1
|
Rathi G, Shamkuwar PB, Rathi K, Ranazunjare R, Kulkarni S. Contemporary and prospective use of azathioprine (AZA) in viral, rheumatic, and dermatological disorders: a review of pharmacogenomic and nanotechnology applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3183-3197. [PMID: 39495265 DOI: 10.1007/s00210-024-03569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Azathioprine (AZA) has been extensively used for immunomodulatory effects in autoimmune disorders and transplantation. This article is proposed to review the contemporary and prospective use of AZA in viral, rheumatic, and dermatological disorders. The primary objective is to draw attention to possible developments in regards to AZA application in recent years, with an emphasis on the use of pharmacogenomics and nanotechnology to improve its efficacy in practice. This study reveals that AZA, having the active metabolites 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), may be useful in the treatment of systemic lupus erythematosus (SLE), pemphigus vulgaris, and psoriasis. Pharmacogenomic testing of thiopurine methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15) genotypes minimizes the occurrence of myelosuppression. Furthermore, new formulations of AZA using biocompatible polymers and nanoparticles for drug delivery were reported to improve its efficacy and lower systemic toxicity. This paper aims to establish the multifunctional nature of AZA in modern medicine, thus emphasizing its potential for other applications. Through the combination of pharmacogenomic analysis along with nanotechnology application, AZA makes the promise of enhancing patients' treatment efficacy and extending the stock of medical information available. These advancements offer new possibilities for application of precision medicine and improvements in the use of AZA therapy.
Collapse
Affiliation(s)
- Gulshan Rathi
- Department of Pharmaceutics, VSS Institute of Pharmacy, Badnapur, Maharashtra, India.
| | - Prashant B Shamkuwar
- Department of Pharmacognosy, Government College of Pharmacy, Chhatrapati Sambhajinagar, Maharashtra, India
| | - Karishma Rathi
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Ruchita Ranazunjare
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Soham Kulkarni
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| |
Collapse
|
2
|
Chadli Z, Hannachi I, Ben Belgacem M, Guediche A, Ben Romdhane H, Kerkeni E, Hamdi L, Slama A, Chaabane A, Ben Fredj N, Boughattas NA, Safer L, Aouam K. Effects of genetic and clinical factors on thiopurine drugs pharmacokinetics in Tunisian patients. Pharmacogenomics 2024; 25:441-450. [PMID: 39382000 PMCID: PMC11492722 DOI: 10.1080/14622416.2024.2406739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Aim: Thiopurine drugs are used in the treatment of various diseases including inflammatory bowel disease. Thiopurine-S-methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) are the crucial enzymes involved in thiopurines metabolism. The present study aims to investigate in Tunisian patients, the influence of genetic and nongenetic factors on thiopurine drugs pharmacokinetics.Experimental approach: We have included patients having received thiopurine drugs and have undergone 6-thioguanine nucleotides (6-TGN) concentration monitoring. The identification of TPMT and ITPA polymorphisms was performed using the polymerase chain reaction-restriction fragment length polymorphism method. The impact of both genetic and nongenetic factors on the variability of the 6-TGN C/D ratio was analyzed through a stepwise multiple regression model.Key results: One hundred and twenty-three patients were included in the study. For TPMT, the most frequent variant allele was TPMT*3B (3.3%). For ITPA, the predominant polymorphism was the c.IVS2 + 21A> C (7%). We have demonstrated that only gender, the TPMT*3A and TPMT*3C alleles are significantly involved on the variability of thiopurines pharmacokinetics.Conclusion: Our study is the first to evaluate, in African patients, the impact of both genetic and nongenetic factors on the thiopurine drugs pharmacokinetics. Considering the narrow therapeutic range of these drugs, TPMT genotyping combined with 6-TGN blood concentration monitoring may enhance their efficacy and safety.
