1
|
Peng Y, Zhang P, Mei W, Zeng C. Exploring FGFR signaling inhibition as a promising approach in breast cancer treatment. Int J Biol Macromol 2024; 267:131524. [PMID: 38608977 DOI: 10.1016/j.ijbiomac.2024.131524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
As our grasp of cancer genomics deepens, we are steadily progressing towards the domain of precision medicine, where targeted therapy stands out as a revolutionary breakthrough in the landscape of cancer therapeutics. The fibroblast growth factor receptors (FGFR) pathway has been unveiled as a fundamental instigator in the pathophysiological mechanisms underlying breast carcinoma, paving the way for the exhilarating development of precision-targeted therapeutics. In the pursuit of exploring inhibitors that specifically target the FGFR signaling pathways, a multitude of kinase inhibitors targeting FGFR has been assiduously engineered to address the heterogeneous landscape of human malignancies. This review offers an exhaustive exploration of aberrations within the FGFR pathway and their functional implications in breast cancer. Additionally, we delve into cutting-edge therapeutic approaches for the treatment of breast cancer patients bearing FGFR alterations and the management of toxicity associated with FGFR inhibitors. Furthermore, our contemplation of the evolution of cutting-edge FGFR inhibitors foresees their potential to spearhead innovative therapeutic approaches in the ongoing combat against cancer.
Collapse
Affiliation(s)
- Yan Peng
- Department of Obstetrics, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China; Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China.
| |
Collapse
|
2
|
Angus L, Smid M, Wilting SM, Bos MK, Steeghs N, Konings IRHM, Tjan-Heijnen VCG, van Riel JMGH, van de Wouw AJ, CPCT Consortium, Cuppen E, Lolkema MP, Jager A, Sleijfer S, Martens JWM. Genomic Alterations Associated with Estrogen Receptor Pathway Activity in Metastatic Breast Cancer Have a Differential Impact on Downstream ER Signaling. Cancers (Basel) 2023; 15:4416. [PMID: 37686693 PMCID: PMC10487136 DOI: 10.3390/cancers15174416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mutations in the estrogen receptor gene (ESR1), its transcriptional regulators, and the mitogen-activated protein kinase (MAPK) pathway are enriched in patients with endocrine-resistant metastatic breast cancer (MBC). Here, we integrated whole genome sequencing with RNA sequencing data from the same samples of 101 ER-positive/HER2-negative MBC patients who underwent a tumor biopsy prior to the start of a new line of treatment for MBC (CPCT-02 study, NCT01855477) to analyze the downstream effects of DNA alterations previously linked to endocrine resistance, thereby gaining a better understanding of the associated mechanisms. Hierarchical clustering was performed using expression of ESR1 target genes. Genomic alterations at the DNA level, gene expression levels, and last administered therapy were compared between the identified clusters. Hierarchical clustering revealed two distinct clusters, one of which was characterized by increased expression of ESR1 and its target genes. Samples in this cluster were significantly enriched for mutations in ESR1 and amplifications in FGFR1 and TSPYL. Patients in the other cluster showed relatively lower expression levels of ESR1 and its target genes, comparable to ER-negative samples, and more often received endocrine therapy as their last treatment before biopsy. Genes in the MAPK-pathway, including NF1, and ESR1 transcriptional regulators were evenly distributed. In conclusion, RNA sequencing identified a subgroup of patients with clear expression of ESR1 and its downstream targets, probably still benefiting from ER-targeting agents. The lower ER expression in the other subgroup might be partially explained by ER activity still being blocked by recently administered endocrine treatment, indicating that biopsy timing relative to endocrine treatment needs to be considered when interpreting transcriptomic data.
