1
|
Fernandes LF, Peeyatu C, Dickie BR, Ho YS, Thompson LA, Hernandez N, Lozano N, Kostarelos K, Kisby T. Targeting therapeutic nanoparticles to the glioblastoma resection margin by harnessing post-operative spatiotemporal blood-brain barrier disruption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646102. [PMID: 40236056 PMCID: PMC11996296 DOI: 10.1101/2025.03.29.646102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Resection surgery is the first-line therapy for glioblastoma (GBM) that is performed in >70% of patients, typically within days of suspected diagnosis. Current protocols for follow-on chemoradiotherapy have shown only modest efficacy in eliminating residual disease, leading to inevitable tumour recurrence. There remains a need for new approaches to swiftly and effectively treat post-operative residual disease to prevent the rapid early progression of recurrent GBM. Using syngeneic preclinical models of glioblastoma resection, we identified a spatially and temporally restricted window of blood brain barrier (BBB) disruption localised to the resection margin, during the immediate (15 min) and early (48-72h) postoperative periods. Intravenous administration of fluorescently labelled, clinically-used liposome nanoparticles during these periods demonstrated that selective accumulation at the postoperative resection margin, while largely being excluded from areas of the brain with an intact BBB, could be achieved. Confocal analysis confirmed the presence of extravasated nanoparticles within the margin parenchyma which largely interacted with microglial populations closely associated with residual tumour cells. Exploiting this, we performed intravenous administration of doxorubicin-loaded liposomes (DOX-Lipo) coinciding with the peak of postoperative BBB disruption and demonstrated both enhanced chemotherapy delivery and consequently complete inhibition of tumour recurrence from a single administration. Overall, this work underscores the importance of timing concomitant chemotherapy to the post-operative timeframe and demonstrates that clinically-used liposomal nanomedicines could be readily repurposed for early post-operative therapy in aggressive brain tumours.
Collapse
|
2
|
Li H, Gan R, Liu J, Xu D, Zhang Q, Tian H, Guo H, Wang H, Wang Z, Zeng X. Doxorubicin-loaded PEGylated liposome modified with ANGPT2-specific peptide for integrative glioma-targeted imaging and therapy. Mater Today Bio 2025; 30:101455. [PMID: 39866777 PMCID: PMC11762577 DOI: 10.1016/j.mtbio.2025.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Liposomal nanocarriers are able to carry peptides for efficient and selective delivery of radioactive tracer and drugs into the tumors. Angiopoietin 2 (ANGPT2) is an excellent biomarker for precise diagnosis and therapy of glioma. The present study aimed to design ANGPT2-specific peptides to modify the surface of nanoliposomes containing doxorubicin (Dox) for integrative imaging and targeting therapy of glioma. The targeted ANGPT2 peptides were designed using the molecular operating environment. Peptide-conjugated PEGlated liposomes containing Dox (peptide-Lipo@Dox) were prepared for radionuclide and drug delivery. Glioma cell functions were determined based on cell cycle and viability, apoptosis, cell invasion and migration, and colony-formation assays. The anti-tumor effect of peptide-Lipo@Dox was validated in intracranial U87-MG cell glioma-bearing mice in vivo. The peptides GSFIHSVPRH (GSF) and HSVPRHEV (HSV) showed specific affinity for ANGPT2 and a better cellular uptake in U87-MG cells. Micro-positron emission tomography (PET)/computed tomography (CT) imaging was used to visualize the orthotopic transplantation of glioma in the brain 1 h after injection of radionuclide 68Ga-labeled peptide-Lipo@Dox. Lipo@Dox with peptide modification demonstrated stable Dox loading, small sizes (<40 nm), and enrichment in the tumor region of the mouse brain. Peptide-Lipo@Dox treatment inhibited the Tie-2/Akt/Foxo-1 pathway, thereby inhibiting cell invasion and migration, cell viability, and colony-forming ability of U87-MG cells. Lipo@Dox peptide modification showed a better suppression of glioma development than Lipo@Dox. Thus, the ANGPT2-specific peptides were successfully designed, and the PEGylated liposome modified with ANGPT2-specific peptide served as part of a potent delivery method for integrative glioma-targeted imaging and therapy.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Gansu Provincial Isotope Laboratory, Lanzhou, Gansu, 730300, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu, 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 516029, China
| | - Rong Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 516029, China
| | - Jiadi Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu, 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 516029, China
| | - Duling Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu, 730000, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 516029, China