Collapse
Affiliation(s)
- Zohra Chadli
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Ibtissem Hannachi
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Manel Ben Belgacem
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Arwa Guediche
- Gastroenterology Department, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Haifa Ben Romdhane
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Emna Kerkeni
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Lamia Hamdi
- Laboratory of Hematology, University Hospital of Monastir, Tunisia
| | - Ahlem Slama
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Amel Chaabane
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Nadia Ben Fredj
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Naceur A Boughattas
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Leila Safer
- Gastroenterology Department, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| | - Karim Aouam
- Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia
| |
Collapse
|
3
|
Bayoumy AB, Ansari AR, Mulder CJJ, Schmiegelow K, Florin T, De Boer NKH. Innovating Thiopurine Therapeutic Drug Monitoring: A Systematic Review and Meta-Analysis on DNA-Thioguanine Nucleotides (DNA-TG) as an Inclusive Biomarker in Thiopurine Therapy. Clin Pharmacokinet 2024; 63:1089-1109. [PMID: 39031224 PMCID: PMC11343975 DOI: 10.1007/s40262-024-01393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Thioguanine (TG), azathioprine (AZA), and mercaptopurine (MP) are thiopurine prodrugs commonly used to treat diseases, such as leukemia and inflammatory bowel disease (IBD). 6-thioguanine nucleotides (6-TGNs) have been commonly used for monitoring treatment. High levels of 6-TGNs in red blood cells (RBCs) have been associated with leukopenia, the cutoff levels that predict this side effect remain uncertain. Thiopurines are metabolized and incorporated into leukocyte DNA. Measuring levels of DNA-incorporated thioguanine (DNA-TG) may be a more suitable method for predicting clinical response and toxicities such as leukopenia. Unfortunately, most methodologies to assay 6-TGNs are unable to identify the impact of NUDT15 variants, effecting mostly ethnic populations (e.g., Chinese, Indian, Malay, Japanese, and Hispanics). DNA-TG tackles this problem by directly measuring thioguanine in the DNA, which can be influenced by both TPMT and NUDT15 variants. While RBC 6-TGN concentrations have traditionally been used to optimize thiopurine therapy due to their ease and affordability of measurement, recent developments in liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have made measuring DNA-TG concentrations in lymphocytes accurate, reproducible, and affordable. The objective of this systematic review was to assess the current evidence of DNA-TG levels as marker for thiopurine therapy, especially with regards to NUDT15 variants. METHODS A systematic review and meta-analysis were performed on the current evidence for DNA-TG as a marker for monitoring thiopurine therapy, including methods for measurement and the illustrative relationship between DNA-TG and various gene variants (such as TPMT, NUDT15, ITPA, NT5C2, and MRP4). PubMed and Embase were systematically searched up to April 2024 for published studies, using the keyword "DNA-TG" with MeSH terms and synonyms. The electronic search strategy was augmented by a manual examination of references cited in articles, recent reviews, editorials, and meta-analyses. A meta-analysis was performed using R studio 4.1.3. to investigate the difference between the coefficients (Fisher's z-transformed correlation coefficient) of DNA-TG and 6-TGNs levels. A meta-analysis was performed using RevMan version 5.4 to investigate the difference in DNA-TG levels between patients with or without leukopenia using randomized effect size model. The risk of bias was assessed using the Newcastle-Ottowa quality assessment scale. RESULTS In this systematic review, 21 studies were included that measured DNA-TG levels in white blood cells for either patients with ALL (n = 16) or IBD (n = 5). In our meta-analysis, the overall mean difference between patients with leukopenia (ALL + IBD) versus no leukopenia was 134.15 fmol TG/µg DNA [95% confidence interval (CI) (83.78-184.35), P < 0.00001; heterogeneity chi squared of 5.62, I2 of 47%]. There was a significant difference in DNA-TG levels for patients with IBD with and without leukopenia [161.76 fmol TG/µg DNA; 95% CI (126.23-197.29), P < 0.00001; heterogeneity chi squared of 0.20, I2 of 0%]. No significant difference was found in DNA-TG level between patients with ALL with or without leukopenia (57.71 fmol TG/µg DNA [95% CI (- 22.93 to 138.35), P < 0.80]). DNA-TG monitoring was found to be a promising method for predicting relapse rates in patients with ALL, and DNA-TG levels are likely a better predictor for leukopenia in patients with IBD than RBC 6-TGNs levels. DNA-TG levels have been shown to correlate with various gene variants (TPMT, NUDT15, ITPA, and MRP4) in various studies, points to its potential as a more informative marker for guiding thiopurine therapy across diverse genetic backgrounds. CONCLUSIONS This systematic review strongly supports the further investigation of DNA-TG as a marker for monitoring thiopurine therapy. Its correlation with treatment outcomes, such as relapse-free survival in ALL and the risk of leukopenia in IBD, underscores its role in enhancing personalized treatment approaches. DNA-TG effectively identifies NUDT15 variants and predicts late leukopenia in patients with IBD, regardless of their NUDT15 variant status. The recommended threshold for late leukopenia prediction in patients with IBD with DNA-TG is suggested to be between 320 and 340 fmol/µg DNA. More clinical research on DNA-TG implementation is mandatory to improve patient care and to improve inclusivity in thiopurine treatment.