Collapse
Affiliation(s)
- Lindsay Angus
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Manouk K. Bos
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
| | - Inge R. H. M. Konings
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Vivianne C. G. Tjan-Heijnen
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | | | - Agnes J. van de Wouw
- Department of Medical Oncology, VieCuri Medical Center, 5912 BL Venlo, The Netherlands;
| | - CPCT Consortium
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- Hartwig Medical Foundation, 1098 XH Amsterdam, The Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| |
Collapse
|
3
|
Liao M, Zhou J, Wride K, Lepley D, Cameron T, Sale M, Xiao J. Population Pharmacokinetic Modeling of Lucitanib in Patients with Advanced Cancer. Eur J Drug Metab Pharmacokinet 2022; 47:711-723. [PMID: 35844029 PMCID: PMC9399017 DOI: 10.1007/s13318-022-00773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Background Lucitanib is an oral, potent, selective inhibitor of the tyrosine kinase activity of vascular endothelial growth factor receptors 1‒3, fibroblast growth factor receptors 1‒3, and platelet-derived growth factor receptors alpha/beta. Objective We aimed to develop a population pharmacokinetics (PopPK) model for lucitanib in patients with advanced cancers. Methods PopPK analyses were based on intensive and sparse oral pharmacokinetic data from 5 phase 1/2 clinical studies of lucitanib in a total of 403 patients with advanced cancers. Lucitanib was administered at 5‒30 mg daily doses as 1 of 2 immediate-release oral formulations: a film-coated tablet or a hard gelatin capsule. Results Lucitanib pharmacokinetics were best described by a 2-compartment model with zero-order release into the dosing compartment, followed by first-order absorption and first-order elimination. Large between-subject pharmacokinetic variability was partially explained by body weight. No effects of demographics or tumor type on lucitanib pharmacokinetics were observed. The model suggested that the formulation impacted release duration (tablet, 0.243 h; capsule, 0.814 h), but the effect was not considered clinically meaningful. No statistically significant effects were detected for concomitant cytochrome P450 (CYP) 3A4 inhibitors or inducers, CYP2C8 or P-glycoprotein inhibitors, serum albumin, mild/moderate renal impairment, or mild hepatic impairment. Concomitant proton pump inhibitors had no clinically significant effect on lucitanib absorption. Conclusions The PopPK model adequately described lucitanib pharmacokinetics. High between-subject pharmacokinetic variability supports a safety-based dose-titration strategy currently being used in an ongoing clinical study of lucitanib to optimize drug exposure and clinical benefit. Trial Registration ClinicalTrials.gov Identifier: NCT01283945, NCT02053636, ISRCTN23201971, NCT02202746, NCT02109016. Supplementary Information The online version contains supplementary material available at 10.1007/s13318-022-00773-w.
Collapse
Affiliation(s)
- Mingxiang Liao
- Clovis Oncology, Inc., 5500 Flatiron Pkwy, Boulder, CO, 80301, USA
| | | | - Kenton Wride
- Clovis Oncology, Inc., 5500 Flatiron Pkwy, Boulder, CO, 80301, USA
| | - Denise Lepley
- Clovis Oncology, Inc., 5500 Flatiron Pkwy, Boulder, CO, 80301, USA
| | | | | | - Jim Xiao
- Clovis Oncology, Inc., 5500 Flatiron Pkwy, Boulder, CO, 80301, USA.