| | - Qiyue Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Haidong Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Huijun Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Haijun Wang
- Department of Nuclear Medicine, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| | - Zhimin Wang
- Department of PET/CT Center, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| | - Xianwu Zeng
- Department of Nuclear Medicine, Gansu Provincial Cancer Hospital, Lanzhou, Gansu, 730050, China
| |
Collapse
|
3
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
4
|
Agarwal P, Reid DL, Amiji M. CNS delivery of targeted protein degraders. J Control Release 2024; 372:661-673. [PMID: 38936742 DOI: 10.1016/j.jconrel.2024.06.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Heterobifunctional small molecule degraders are a subset of targeted protein degraders (TPDs), consisting of two ligands joined by a linker to induce proteasomal degradation of a target protein. As compared to traditional small molecules these compounds generally demonstrate inflated physicochemical properties, which may require innovative formulation strategies to enable their delivery and exert pharmacodynamic effect. The blood brain barrier (BBB) serves an essential function in human physiology, but its presence requires advanced approaches for treating central nervous system (CNS) diseases. By integrating emerging modalities like TPDs with conventional concepts of drug delivery, novel strategies to overcome the BBB can be developed. Amongst the available routes, lipid and polymer-based long-acting delivery seems to be the most amenable to TPDs, due to their ability to encapsulate lipophilic cargo and potential to be functionalized for targeted delivery. Another key consideration will be understanding E3 ligase expression in the different regions of the brain. Discovery of new brain or CNS disease specific E3 ligases could help overcome some of the barriers currently associated with CNS delivery of TPDs. This review discusses the current strategies that exist to overcome and improve therapeutic delivery of TPDs to the CNS.
Collapse
Affiliation(s)
- Prashant Agarwal
- Drug Product Technologies, Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States of America; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States of America
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| |
Collapse
|
5
|
Su H, Jia J, Mao Y, Zhu R, Li Z. A real-world analysis of FDA Adverse Event Reporting System (FAERS) events for liposomal and conventional doxorubicins. Sci Rep 2024; 14:5095. [PMID: 38429374 PMCID: PMC10907704 DOI: 10.1038/s41598-024-55185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
The clinical application of conventional doxorubicin (CDOX) was constrained by its side effects. Liposomal doxorubicin was developed to mitigate these limitations, showing improved toxicity profiles. However, the adverse events associated with liposomal doxorubicin and CDOX have not yet been comprehensively evaluated in clinical settings. The FAERS data from January 2004 to December 2022 were collected to analyze the adverse events of liposomal doxorubicin and CDOX. Disproportionate analysis and Bayesian analysis were employed to quantify this association. Our analysis incorporated 68,803 adverse event reports related to Doxil/Caelyx, Myocet and CDOX. The relative odds ratios (RORs, 95%CI) for febrile neutropenia associated with CDOX, Doxil/Caelyx, and Myocet were 42.45 (41.44; 43.48), 17.53 (16.02; 19.20), and 34.68 (26.63; 45.15) respectively. For cardiotoxicity, they were 38.87(36.41;41.49), 17.96 (14.10; 22.86), and 37.36 (19.34; 72.17). For Palmar-Plantar Erythrodysesthesia (PPE), the RORs were 6.16 (5.69; 6.68), 36.13 (32.60; 40.06), and 19.69 (11.59; 33.44). Regarding onset time, significant differences adverse events including neutropenia, PPE, pneumonia and malignant neoplasm progression. This study indicates that clinical monitoring for symptoms of cardiotoxicity of CDOX and Myocet, and PPE and interstitial lung disease of Doxil should be performed. Additionally, the onset time of febrile neutropenia, malignant neoplasm progression, and pneumonia associated with Doxil and Myocet merits particular attention. Continuous surveillance, risk evaluations, and additional comparative studies between liposomal doxorubicin and CDOX were recommended.
Collapse
Affiliation(s)
- Huiling Su
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Jia
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxiang Mao
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Riran Zhu
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Tian M, Ma Z, Yang GZ. Micro/nanosystems for controllable drug delivery to the brain. Innovation (N Y) 2024; 5:100548. [PMID: 38161522 PMCID: PMC10757293 DOI: 10.1016/j.xinn.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Mondal S, Ghosh S. Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers? Cell Mol Neurobiol 2023; 44:9. [PMID: 38123863 PMCID: PMC11407177 DOI: 10.1007/s10571-023-01443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.