Collapse
Affiliation(s)
- Ahmed B Bayoumy
- Department of Internal Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands.
| | - A R Ansari
- Department of Gastroenterology and Hepatology, London Bridge Hospital, London, UK
| | - C J J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - K Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The Juliane Marie Centre, The University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, The Faculty of Health Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Timothy Florin
- Mater Research, University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - N K H De Boer
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Guo HL, Zhao YT, Wang WJ, Dong N, Hu YH, Zhang YY, Chen F, Zhou L, Li T. Optimizing thiopurine therapy in children with acute lymphoblastic leukemia: A promising “MINT” sequencing strategy and therapeutic “DNA-TG” monitoring. Front Pharmacol 2022; 13:941182. [PMID: 36238550 PMCID: PMC9552076 DOI: 10.3389/fphar.2022.941182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Thiopurines, including thioguanine (TG), 6-mercaptopurine (6-MP), and azathioprine (AZA), are extensively used in clinical practice in children with acute lymphoblastic leukemia (ALL) and inflammatory bowel diseases. However, the common adverse effects caused by myelosuppression and hepatotoxicity limit their application. Metabolizing enzymes such as thiopurine S-methyltransferase (TPMT), nudix hydrolase 15 (NUDT15), inosine triphosphate pyrophosphohydrolase (ITPA), and drug transporters like multidrug resistance-associated protein 4 (MRP4) have been reported to mediate the metabolism and transportation of thiopurine drugs. Hence, the single nucleotide polymorphisms (SNPs) in those genes could theoretically affect the pharmacokinetics and pharmacological effects of these drugs, and might also become one of the determinants of clinical efficacy and adverse effects. Moreover, long-term clinical practices have confirmed that thiopurine-related adverse reactions are associated with the systemic concentrations of their active metabolites. In this review, we mainly summarized the pharmacogenetic studies of thiopurine drugs. We also evaluated the therapeutic drug monitoring (TDM) research studies and focused on those active metabolites, hoping to continuously improve monitoring strategies for thiopurine therapy to maximize therapeutic efficacy and minimize the adverse effects or toxicity. We proposed that tailoring thiopurine dosing based on MRP4, ITPA, NUDT15, and TMPT genotypes, defined as “MINT” panel sequencing strategy, might contribute toward improving the efficacy and safety of thiopurines. Moreover, the DNA-incorporated thioguanine nucleotide (DNA-TG) metabolite level was more suitable for red cell 6-thioguanine nucleotide (6-TGNs) monitoring, which can better predict the efficacy and safety of thiopurines. Integrating the panel “MINT” sequencing strategy with therapeutic “DNA-TG” monitoring would offer a new insight into the precision thiopurine therapy for pediatric acute lymphoblastic leukemia patients.
Collapse
Affiliation(s)
- Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue-Tao Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Visiting Graduate Student from School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, China
| | - Wei-Jun Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Visiting Graduate Student from School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, China
| | - Na Dong
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
- School of Institute of Pharmaceutical Science, Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| | - Li Zhou
- Hematology and Oncology Department, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| | - Tao Li
- Department of Solid Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| |
Collapse
|
5
|
Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations. Leukemia 2022; 36:1749-1758. [PMID: 35654820 PMCID: PMC9252897 DOI: 10.1038/s41375-022-01591-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/21/2023]
Abstract
Maintenance therapy (MT) with oral methotrexate (MTX) and 6-mercaptopurine (6-MP) is essential for the cure of acute lymphoblastic leukemia (ALL). MTX and 6-MP interfere with nucleotide synthesis and salvage pathways. The primary cytotoxic mechanism involves the incorporation of thioguanine nucleotides (TGNs) into DNA (as DNA-TG), which may be enhanced by the inhibition of de novo purine synthesis by other MTX/6-MP metabolites. Co-medication during MT is common. Although Pneumocystis jirovecii prophylaxis appears safe, the benefit of glucocorticosteroid/vincristine pulses in improving survival and of allopurinol to moderate 6-MP pharmacokinetics remains uncertain. Numerous genetic polymorphisms influence the pharmacology, efficacy, and toxicity (mainly myelosuppression and hepatotoxicity) of MTX and thiopurines. Thiopurine S-methyltransferase (encoded by TPMT) decreases TGNs but increases methylated 6-MP metabolites (MeMPs); similarly, nudix hydrolase 15 (encoded by NUDT15) also decreases TGNs available for DNA incorporation. Loss-of-function variants in both genes are currently used to guide MT, but do not fully explain the inter-patient variability in thiopurine toxicity. Because of the large inter-individual variations in MTX/6-MP bioavailability and metabolism, dose adjustments are traditionally guided by the degree of myelosuppression, but this does not accurately reflect treatment intensity. DNA-TG is a common downstream metabolite of MTX/6-MP combination chemotherapy, and a higher level of DNA-TG has been associated with a lower relapse hazard, leading to the development of the Thiopurine Enhanced ALL Maintenance (TEAM) strategy-the addition of low-dose (2.5-12.5 mg/m2/day) 6-thioguanine to the 6-MP/MTX backbone-that is currently being tested in a randomized ALLTogether1 trial (EudraCT: 2018-001795-38). Mutations in the thiopurine and MTX metabolism pathways, and in the mismatch repair genes have been identified in early ALL relapses, providing valuable insights to assist the development of strategies to detect imminent relapse, to facilitate relapse salvage therapy, and even to bring about changes in frontline ALL therapy to mitigate this relapse risk.