| |
Collapse
|
4
|
Pérez Piñero C, Giulianelli S, Lamb CA, Lanari C. New Insights in the Interaction of FGF/FGFR and Steroid Receptor Signaling in Breast Cancer. Endocrinology 2022; 163:6491899. [PMID: 34977930 DOI: 10.1210/endocr/bqab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/19/2022]
Abstract
Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
- Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, U9120ACD Puerto Madryn, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| |
Collapse
|
5
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
6
|
Zhang Y, Luo F, Ma YX, Liu QW, Yang YP, Fang WF, Huang Y, Zhou T, Li J, Pan HM, Yang L, Qin SK, Zhao HY, Zhang L. OUP accepted manuscript. Oncologist 2022; 27:e453-e462. [PMID: 35445718 PMCID: PMC9177108 DOI: 10.1093/oncolo/oyab076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Fan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yu-Xiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Qian-Wen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yun-Peng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Wen-Feng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Jin Li
- Department of Medical Oncology, Tongji University Shanghai East Hospital, Shanghai, People’s Republic of China
| | - Hong-Ming Pan
- Department of Internal Medical Oncology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, People’s Republic of China
| | - Lei Yang
- Haihe Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Shu-Kui Qin
- Shu-Kui Qin, PLA Cancer Center of Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China;
| | - Hong-Yun Zhao
- Hong-Yun Zhao, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, People’s Republic of China;
| | - Li Zhang
- Corresponding authors: Li Zhang, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, People’s Republic of China;
| |
Collapse
|
7
|
Mazumder A, Shiao S, Haricharan S. HER2 Activation and Endocrine Treatment Resistance in HER2-negative Breast Cancer. Endocrinology 2021; 162:6329618. [PMID: 34320193 PMCID: PMC8379900 DOI: 10.1210/endocr/bqab153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/19/2022]
Abstract
The lethality of estrogen receptor alpha positive (ER+) breast cancer, which is often considered to have better prognosis than other subtypes, is defined by resistance to the standard of care endocrine treatment. Relapse and metastasis are inevitable in almost every patient whose cancer is resistant to endocrine treatment. Therefore, understanding the underlying causes of treatment resistance remains an important biological and clinical focus of research in this area. Growth factor receptor pathway activation, specifically HER2 activation, has been identified as 1 mechanism of endocrine treatment resistance across a range of experimental model systems. However, clinical trials conducted to test whether targeting HER2 benefits patients with endocrine treatment-resistant ER+ breast cancer have consistently and disappointingly shown mixed results. One reason for the failure of these clinical trials could be the complexity of crosstalk between ER, HER2, and other growth factor receptors and the fluidity of HER2 activation in these cells, which makes it challenging to identify stratifiers for this targeted intervention. In the absence of stratifiers that can be assayed at diagnosis to allow prospective tailoring of HER2 inhibition to the right patients, clinical trials will continue to disappoint. To understand stratifiers, it is important that the field invests in key understudied areas of research including characterization of the tumor secretome and receptor activation in response to endocrine treatment, and mapping the ER-HER2 growth factor network in the normal and developing mammary gland. Understanding these mechanisms further is critical to improving outcomes for the hard-to-treat endocrine treatment-resistant ER+ breast cancer cohort.
Collapse
Affiliation(s)
- Aloran Mazumder
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stephen Shiao
- Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Svasti Haricharan
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence: Svasti Haricharan, PhD, Sanford Burnham Prebys, 10901 N Torrey Pines Rd, La Jolla, CA, USA.
| |
Collapse
|
8
|
Mavratzas A, Marmé F. Treatment of Luminal Metastatic Breast Cancer beyond CDK4/6 Inhibition: Is There a Standard of Care in Clinical Practice? Breast Care (Basel) 2021; 16:115-128. [PMID: 34012366 PMCID: PMC8114049 DOI: 10.1159/000514561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND CDK4/6 inhibitors have become the standard for first-line treatment of metastatic luminal breast cancer based on consistent data from several phase 3 trials demonstrating clinically meaningful improvement of progression-free as well as overall survival. In addition, they are about to become a part of adjuvant treatment for patients with high-risk luminal disease based on positive results from the first randomized phase 3 trial on abemaciclib. Nevertheless, the majority of patients with advanced or metastatic luminal breast cancer and prospectively a relevant proportion of patients treated in the adjuvant setting will eventually develop resistance to this endocrine based combination within 12-36 months, depending on the line of treatment. CONCLUSION Potential subsequent therapies include PI3K inhibitors, mTOR inhibitors, endocrine monotherapy, PARP inhibitors, and chemotherapy. However, these therapies have mainly been developed in the pre-CDK4/6 inhibitor era and little is known about potential cross-resistance. The concept of continuing CDK4/6 inhibition beyond progression is supported by some preclinical data, but to date there is very limited clinical evidence to support this strategy. Therefore, treatment of metastatic luminal breast cancer after progression on CDK4/6 inhibitors remains a challenge. KEY MESSAGES Here we review current evidence from pro- and retrospective studies and give an outlook on future developments with respect to novel therapeutic agents, including oral SERD and AKT inhibitors, which have the potential to change the therapeutic landscape in the future. Furthermore, clinical treatment algorithms and current research will also be discussed.