Collapse
Affiliation(s)
- Sourav Mondal
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sourish Ghosh
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
8
|
Farooq M, Scalia G, Umana GE, Parekh UA, Naeem F, Abid SF, Khan MH, Zahra SG, Sarkar HP, Chaurasia B. A Systematic Review of Nanomedicine in Glioblastoma Treatment: Clinical Efficacy, Safety, and Future Directions. Brain Sci 2023; 13:1727. [PMID: 38137175 PMCID: PMC10742051 DOI: 10.3390/brainsci13121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Glioblastoma (GBM) is categorized as a grade IV astrocytoma by the World Health Organization (WHO), representing the most aggressive and prevalent form of glioma. It presents a significant clinical challenge, with limited treatment options and poor prognosis. This systematic review evaluates the efficacy and safety of various nanotherapy approaches for GBM and explores future directions in tumor management. Nanomedicine, which involves nanoparticles in the 1-100 nm range, shows promise in improving drug delivery and targeting tumor cells. (2) Methods: Following PRISMA guidelines, a systematic search of databases including Google Scholar, NCBI PubMed, Cochrane Library, and ClinicalTrials.gov was conducted to identify clinical trials on GBM and nanomedicine. The primary outcome measures were median overall survival, progression-free survival, and quality of life assessed through Karnofsky performance scores. The safety profile was assessed by adverse events. (3) Results: The analysis included 225 GBM patients, divided into primary and recurrent sub-populations. Primary GBM patients had a median overall survival of 6.75 months, while recurrent GBM patients had a median overall survival of 9.7 months. The mean PFS period was 2.3 months and 3.92 months in primary GBM and recurrent GBM patients, respectively. Nanotherapy showed an improvement in quality of life, with KPS scores increasing after treatment in recurrent GBM patients. Adverse events were observed in 14.2% of patients. Notably, Bevacizumab therapy exhibited better survival outcomes but with a higher incidence of adverse events. (4) Conclusions: Nanotherapy offers a modest increase in survival with fewer severe side effects. It shows promise in improving the quality of life, especially in recurrent GBM patients. However, it falls short in terms of overall survival compared to Bevacizumab. The heterogeneous nature of treatment protocols and reporting methods highlights the need for standardized multicenter trials to further evaluate the potential of nanomedicine in GBM management.
Collapse
Affiliation(s)
- Minaam Farooq
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10021, USA;
| | - Gianluca Scalia
- Neurosurgery Unit, Department of Head and Neck Surgery, Garibaldi Hospital, 95123 Catania, Italy
| | - Giuseppe E. Umana
- Department of Neurosurgery, Gamma Knife and Trauma Center, Cannizzaro Hospital, 95126 Catania, Italy;
| | - Urja A. Parekh
- German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Faiza Naeem
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Sayeda Fatima Abid
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Muhammad Hammad Khan
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Shah Gul Zahra
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Hrishikesh P. Sarkar
- Department of Neurological Sciences, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| |
Collapse
|
9
|
Bhunia S, Kolishetti N, Vashist A, Yndart Arias A, Brooks D, Nair M. Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics 2023; 15:2658. [PMID: 38139999 PMCID: PMC10747851 DOI: 10.3390/pharmaceutics15122658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023] Open
Abstract
Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous system (CNS) diseases remain limited. Despite the significant advancement in drug development technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood-brain barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery. Many strategies have been developed over the years which include local disruption of BBB via physical and chemical methods, and drug transport across BBB via transcytosis by targeting some endogenous proteins expressed on brain-capillary. Drug delivery to brain is an ever-evolving topic, although there were multiple review articles in literature, an update is warranted due to continued growth and new innovations of research on this topic. Thus, this review is an attempt to highlight the recent strategies employed to overcome challenges of CNS drug delivery while emphasizing the necessity of investing more efforts in CNS drug delivery technologies parallel to drug development.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Deborah Brooks
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Hernando S, Santos-Vizcaíno E, Igartua M, Hernandez RM. Targeting the central nervous system: From synthetic nanoparticles to extracellular vesicles-Focus on Alzheimer's and Parkinson's disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1898. [PMID: 37157144 DOI: 10.1002/wnan.1898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are an accelerating global health problem as life expectancy rises worldwide. Despite their significant burden in public health systems to date, the existing treatments only manage the symptoms without slowing down disease progression. Thus, the ongoing neurodegenerative process remains untreated. Moreover, the stronghold of the brain-the blood-brain barrier (BBB)-prevents drug penetrance and dwindles effective treatments. In the last years, nanotechnology-based