Collapse
|
6
|
Lee Y, Jang EJ, Yoon HY, Yee J, Gwak HS. Effect of ITPA Polymorphism on Adverse Drug Reactions of 6-Mercaptopurine in Pediatric Patients with Acute Lymphoblastic Leukemia: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2022; 15:ph15040416. [PMID: 35455413 PMCID: PMC9027773 DOI: 10.3390/ph15040416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
6-Mercaptopurine (6-MP) is a cornerstone of the maintenance regimen for pediatric acute lymphoblastic leukemia (ALL). Inosine triphosphate pyrophosphatase (ITPA) is considered a candidate pharmacogenetic marker that may affect metabolism and 6-MP-induced toxicities; however, the findings are inconsistent. Therefore, we attempted to evaluate the effect of ITPA 94C>A polymorphism on 6-MP-induced hematological toxicity and hepatotoxicity through a systematic review and meta-analysis. A literature search for qualifying studies was conducted using the PubMed, Web of Science, and Embase databases until October 2021. Overall, 10 eligible studies with 1072 pediatric ALL patients were included in this meta-analysis. The results indicated that ITPA 94C>A was significantly associated with 6-MP-induced neutropenia (OR 2.38, 95% CI: 1.56−3.62; p = 0.005) and hepatotoxicity (OR 1.98, 95% CI: 1.32−2.95; p = 0.0009); however, no significant association was found between the ITPA 94C>A variant and 6-MP-induced leukopenia (OR 1.75, 95% CI: 0.74−4.12; p = 0.20). This meta-analysis demonstrated that ITPA 94C>A polymorphism could affect 6-MP-induced toxicities. Our findings suggested that ITPA genotyping might help predict 6-MP-induced myelosuppression and hepatotoxicity.
Collapse
Affiliation(s)
- Yeonhong Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
- Department of Pharmacy, National Cancer Center, Goyang-si 10408, Korea
| | - Eun Jeong Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
| | - Ha-Young Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
| | - Hye-Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (E.J.J.); (H.-Y.Y.); (J.Y.)
- Correspondence: ; Tel.: +82-2-3277-4376; Fax: +82-2-3277-3051
| |
Collapse
|
7
|
FDA-Approved Drugs for Hematological Malignancies-The Last Decade Review. Cancers (Basel) 2021; 14:cancers14010087. [PMID: 35008250 PMCID: PMC8750348 DOI: 10.3390/cancers14010087] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Hematological malignancies are diseases involving the abnormal production of blood cells. The aim of the study is to collect comprehensive information on new drugs used in the treatment of blood cancers which have introduced into therapy in the last decade. The approved drugs were analyzed for their structures and their biological activity mechanisms. Abstract Hematological malignancies, also referred to as blood cancers, are a group of diseases involving abnormal cell growth and persisting in the blood, lymph nodes, or bone marrow. The development of new targeted therapies including small molecule inhibitors, monoclonal antibodies, bispecific T cell engagers, antibody-drug conjugates, recombinant immunotoxins, and, finally, Chimeric Antigen Receptor T (CAR-T) cells has improved the clinical outcomes for blood cancers. In this review, we summarized 52 drugs that were divided into small molecule and macromolecule agents, approved by the Food and Drug Administration (FDA) in the period between 2011 and 2021 for the treatment of hematological malignancies. Forty of them have also been approved by the European Medicines Agency (EMA). We analyzed the FDA-approved drugs by investigating both their structures and mechanisms of action. It should be emphasized that the number of targeted drugs was significantly higher (46 drugs) than chemotherapy agents (6 drugs). We highlight recent advances in the design of drugs that are used to treat hematological malignancies, which make them more effective and less toxic.
