloric acid (HCl). Starting from a known compound 4-chloro-7-hydroxyquinazolin-6-yl pivalate (1), after 7 steps transformation, d3-poziotinib hydrochloride was obtained with a total yield of 9.02%. The structure of d3-poziotinib hydrochloride was confirmed by 1H-NMR, 13C-NMR, and high resolution (HR)-MS. Meanwhile, the in vitro microsomal stability experiment showed that d3-poziotinib had a longer half time (t1/2 = 4.6 h) than poziotinib (t1/2 = 3.5 h).
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Yao
- School of Pharmacy, Yantai University.,Shandong Luye Pharma Group
| |
Collapse
|
7
|
Oh IJ, Hur JY, Park CK, Kim YC, Kim SJ, Lee MK, Kim HJ, Lee KY, Lee JC, Choi CM. Clinical Activity of Pan-HER Inhibitors Against HER2-Mutant Lung Adenocarcinoma. Clin Lung Cancer 2018; 19:e775-e781. [DOI: 10.1016/j.cllc.2018.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/17/2018] [Accepted: 05/28/2018] [Indexed: 01/18/2023]
|
8
|
Hecht M, Veigure R, Couchman L, S Barker CI, Standing JF, Takkis K, Evard H, Johnston A, Herodes K, Leito I, Kipper K. Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate. Bioanalysis 2018; 10:1229-1248. [PMID: 30033744 DOI: 10.4155/bio-2018-0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the LOQ (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarizing the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability, BLQ data could be released and utilized appropriately for pharmacokinetic research.
Collapse
Affiliation(s)
- Max Hecht
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Rūta Veigure
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Lewis Couchman
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, SW17 0RE, UK
| | - Joseph F Standing
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Kalev Takkis
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Hanno Evard
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Atholl Johnston
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Clinical Pharmacology, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Koit Herodes
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Ivo Leito
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Karin Kipper
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
9
|
Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S, Li S, Chen T, Poteete A, Estrada-Bernal A, Le AT, Truini A, Nilsson MB, Sun H, Roarty E, Goldberg SB, Brahmer JR, Altan M, Lu C, Papadimitrakopoulou V, Politi K, Doebele RC, Wong KK, Heymach JV. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med 2018; 24:638-646. [PMID: 29686424 PMCID: PMC5964608 DOI: 10.1038/s41591-018-0007-9] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations.
Collapse
Affiliation(s)
- Jacqulyne P Robichaux
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhi Tan
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brett W Carter
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuxing Zhang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shengwu Liu
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuai Li
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ting Chen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alissa Poteete
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Anh T Le
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Anna Truini
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Monique B Nilsson
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiying Sun
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Roarty
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah B Goldberg
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Julie R Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Mehmet Altan
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Lu
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vassiliki Papadimitrakopoulou
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katerina Politi
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - John V Heymach
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Kim TM, Lee KW, Oh DY, Lee JS, Im SA, Kim DW, Han SW, Kim YJ, Kim TY, Kim JH, Han H, Kim WH, Bang YJ. Phase 1 Studies of Poziotinib, an Irreversible Pan-HER Tyrosine Kinase Inhibitor in Patients with Advanced Solid Tumors. Cancer Res Treat 2017; 50:835-842. [PMID: 28859471 PMCID: PMC6056959 DOI: 10.4143/crt.2017.303] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 11/21/2022] Open
Abstract
Purpose Poziotinib, a pan-human epidermal growth factor receptor 2 (HER) tyrosine kinase inhibitor, has shown potent activity againstwild type of epidermal growth factorreceptor(EGFR) family kinases including EGFR, HER2, and HER4 and EGFR-mutant cells in vitro. Two phase I studies were conducted to determine the maximum tolerated dose (MTD), pharmacokinetics, safety, and antitumor activity against advanced solid tumors. Materials and Methods Standard 3+3 dose escalation scheme using two different dosing schedules were studied: once daily, 14-day on, and 7-day off (intermittent schedule); and once daily continuous dosing with food effect. Additional patients were enrolled in an expansion cohort. Results A total of 75 patients were enrolled in the two studies. The most common drug-related treatment-emergent adverse eventswere diarrhea,rash, stomatitis, pruritus, and anorexia. Dose-limiting toxicities were grade 3 diarrhea in the intermittent schedule and grade 3 anorexia and diarrhea in the continuous dosing schedule. The MTDs were determined as 24 mg/day in the intermittent dosing schedule and 18 mg/day in the continuous dosing schedule. Eight (16%) and 24 (47%) of 51 evaluable patients in the intermittent schedule achieved partial response (PR) and stable disease (SD), respectively. Four (21%) and six (32%) of 19 evaluable patients in continuous dosing schedule achieved PR and SD, respectively. Patients with PR (n=7) or SD ≥ 12 weeks (n=7) had HER2 amplification (n=7; breast cancer, 5; and stomach cancer, 2) and EGFR amplification (n=1, squamous cell lung cancer). Conclusion Poziotinib was safe and well tolerated in patients with advanced solid tumors. It showed an encouraging activity against EGFR-mutant and HER2-amplified cancers.