drug delivery systems (DDS) have become a promising approach to target and treat these disorders related to the central nervous system (CNS). PLGA based nanoparticles (NPs) were the first employed DDS for effective drug delivery. However, the poor drug loading capacity and localized immunogenicity prompted the scientific community to move to another DDS such as lipid-based NPs. Despite the lipid NPs' safety and effectiveness, their off-target accumulation together with the denominated CARPA (complement activation-related pseudo allergy) reaction has limited their complete clinical translation. Recently, biological NPs naturally secreted by cells, termed as extracellular vesicles (EVs) have emerged as promising more complex biocompatible DDS. In addition, EVs act as dual players in NDs treatment, as a "cell free" therapy themselves, as well as new biological NPs with numerous characteristics that qualify them as promising carriers over synthetic DDS. The present review aims to display advantages, drawbacks, current limitations and future prospective of the previously cited synthetic and biological DDS to enter the brain and treat one of 21st century most challenging diseases, NDs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Sara Hernando
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria Gasteiz, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Edorta Santos-Vizcaíno
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria Gasteiz, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria Gasteiz, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria Gasteiz, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| |
Collapse
|
11
|
Ruiz-Molina D, Mao X, Alfonso-Triguero P, Lorenzo J, Bruna J, Yuste VJ, Candiota AP, Novio F. Advances in Preclinical/Clinical Glioblastoma Treatment: Can Nanoparticles Be of Help? Cancers (Basel) 2022; 14:4960. [PMID: 36230883 PMCID: PMC9563739 DOI: 10.3390/cancers14194960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GB) is the most aggressive and frequent primary malignant tumor in the central nervous system (CNS), with unsatisfactory and challenging treatment nowadays. Current standard of care includes surgical resection followed by chemotherapy and radiotherapy. However, these treatments do not much improve the overall survival of GB patients, which is still below two years (the 5-year survival rate is below 7%). Despite various approaches having been followed to increase the release of anticancer drugs into the brain, few of them demonstrated a significant success, as the blood brain barrier (BBB) still restricts its uptake, thus limiting the therapeutic options. Therefore, enormous efforts are being devoted to the development of novel nanomedicines with the ability to cross the BBB and specifically target the cancer cells. In this context, the use of nanoparticles represents a promising non-invasive route, allowing to evade BBB and reducing systemic concentration of drugs and, hence, side effects. In this review, we revise with a critical view the different families of nanoparticles and approaches followed so far with this aim.
Collapse
Affiliation(s)
- Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Xiaoman Mao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l’Hospitalet, 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Victor J. Yuste
- Instituto de Neurociencias. Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
12
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
13
|
Munoz Pinto MF, Campbell SJ, Simoglou Karali C, Johanssen VA, Bristow C, Cheng VWT, Zarghami N, Larkin JR, Pannell M, Hearn A, Chui C, Brinquis Nunez B, Bokma E, Holgate R, Anthony DC, Sibson NR. Selective blood-brain barrier permeabilization of brain metastases by a type 1 receptor-selective tumor necrosis factor mutein. Neuro Oncol 2022; 24:52-63. [PMID: 34297105 PMCID: PMC8730757 DOI: 10.1093/neuonc/noab177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumor development and heterogeneously permeable at later stages. Intravenous injection of tumor necrosis factor (TNF) selectively induces BBB permeabilization at sites of brain micrometastasis, in a TNF type 1 receptor (TNFR1)-dependent manner. Here, to enable clinical translation, we have developed a TNFR1-selective agonist variant of human TNF that induces BBB permeabilization, while minimizing potential toxicity. METHODS A library of human TNF muteins (mutTNF) was generated and assessed for binding specificity to mouse and human TNFR1/2, endothelial permeabilizing activity in vitro, potential immunogenicity, and circulatory half-life. The permeabilizing ability of the most promising variant was assessed in vivo in a model of brain metastasis. RESULTS The primary mutTNF variant showed similar affinity for human TNFR1 than wild-type human TNF, similar affinity for mouse TNFR1 as wild-type mouse TNF, undetectable binding to human/mouse TNFR2, low potential immunogenicity, and permeabilization of an endothelial monolayer. Circulatory half-life was similar to mouse/human TNF and BBB permeabilization was induced selectively at sites of micrometastases in vivo, with a time window of ≥24 hours and enabling delivery of agents within a therapeutically relevant range (0.5-150 kDa), including the clinically approved therapy, trastuzumab. CONCLUSIONS We have developed a clinically translatable mutTNF that selectively opens the BBB at micrometastatic sites, while leaving the rest of the cerebrovasculature intact. This approach will open a window for brain metastasis treatment that currently does not exist.