Collapse
|
8
|
Boonyawat B, Monsereenusorn C, Photia A, Lertvivatpong N, Kaewchaivijit V, Jindatanmanusan P, Rujkijyanont P. ITPA:c.94C>A and NUDT15:c.415C>T Polymorphisms and Their Relation to Mercaptopurine-Related Myelotoxicity in Childhood Leukemia in Thailand. APPLICATION OF CLINICAL GENETICS 2021; 14:341-351. [PMID: 34349542 PMCID: PMC8326781 DOI: 10.2147/tacg.s318912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Background Mercaptopurine is a key agent in childhood leukemia treatment. Genetic polymorphism in the genes involving thiopurine metabolisms is related to 6-MP related toxicity. Objective This study aimed to determine the prevalence of ITPA:c.94C>A and NUDT15:c.415C>T polymorphisms among Thai children diagnosed with leukemia and their association with mercaptopurine-related myelotoxicity. Methods Patients and survivors with a diagnosis of leukemia treated with mercaptopurine-containing chemotherapy regimens were enrolled. Clinical data and laboratory parameters during treatment as well as ITPA:c.94C>A and NUDT15:c.415C>T genotypes were analyzed. Results In all, 99 patients with acute leukemia or survivors were enrolled in the study. The prevalences of ITPA:c.94C>A, NUDT15:c.415C>T, and co-occurrence of ITPA:c.94C>A and NUDT15:c.415C>T polymorphisms were 34, 17, and 4%, respectively. Numbers of absolute neutrophil count (ANC) and platelet count significantly decreased among patients carrying NUDT15:c.415C>T compared with NUDT15 wild type patients with p-values<0.001 and 0.019, respectively. The differences were not observed among patients carrying ITPA:c.94C>A compared with ITPA wild type patients. According to multivariate GEE, NUDT15:c.415C>T and co-occurrence of ITPA:c.94C>A and NUDT15:c.415C>T had a significant negative effect on ANC during treatment (coefficient: −463.81; CI: −778.53, −149.09; p-value=0.004 and coefficient: −527.56; CI: −1045.65, −9.48; p-value=0.046). No significant effect of ITPA:c.94C>A on ANC during treatment was observed. Conclusion ITPA:c.94C>A and NUDT15:c.415C>T polymorphisms are common among Thai children with leukemia. A strong association with mercaptopurine-related myelotoxicity was observed among patients carrying either NUDT15:c.415C>T alone or combined with ITPA:c.94C>A.
Collapse
Affiliation(s)
- Boonchai Boonyawat
- Division of Medical Genetics, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Chalinee Monsereenusorn
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Apichat Photia
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Nawachai Lertvivatpong
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Varissara Kaewchaivijit
- Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Punyanuch Jindatanmanusan
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| | - Piya Rujkijyanont
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao College of Medicine and Phramongkutklao Hospital, Bangkok, Thailand
| |
Collapse
|
9
|
Dreisig K, Brünner ED, Marquart HV, Helt LR, Nersting J, Frandsen TL, Jonsson OG, Taskinen M, Vaitkeviciene G, Lund B, Abrahamsson J, Lepik K, Schmiegelow K. TPMT polymorphisms and minimal residual disease after 6-mercaptopurine post-remission consolidation therapy of childhood acute lymphoblastic leukaemia. Pediatr Hematol Oncol 2021; 38:227-238. [PMID: 33205673 DOI: 10.1080/08880018.2020.1842570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone marrow minimal residual disease (MRD) is the strongest predictor of relapse in children with acute lymphoblastic leukemia (ALL). 6-mercaptopurine (6MP) in ALL therapy has wide inter-individual variation in disposition and is strongly influenced by polymorphisms in the thiopurine methyltransferase (TPMT) gene. In 952 patients treated according to the NOPHO ALL2008 protocol, we explored the association between thiopurine disposition, TPMT genotypes and MRD levels after consolidation therapy with 6MP, high-dose methotrexate (HD-MTX), asparaginase, and vincristine. The levels of the cytotoxic DNA-incorporated thioguanine were significantly higher on day 70-79 in G460A/A719G TPMT heterozygous (TPMTHZ) compared to TPMT wild type (TPMTWT) patients (mean: 230.7 vs. 149.7 fmol/µg DNA, p = 0.002). In contrast, TPMT genotype did not associate with the end of consolidation MRD levels irrespective of randomization of the patients to fixed dose (25 mg/m2/day) or 6MP escalation (up to 50 or 75 mg/m2/day) during consolidation therapy.
Collapse
Affiliation(s)
- Karin Dreisig
- Pediatric Oncology research laboratory, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Emilie Damgaard Brünner
- Pediatric Oncology research laboratory, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne V Marquart
- The Tissue Typing Laboratory, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Louise Rold Helt
- Pediatric Oncology research laboratory, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jacob Nersting
- Pediatric Oncology research laboratory, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thomas Leth Frandsen
- Department of Pediatrics and adolescent medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Mervi Taskinen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children and Adolescents, Helsinki University Hospital, Helsinki, Finland
| | - Goda Vaitkeviciene
- Children's Hospital, Vilnius University Hospital Santaros Klinikos and Vilnius University, Vilnius, Lithuania
| | - Bendik Lund
- Department of Pediatrics, St. Olavs Hospital, Trondheim; Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Abrahamsson
- Department of Pediatrics, Institution for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Kjeld Schmiegelow
- Pediatric Oncology research laboratory, The University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics and adolescent medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Denmark
| |
Collapse
|
10
|