Collapse
Affiliation(s)
- Athanasios Mavratzas
- Section of Conservative Gynecologic Oncology, Experimental and Translational Gynecologic Oncology, Medical Faculty Mannheim, Heidelberg University, Department of Obstetrics and Gynecology, University Hospital Mannheim, Mannheim, Germany
| | | |
Collapse
|
9
|
Agrawal S, Maity S, AlRaawi Z, Al-Ameer M, Kumar TKS. Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Curr Drug Targets 2021; 22:214-240. [PMID: 33045958 DOI: 10.2174/1389450121999201012201926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Zeina AlRaawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | | |
Collapse
|
10
|
Mouron S, Manso L, Caleiras E, Rodriguez-Peralto JL, Rueda OM, Caldas C, Colomer R, Quintela-Fandino M, Bueno MJ. FGFR1 amplification or overexpression and hormonal resistance in luminal breast cancer: rationale for a triple blockade of ER, CDK4/6, and FGFR1. Breast Cancer Res 2021; 23:21. [PMID: 33579347 PMCID: PMC7881584 DOI: 10.1186/s13058-021-01398-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND FGFR1 amplification, but not overexpression, has been related to adverse prognosis in hormone-positive breast cancer (HRPBC). Whether FGFR1 overexpression and amplification are correlated, what is their distribution among luminal A or B HRPBC, and if there is a potential different prognostic role for amplification and overexpression are currently unknown features. The role of FGFR1 inhibitors in HRPBC is also unclear. METHODS FGFR1 amplification (FISH) and overexpression (RNAscope) were investigated in a N = 251 HRPBC patients cohort and the METABRIC cohort; effects on survival and FISH-RNAscope concordance were determined. We generated hormonal deprivation resistant (LTED-R) and FGFR1-overexpressing cell line variants of the ER+ MCF7 and T47-D and the ER+, FGFR1-amplified HCC1428 cell lines. The role of ER, CDK4/6, and/or FGFR1 blockade alone or in combinations in Rb phosphorylation, cell cycle, and survival were studied. RESULTS FGFR1 overexpression and amplification was non-concordant in > 20% of the patients, but both were associated to a similar relapse risk (~ 2.5-fold; P < 0.05). FGFR1 amplification or overexpression occurred regardless of the luminal subtype, but the incidence was higher in luminal B (16.3%) than A (6.6%) tumors; P < 0.05. The Kappa index for overexpression and amplification was 0.69 (P < 0.001). Twenty-four per cent of the patients showed either amplification and/or overexpression of FGFR1, what was associated to a hazard ratio for relapse of 2.6 (95% CI 1.44-4.62, P < 0.001). In vitro, hormonal deprivation led to FGFR1 overexpression. Primary FGFR1 amplification, engineered mRNA overexpression, or LTED-R-acquired FGFR1 overexpression led to resistance against hormonotherapy alone or in combination with the CDK4/6 inhibitor palbociclib. Blocking FGFR1 with the kinase-inhibitor rogaratinib led to suppression of Rb phosphorylation, abrogation of the cell cycle, and resistance-reversion in all FGFR1 models. CONCLUSIONS FGFR1 amplification and overexpression are associated to similar adverse prognosis in hormone-positive breast cancer. Capturing all the patients with adverse prognosis-linked FGFR1 aberrations requires assessing both features. Hormonal deprivation leads to FGFR1 overexpression, and FGFR1 overexpression and/or amplification are associated with resistance to hormonal monotherapy or in combination with palbociclib. Both resistances are reverted with triple ER, CDK4/6, and FGFR1 blockade.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor
- Breast Neoplasms/diagnosis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/etiology
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/genetics
- Disease Management
- Disease Susceptibility
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Female
- Gene Amplification
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Middle Aged
- Molecular Targeted Therapy
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Estrogen/metabolism
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Silvana Mouron
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Luis Manso
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Oscar M Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ramon Colomer
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Medical Oncology Department, Hospital Universitario La Princesa, Madrid, Spain
- Endowed Chair of Personalized Precision Medicine, Universidad Autonoma de Madrid - Fundación Instituto Roche, Madrid, Spain
- Unidad de Investigación Clínica y Ensayos Clínicos (UICEC) of Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.