Collapse
Affiliation(s)
- Mario F Munoz Pinto
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra J Campbell
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Christina Simoglou Karali
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Vanessa A Johanssen
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Claire Bristow
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Vinton W T Cheng
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Niloufar Zarghami
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - James R Larkin
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Maria Pannell
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- OxSonics Ltd., The Magdalen Centre, Oxford Science Park, Oxford, UK
| | - Arron Hearn
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Cherry Chui
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | | | - Evert Bokma
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Robert Holgate
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | | | - Nicola R Sibson
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Miatmoko A, Mianing EA, Sari R, Hendradi E. Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review. Front Pharmacol 2021; 12:787226. [PMID: 35002719 PMCID: PMC8740088 DOI: 10.3389/fphar.2021.787226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid is a natural pentacyclic triterpenoid that exerts a potent anticancer effect. Furthermore, it is classified as a BCS class IV compound possessing low permeability and water solubility, consequently demonstrating limited bioavailability in addition to low therapeutic effectiveness. Nanoparticles are developed to modify the physical characteristics of drug and can often be produced in the range of 30-200 nm, providing highly effective cancer therapy due to the Enhanced Permeation and Retention (EPR) Effect. This study aims to provide a review of the efficacy and safety of various types of Ursolic Acid-loading nanoparticles within the setting of preclinical and clinical anticancer studies. This literature study used scoping review method, where the extracted data must comply with the journal inclusion criteria of within years of 2010-2020. The identification stage produced 237 suitable articles. Duplicate screening was then conducted followed by the initial selection of 18 articles that had been reviewed and extracted for data analysis. Based on this review, the use of nanoparticles can be seen to increase the anticancer efficacy of Ursolic Acid in terms of several parameters including pharmacokinetic data, survival rates and inhibition rates, as well as the absence of serious toxicity in preclinical and clinical trials in terms of several parameters including body weight, blood clinical chemistry, and organ histipathology. Based on this review, the use of nanoparticles has been able to increase the anticancer efficacy of Ursolic Acid, as well as show the absence of serious toxicity in preclinical and clinical trials. Evenmore, the liposome carrier provides development data that has reached the clinical trial phase I. The use of nanoparticle provides high potential for Ursolic Acid delivery in cancer therapy.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Ester Adelia Mianing
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Esti Hendradi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
15
|
Chiang CL, Cheng MH, Lin CH. From Nanoparticles to Cancer Nanomedicine: Old Problems with New Solutions. NANOMATERIALS 2021; 11:nano11071727. [PMID: 34209111 PMCID: PMC8308137 DOI: 10.3390/nano11071727] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Anticancer nanomedicines have been studied over 30 years, but fewer than 10 formulations have been approved for clinical therapy today. Despite abundant options of anticancer drugs, it remains challenging to have agents specifically target cancer cells while reducing collateral toxicity to healthy tissue. Nanocompartments that can be selective toward points deeply within malignant tissues are a promising concept, but the heterogeneity of tumor tissue, inefficiency of cargo loading and releasing, and low uniformity of manufacture required from preclinical to commercialization are major obstacles. Technological advances have been made in this field, creating engineered nanomaterials with improved uniformity, flexibility of cargo loading, diversity of surface modification, and less inducible immune responses. This review highlights the developmental process of approved nanomedicines and the opportunities for novel materials that combine insights of tumors and nanotechnology to develop a more effective nanomedicine for cancer patients.