Wang DS, Yu CH, Lin CY, Chang YH, Lin KH, Lin DT, Jou ST, Lu MY, Chang HH, Lin SW, Chen HY, Yang YL. Childhood acute lymphoblastic leukemia mercaptopurine intolerance is associated with NUDT15 variants. Pediatr Res 2021; 89:217-222. [PMID: 32221476 DOI: 10.1038/s41390-020-0868-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Mercaptopurine-induced neutropenia can interrupt chemotherapy and expose patients to infection during childhood acute lymphoblastic leukemia (ALL) treatment. Previously, six candidate gene variants associated with mercaptopurine intolerance were reported. Herein, we investigated the association between the mean tolerable dose of mercaptopurine and these genetic variants in Taiwanese patients. METHODS In total, 294 children with ALL were treated at the National Taiwan University Hospital from April 1997 to December 2017. Germline variants were analyzed for NUDT15, SUCLA2, TPMT, ITPA, PACSIN2, and MRP4. Mean daily tolerable doses of mercaptopurine in the continuation phase of treatment were correlated with these genetic variants. RESULTS Mercaptopurine intolerance was significantly associated with polymorphisms in NUDT15 (P value < 0.0001). Patients with SUCLA2 variants received lower mercaptopurine doses (P value = 0.0119). The mean mercaptopurine doses did not differ among patients with TPMT, ITPA, MRP4, and PACSIN2 polymorphisms (P value = 0.9461, 0.5818, and 0.7951, respectively). After multivariable linear regression analysis, only NUDT15 variants retained their clinically significant correlation with mercaptopurine intolerance (P value < 0.0001). CONCLUSION In this cohort, the major genetic determinant of mercaptopurine intolerance was NUDT15 in Taiwanese patients. IMPACT NUDT15 causes mercaptopurine intolerance in children with ALL. The NUDT15 variant is a stronger predictor of mercaptopurine intolerance than TPMT in a Taiwanese cohort. This finding is similar with studies performed on Asian populations rather than Caucasians. Pre-emptive genotyping of the patients' NUDT15 before administering mercaptopurine may be more helpful than genotyping TPMT in Asians.
Collapse
Affiliation(s)
- Der-Shiun Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hsiang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dong-Tsamn Lin
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Abstract
Patients with inflammatory bowel disease (IBD) show large variability in disease course, and also treatment response. The variability in treatment response has led to many initiatives in search of genetic markers to optimize treatment and avoid severe side effects. This has been very successful for thiopurines, one of the drugs used to induce and maintain remission in IBD. However, for the newer treatment options for IBD, like biologicals, the search for genetic predictors has not yielded any candidate biomarkers with clinical utility. In this review, a summary of recent advances in pharmacogenetics focusing on thiopurines and anti-TNF agents is given.
Collapse
Affiliation(s)
- Bianca Jc van den Bosch
- Deparment of Clinical Genetics, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Marieke Jh Coenen
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Cardoso de Carvalho D, Pereira Colares Leitão L, Mello Junior FAR, Vieira Wanderley A, de Souza TP, Borges Andrade de Sá R, Cohen-Paes A, Rodrigues Fernandes M, Santos S, Salim Khayat A, Pimentel de Assumpção P, Pereira Carneiro dos Santos N. Association between the TPMT*3C (rs1142345) Polymorphism and the Risk of Death in the Treatment of Acute Lymphoblastic Leukemia in Children from the Brazilian Amazon Region. Genes (Basel) 2020; 11:genes11101132. [PMID: 32992962 PMCID: PMC7601477 DOI: 10.3390/genes11101132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the leading cause of death from pediatric cancer worldwide. However, marked ethnic disparities are found in the treatment of childhood ALL with less effective results and higher mortality rates being obtained in populations with a high level of Native American ancestry. Genetic variations of the patient can affect resistance to ALL chemotherapy and potentially play an important role in this disparity. In the present study, we investigated the association of 16 genetic polymorphisms with the cell and metabolic pathways of the chemotherapeutic agents used in the treatment of ALL with the risk of death in treating childhood ALL in patients with a high contribution of Amerindian ancestry, coming from the Brazilian Amazon. The study included 121 patients with B-cell ALL treated with the BFM-2002 protocol. We are the first to identify the association between the TPMT gene rs1142345 polymorphism and the high risk of death in treating childhood ALL. Patients with the CC genotype had an approximately 25.5 times higher risk of dying during treatment of the disease than patients with other genotypes (p = 0.019). These results may help elucidate how the patient's genetic characteristics contribute to the mortality disparity in populations with a high contribution of Native American ancestry. The rs1142345 variant of the TPMT gene could be used as a potential marker to early stratify patients at high risk of death in treating childhood ALL in the investigated population.
Collapse
Affiliation(s)
- Darlen Cardoso de Carvalho
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
| | - Luciana Pereira Colares Leitão
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
| | - Fernando Augusto Rodrigues Mello Junior
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
| | - Alayde Vieira Wanderley
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
- Departamento de Pediatria, Ophir Loyola Hospital, Belém 66063-240, Brazil
| | - Tatiane Piedade de Souza
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Roberta Borges Andrade de Sá
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
| | - Amanda Cohen-Paes
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
| | - Marianne Rodrigues Fernandes
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
| | - Sidney Santos
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - André Salim Khayat
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
| | - Paulo Pimentel de Assumpção
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
- João de Barros Barreto University Hospital, Universidade Federal do Pará, Belém 66063-023, Brazil
| | - Ney Pereira Carneiro dos Santos
- Oncology Research Nucleus, Universidade Federal do Pará, Belém 66063-023, Brazil; (D.C.d.C.); (L.P.C.L.); (F.A.R.M.J.); (A.V.W.); (R.B.A.d.S.); (A.C.-P.); (M.R.F.); (S.S.); (A.S.K.); (P.P.d.A.)