- Medical Oncology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain.
- Medical Oncology Department, Hospital Universitario Quiron Pozuelo, Madrid, Spain.
| | - Maria J Bueno
- Breast Cancer Clinical Research Unit, CNIO - Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
11
|
Recent advances of dual FGFR inhibitors as a novel therapy for cancer. Eur J Med Chem 2021; 214:113205. [PMID: 33556787 DOI: 10.1016/j.ejmech.2021.113205] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor receptor (FGFR) includes four highly conserved transmembrane receptor tyrosine kinases (FGFR1-4). FGF and FGFR regulate many biological processes, such as angiogenesis, wound healing and tissue regeneration. The abnormal expression of FGFR is related to the tumorigenesis, tumor progression and drug resistance of anti-tumor treatments in many types of tumors. Nowadays there are many anti-cancer drugs targeting FGFR. However, traditional single-target anti-tumor drugs are easy to acquire drug resistance. The therapeutic effect can be enhanced by simultaneously inhibiting FGFR and another target (such as VEGFR, EGFR, PI3K, CSF-1R, etc.). We know drug combination can bring problems such as drug interactions. Therefore, the development of FGFR dual target inhibitors is an important direction. In this paper, we reviewed the research on dual FGFR inhibitors in recent years and made brief comments on them.
Collapse
|
12
|
Tarantino P, Morganti S, Curigliano G. Biologic therapy for advanced breast cancer: recent advances and future directions. Expert Opin Biol Ther 2020; 20:1009-1024. [PMID: 32255704 DOI: 10.1080/14712598.2020.1752176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Advanced breast cancer (ABC) is a leading cause of mortality, morbidity, and disability in women worldwide. For decades, treatment of ABC has relied on chemotherapy and endocrine treatments (ET), until HER2 was recognized as a 'druggable' target in the 1990s. Thereafter, various anti-HER2 drugs have been approved for the HER2-positive subtype, but only in the last few years, biologic agents targeting different pathways have entered the therapeutic arsenal of luminal and triple-negative cancers. AREAS COVERED The purpose of the present review is to recapitulate the most promising novel biologic agents being developed for the treatment of ABC. New drugs for all breast cancer subtypes are discussed, as well as some potential future directions in ABC treatment. EXPERT OPINION Several biologic drugs have been recently approved, revolutionizing ABC treatment algorithms: key examples are CDK4/6-inhibitors and the PI3K-inhibitor alpelisib for endocrine-positive ABC; atezolizumab for triple-negative cancers; two PARP-inhibitors for HER2-negative germinal BRCA-mutated cancers. Additionally, multiple drugs are demonstrating activity in late-phase clinical trials for all subtypes. While some of these represent pharmacological evolutions of previously approved drugs, some others might pave the way for new paradigms in ABC, challenging both its classification and current treatment algorithms.