Collapse
Affiliation(s)
- Chi-Ling Chiang
- Comprehensive Cancer Center, Division of Hematology, Ohio State University, Columbus, OH 43202, USA;
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43202, USA
| | - Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 552] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Rajpoot K. Lipid-based Nanoplatforms in Cancer Therapy: Recent Advances and Applications. Curr Cancer Drug Targets 2020; 20:271-287. [PMID: 31951180 DOI: 10.2174/1568009620666200115160805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh- 495009, India
| |
Collapse
|
18
|
Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
de Azambuja Borges CRL, Silva NO, Rodrigues MR, Germani Marinho MA, de Oliveira FS, Cassiana M, Horn AP, Parize AL, Flores DC, Clementin RM, de Lima VR. Dimiristoylphosphatidylcholine/genistein molecular interactions: A physico-chemical approach to anti-glioma drug delivery systems. Chem Phys Lipids 2019; 225:104828. [DOI: 10.1016/j.chemphyslip.2019.104828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022]
|
20
|
Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. NANOMATERIALS 2019; 9:nano9040638. [PMID: 31010180 PMCID: PMC6523119 DOI: 10.3390/nano9040638] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Many therapeutically active molecules are non-soluble in aqueous systems, chemically and biologically fragile or present severe side effects. Lipid-based nanoparticle (LBNP) systems represent one of the most promising colloidal carriers for bioactive organic molecules. Their current application in oncology has revolutionized cancer treatment by improving the antitumor activity of several chemotherapeutic agents. LBNPs advantages include high temporal and thermal stability, high loading capacity, ease of preparation, low production costs, and large-scale industrial production since they can be prepared from natural sources. Moreover, the association of chemotherapeutic agents with lipid nanoparticles reduces active therapeutic dose and toxicity, decreases drug resistance and increases drug levels in tumor tissue by decreasing them in healthy tissue. LBNPs have been extensively assayed in in vitro cancer therapy but also in vivo, with promising results in some clinical trials. This review summarizes the types of LBNPs that have been developed in recent years and the main results when applied in cancer treatment, including essential assays in patients.
Collapse
|
21
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
23
|
Sewing ACP, Lagerweij T, van Vuurden DG, Meel MH, Veringa SJE, Carcaboso AM, Gaillard PJ, Peter Vandertop W, Wesseling P, Noske D, Kaspers GJL, Hulleman E. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma. J Neurosurg Pediatr 2017; 19:518-530. [PMID: 28291423 DOI: 10.3171/2016.9.peds16152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic window for treating orthotopic brainstem tumors in mice. For tumors in the thalamus, therapeutic concentrations to slow down tumor growth could be reached. These data suggest that anatomical location determines the severity of toxicity after local delivery of therapeutic agents and that caution should be used when translating data from supratentorial CED studies to treat infratentorial tumors.
Collapse
Affiliation(s)
- A Charlotte P Sewing
- Departments of 1 Pediatric Oncology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Tonny Lagerweij
- Neurosurgery, and.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Dannis G van Vuurden
- Departments of 1 Pediatric Oncology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Michaël H Meel
- Departments of 1 Pediatric Oncology.,Neurosurgery, and.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Susanna J E Veringa
- Departments of 1 Pediatric Oncology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Angel M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu Barcelona, Spain
| | | | - W Peter Vandertop
- Neurosurgery, and.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Pieter Wesseling
- Pathology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam.,2-BBB Medicines, Leiden.,Department of Pathology, RadboudUMC, Nijmegen
| | - David Noske
- Neurosurgery, and.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Gertjan J L Kaspers
- Neuro-Oncology Research Group.,Academy of Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands ; and
| | - Esther Hulleman
- Departments of 1 Pediatric Oncology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| |
Collapse
|
24
|
Mangraviti A, Gullotti D, Tyler B, Brem H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J Control Release 2016; 240:443-453. [DOI: 10.1016/j.jconrel.2016.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/05/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
|
25
|
Piktel E, Niemirowicz K, Wątek M, Wollny T, Deptuła P, Bucki R. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology 2016; 14:39. [PMID: 27229857 PMCID: PMC4881065 DOI: 10.1186/s12951-016-0193-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Marzena Wątek
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-317, Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-317, Kielce, Poland
| | - Piotr Deptuła
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland. .,Department of Physiology, Pathophysiology and Immunology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Al. IX Wieków Kielc 19, 25-317, Kielce, Poland.
| |
Collapse
|
26
|
Cardoso A, Guedes J, Cardoso A, Morais C, Cunha P, Viegas A, Costa R, Jurado A, Pedroso de Lima M. Recent Trends in Nanotechnology Toward CNS Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:1-40. [DOI: 10.1016/bs.irn.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|