- Human and Medical Genetics Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Correspondence:
| |
Collapse
|
13
|
Bernsen EC, Hagleitner MM, Kouwenberg TW, Hanff LM. Pharmacogenomics as a Tool to Limit Acute and Long-Term Adverse Effects of Chemotherapeutics: An Update in Pediatric Oncology. Front Pharmacol 2020; 11:1184. [PMID: 32848787 PMCID: PMC7421781 DOI: 10.3389/fphar.2020.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
In the past decades, new cancer treatments have been introduced in pediatric oncology leading to improvement in clinical outcomes and survival rates. However, due to inter-individual differences, some children experience severe chemotherapy-induced toxicities or a poor clinical outcome. An explanation for the diversity in response to chemotherapy is genetic variation, leading to differences in expression and activity of metabolizing and transport enzymes as well as drug targets. Pharmacogenetic testing has emerged as a promising tool to predict and limit acute and long-term adverse effects in patients. However, in pediatric oncology, limited number of patients and a considerable diversity in study results complicate the interpretation of test results and its clinical relevance. With this review, we provide an overview of new developments over the past four years regarding relevant polymorphisms related to toxicity in pediatric oncology. The following chemotherapeutics and associated toxicities are discussed: alkylating agents, anthracyclines, asparaginase, methotrexate, platinum compounds, steroids, thiopurines, topoisomerase inhibitors, and vinca alkaloids. Our review identifies several questions regarding the role of genetic variants in chemotherapy-induced toxicities. Ambiguities in the literature stem from small population sizes, differences in (statistical) interpretation and variations in sequencing technologies as well as different clinical outcome definitions. Standardization of clinical outcome data and toxicity definitions within electronic health records combined with the increased availability of genomic sequence techniques in clinical practice will help to validate these models in upcoming years.
Collapse
Affiliation(s)
- Emma C. Bernsen
- Pharmacy, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Melanie M. Hagleitner
- Department of Pediatric Hemato-oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Theodorus W. Kouwenberg
- Department of Pediatric Hemato-oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| | - Lidwien M. Hanff
- Pharmacy, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
14
|
Wahlund M, Nilsson A, Kahlin AZ, Broliden K, Myrberg IH, Appell ML, Berggren A. The Role of TPMT, ITPA, and NUDT15 Variants during Mercaptopurine Treatment of Swedish Pediatric Patients with Acute Lymphoblastic Leukemia. J Pediatr 2020; 216:150-157.e1. [PMID: 31635813 DOI: 10.1016/j.jpeds.2019.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate the roles of thiopurine methyltransferase (TPMT), inosine triphosphatase (ITPA), and Nudix hydrolase 15 (NUDT15) in 6-mercaptopurine (6-MP) sensitivity during treatment of pediatric patients with acute lymphoblastic leukemia (ALL). STUDY DESIGN The study included 102 pediatric patients with ALL subject to the Nordic society Of Paediatric Haematology and Oncology (NOPHO) ALL-2000 and ALL-2008 protocols. Episodes of neutropenia and febrile neutropenia, TPMT sequence variants, as well as 6-MP end doses, were collected retrospectively from medical records. TPMT, ITPA, and NUDT15 sequence variants were analyzed using pyrosequencing. RESULTS TPMT variants were associated with a reduced risk of neutropenia and febrile neutropenia during the maintenance II period (P = .019 and P < .0001, respectively). In addition, a NUDT15 variant was associated with a lower end dose of 6-MP (P = .0097), but not with neutropenia and febrile neutropenia. ITPA variants were not associated with an increased risk of neutropenia, febrile neutropenia, nor lower end dose of 6-MP. However, when analyzing the entire treatment period, ITPA variants were associated with a decreased risk of febrile neutropenia. CONCLUSIONS White blood cell count-based dose adjustments are regularly performed for known TPMT- deficient patients and results in a reduced risk of neutropenia and febrile neutropenia. Also in NUDT15-deficient patients dose adjustments are performed as indicated by low end dose of 6-MP. ITPA-deficient patients had a decreased risk of febrile neutropenia when analyzing the entire treatment period. Our data suggest that NUDT15 plays an important role in 6-MP treatment and the results should be confirmed in larger cohorts. Future studies should also follow up whether white blood cell count-based dose adjustments affect the risk of relapse.