Collapse
Affiliation(s)
- Paolo Tarantino
- European Institute of Oncology, IRCCS, Division of Early Drug Development for Innovative Therapies , Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan , Milan, Italy
| | - Stefania Morganti
- European Institute of Oncology, IRCCS, Division of Early Drug Development for Innovative Therapies , Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan , Milan, Italy
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Division of Early Drug Development for Innovative Therapies , Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan , Milan, Italy
| |
Collapse
|
13
|
Morganti S, Curigliano G. Moving beyond endocrine therapy for luminal metastatic breast cancer in the precision medicine era: looking for new targets. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1720508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Stefania Morganti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Hui R, Pearson A, Cortes J, Campbell C, Poirot C, Azim HA, Fumagalli D, Lambertini M, Daly F, Arahmani A, Perez-Garcia J, Aftimos P, Bedard PL, Xuereb L, Scheepers ED, Vicente M, Goulioti T, Loibl S, Loi S, Pierrat MJ, Turner NC, Andre F, Curigliano G. Lucitanib for the Treatment of HR+/HER2− Metastatic Breast Cancer: Results from the Multicohort Phase II FINESSE Study. Clin Cancer Res 2019; 26:354-363. [DOI: 10.1158/1078-0432.ccr-19-1164] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
|
15
|
Quintela-Fandino M, Apala JV, Malon D, Mouron S, Hornedo J, Gonzalez-Cortijo L, Colomer R, Guerra J. Nintedanib plus letrozole in early breast cancer: a phase 0/I pharmacodynamic, pharmacokinetic, and safety clinical trial of combined FGFR1 and aromatase inhibition. Breast Cancer Res 2019; 21:69. [PMID: 31126332 PMCID: PMC6534834 DOI: 10.1186/s13058-019-1152-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The combined use of a FGFR1 blocker and aromatase inhibitors is appealing for treating breast cancer patients with FGFR1 amplification. However, no pharmacodynamic studies have addressed the effects of this combined target modulation. We conducted a phase 0/I clinical trial in an adjuvant setting, with the goal of obtaining pharmacodynamic proof of the effects of combined aromatase and FGFR1 inhibition and to establish the RP2D for nintedanib combined with letrozole. PATIENTS AND METHODS Women with early-stage luminal breast cancer were eligible for enrollment in the study. Dose level 1 was nintedanib (150 mg/bid) plus letrozole (2.5 mg/day) administered for a single 28-day cycle (DLT assessment period), followed by a classic 3 + 3 schedule. FGF23 and 17-B-estradiol levels were determined on days 0 and 15; pharmacokinetic parameters were assessed on days 1 and 28. Patients were allowed to continue treatment for 6 cycles. The primary study endpoint was a demonstration of FGFR1 modulation (defined as a 25% increase in the plasma FGF23 level). RESULTS A total of 19 patients were enrolled in the study (10 in the expansion cohort following dose escalation). At the RP2D (nintedanib 200 mg/bid plus letrozole 2.5 mg/day), we observed a 55% mean increase in the plasma FGF23 level, and 81.2% of the patients had no detectable level of 17-B-estradiol in their plasma (87.5% of the patients treated with letrozole alone). Nintedanib and letrozole displayed a pharmacokinetic interaction that led to three- and twofold increases in their respective plasma concentrations. Most G3 toxic events (5 out of 6: 2 diarrhea and 3 hypertransaminasemia) occurred subsequent to the DLT assessment period. CONCLUSION Combined treatment with nintedanib (200 mg/bid) plus letrozole (2.5 mg/day) effectively suppressed FGFR1 and aromatase activity, and these respective doses can be used as starting doses in any subsequent trials. However, drug-drug interactions may produce tolerability issues when these drugs are co-administered for an extended time period (e.g., 6 months). Patients enrolled in future trials with these drugs should be carefully monitored for their FGF23 levels and signs of toxicity, and those findings should guide individualized treatment decisions. TRIAL REGISTRATION This trial was registered at www.clinicaltrials.gov under reg. # NCT02619162, on December 2, 2015.
Collapse
Affiliation(s)
- Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, CNIO–Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
- Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
- Medical Oncology, Hospital Universitario Quiron, Pozuelo de Alarcon, Spain
| | - Juan V. Apala
- Breast Cancer Clinical Research Unit, CNIO–Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
- Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| | - Diego Malon
- Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| | - Silvana Mouron
- Breast Cancer Clinical Research Unit, CNIO–Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Javier Hornedo
- Medical Oncology, Hospital Universitario Quiron, Pozuelo de Alarcon, Spain
| | | | - Ramon Colomer
- Medical Oncology, Hospital Universitario La Princesa, Madrid, Spain
| | - Juan Guerra
- Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| |
Collapse
|