Collapse
Affiliation(s)
- Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jong-Seok Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | - Woo Ho Kim
- Seoul National University Cancer Research Institute, Seoul, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
11
|
Scheipl S, Barnard M, Cottone L, Jorgensen M, Drewry DH, Zuercher WJ, Turlais F, Ye H, Leite AP, Smith JA, Leithner A, Möller P, Brüderlein S, Guppy N, Amary F, Tirabosco R, Strauss SJ, Pillay N, Flanagan AM. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J Pathol 2016; 239:320-34. [PMID: 27102572 PMCID: PMC4922416 DOI: 10.1002/path.4729] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/11/2016] [Accepted: 04/10/2016] [Indexed: 12/24/2022]
Abstract
Chordoma is a rare malignant bone tumour with a poor prognosis and limited therapeutic options. We undertook a focused compound screen (FCS) against 1097 compounds on three well-characterized chordoma cell lines; 154 compounds were selected from the single concentration screen (1 µm), based on their growth-inhibitory effect. Their half-maximal effective concentration (EC50 ) values were determined in chordoma cells and normal fibroblasts. Twenty-seven of these compounds displayed chordoma selective cell kill and 21/27 (78%) were found to be EGFR/ERBB family inhibitors. EGFR inhibitors in clinical development were then studied on an extended cell line panel of seven chordoma cell lines, four of which were sensitive to EGFR inhibition. Sapitinib (AstraZeneca) emerged as the lead compound, followed by gefitinib (AstraZeneca) and erlotinib (Roche/Genentech). The compounds were shown to induce apoptosis in the sensitive cell lines and suppressed phospho-EGFR and its downstream pathways in a dose-dependent manner. Analysis of substituent patterns suggested that EGFR-inhibitors with small aniline substituents in the 4-position of the quinazoline ring were more effective than inhibitors with large substituents in that position. Sapitinib showed significantly reduced tumour growth in two xenograft mouse models (U-CH1 xenograft and a patient-derived xenograft, SF8894). One of the resistant cell lines (U-CH2) was shown to express high levels of phospho-MET, a known bypass signalling pathway to EGFR. Neither amplifications (EGFR, ERBB2, MET) nor mutations in EGFR, ERBB2, ERBB4, PIK3CA, BRAF, NRAS, KRAS, PTEN, MET or other cancer gene hotspots were detected in the cell lines. Our findings are consistent with the reported (p-)EGFR expression in the majority of clinical samples, and provide evidence for exploring the efficacy of EGFR inhibitors in the treatment of patients with chordoma and studying possible resistance mechanisms to these compounds in vitro and in vivo. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Susanne Scheipl
- University College London Cancer Institute, London, UK
- Department of Orthopaedics and Orthopaedic Surgery, Medical University of Graz, Austria
| | - Michelle Barnard
- University College London Cancer Institute, London, UK
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
- CRUK-MedImmune Alliance Laboratory, Cambridge, UK
| | - Lucia Cottone
- University College London Cancer Institute, London, UK
| | | | - David H Drewry
- GlaxoSmithKline, Research Triangle Park, NC, USA
- SGC-UNC, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - William J Zuercher
- GlaxoSmithKline, Research Triangle Park, NC, USA
- SGC-UNC, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Fabrice Turlais
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Ana P Leite
- University College London Cancer Institute, London, UK
| | - James A Smith
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
| | - Andreas Leithner
- Department of Orthopaedics and Orthopaedic Surgery, Medical University of Graz, Austria
| | | | | | - Naomi Guppy
- University College London Advanced Diagnostics, London, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - Nischalan Pillay
- University College London Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Adrienne M Flanagan
- University College London Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
- University College London Advanced Diagnostics, London, UK
| |
Collapse
|