Collapse
Affiliation(s)
- Martina Wahlund
- Infectious Disease Unit, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nilsson
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Anna Zimdahl Kahlin
- Division of Drug Research, Department of Medical and Health Sciences, Linkoping University, Linkoping, Sweden
| | - Kristina Broliden
- Infectious Disease Unit, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Ida Hed Myrberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Malin Lindqvist Appell
- Division of Drug Research, Department of Medical and Health Sciences, Linkoping University, Linkoping, Sweden
| | - Anna Berggren
- Infectious Disease Unit, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
15
|
An intronic FTO variant rs16952570 confers protection against thiopurine-induced myelotoxicities in multiethnic Asian IBD patients. THE PHARMACOGENOMICS JOURNAL 2019; 20:505-515. [PMID: 31813937 DOI: 10.1038/s41397-019-0126-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/08/2022]
Abstract
Thiopurines are used in the treatment of inflammatory bowel disease (IBD) but remain clinically challenging to manage due to wide interpatient variability in clinical outcomes and adverse events. Apart from genetic variants in thiopurine S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) genes, polymorphisms in FTO alpha-ketoglutarate dependent dioxygenase (FTO) were found predictive of thiopurine-induced leukopenia, albeit with conflicting results. To clarify the role of FTO variants in a multiethnic Asian IBD cohort, we recruited 149 patients on thiopurine-based therapy and genotyped two FTO variants p.Ala134Thr (rs79206939) and rs16952570 T > C using Sanger sequencing. FTO p.Ala134Thr (rs79206939) was non-polymorphic and absent whereas intronic rs16952570 T > C was equally prevalent in Chinese (22%) and Indians (18%) and higher in Malays (28%). Higher nadir white blood cell (WBC) and absolute neutrophil count (ANC) levels were observed in patients harboring FTO rs16952570 CC genotypes compared with TT carriers at 4, 8, and 12 weeks after start of thiopurine therapy (P < 0.05). A similar trend was observed in patients carrying the previously well-characterized NUDT15 rs116855232 wild-type CC genotypes. Further in silico analysis suggests that FTO variants linked to rs16952570, particularly rs74018601, may play a regulatory role in altering the FTO expression. The findings from this study indicate a novel protective association with the FTO variant rs16952570 CC genotype and hematological parameters.
Collapse
|
16
|
|
17
|
Pavlovic S, Kotur N, Stankovic B, Zukic B, Gasic V, Dokmanovic L. Pharmacogenomic and Pharmacotranscriptomic Profiling of Childhood Acute Lymphoblastic Leukemia: Paving the Way to Personalized Treatment. Genes (Basel) 2019; 10:E191. [PMID: 30832275 PMCID: PMC6471971 DOI: 10.3390/genes10030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Personalized medicine is focused on research disciplines which contribute to the individualization of therapy, like pharmacogenomics and pharmacotranscriptomics. Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood. It is one of the pediatric malignancies with the highest cure rate, but still a lethal outcome due to therapy accounts for 1%⁻3% of deaths. Further improvement of treatment protocols is needed through the implementation of pharmacogenomics and pharmacotranscriptomics. Emerging high-throughput technologies, including microarrays and next-generation sequencing, have provided an enormous amount of molecular data with the potential to be implemented in childhood ALL treatment protocols. In the current review, we summarized the contribution of these novel technologies to the pharmacogenomics and pharmacotranscriptomics of childhood ALL. We have presented data on molecular markers responsible for the efficacy, side effects, and toxicity of the drugs commonly used for childhood ALL treatment, i.e., glucocorticoids, vincristine, asparaginase, anthracyclines, thiopurines, and methotrexate. Big data was generated using high-throughput technologies, but their implementation in clinical practice is poor. Research efforts should be focused on data analysis and designing prediction models using machine learning algorithms. Bioinformatics tools and the implementation of artificial i Lack of association of the CEP72 rs924607 TT genotype with intelligence are expected to open the door wide for personalized medicine in the clinical practice of childhood ALL.
Collapse
Affiliation(s)
- Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Lidija Dokmanovic
- University Children's Hospital, 11000 Belgrade, Serbia.
- University of Belgrade, Faculty of Medicine, 11000 Belgrade, Serbia.
| |
Collapse
|
18
|
Naushad SM, Dorababu P, Rupasree Y, Pavani A, Raghunadharao D, Hussain T, Alrokayan SA, Kutala VK. Classification and regression tree-based prediction of 6-mercaptopurine-induced leucopenia grades in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2019; 83:875-880. [DOI: 10.1007/s00280-019-03803-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022]
|
19
|
Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018; 10:cancers10070240. [PMID: 30041457 PMCID: PMC6071274 DOI: 10.3390/cancers10070240] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.
Collapse
Affiliation(s)
- Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
- Paediatric Oncology, Theme of Children's and Women's Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| |
Collapse
|