1
|
Carucci M, Clamp A, Zhou C, Hurt C, Glasspool R, Monaghan PJ, Thirkettle S, Wheatley M, Mahmood M, Narasimham M, Cox T, Morrison H, Campbell S, Nelson A, Holland-Hart D, Hopewell-Kelly N, Thomas A, Porter C, Slusarczyk M, Irving A, Dive C, Adams R, Jayson GC. The VALTIVE1 study protocol: a study for the validation of Tie2 as the first tumour vascular response biomarker for VEGF inhibitors. BMC Cancer 2024; 24:1309. [PMID: 39448911 PMCID: PMC11515440 DOI: 10.1186/s12885-024-13073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Anti-angiogenic, VEGF inhibitors (VEGFi) increase progression-free survival (PFS) and, in some cases, overall survival in many solid tumours. However, their use has been compromised by a lack of informative biomarkers. We have shown that plasma Tie2 is the first tumour vascular response biomarker for VEGFi in ovarian, colorectal and gall bladder cancer: If plasma Tie2 concentrations do not change after 9 weeks of treatment with a VEGFi, the patient does not benefit, whereas a confirmed reduction of at least 10% plasma Tie2 defines a vascular response with a hazard ratio (HR) for PFS of 0.56. The aim of the VALTIVE1 study is to validate the utility of plasma Tie2 as a vascular response biomarker and to optimise the Tie2-definition of vascular response so that the subsequent randomised discontinuation VALTIVE2 study can be powered optimally. METHODS VALTIVE1 is a multi-centre, single arm, non-interventional biomarker study, with a sample size of 205 participants (176 bevacizumab-treated participants + 29 participants receiving bevacizumab and olaparib/PARPi), who are 16 years or older, have FIGO stage IIIc/IV ovarian cancer on treatment with first-line platinum-based chemotherapy and bevacizumab. Their blood plasma samples will be collected before, during, and after treatment and the concentration of Tie2 will be determined. The primary objective is to define the PFS difference between Tie2-defined vascular responders and Tie2-defined vascular non-responders in patients receiving bevacizumab for high-risk Ovarian Cancer. Secondary objectives include defining the relationship between Tie2-defined vascular progression and disease progression assessed according to RECIST 1.1 criteria and assessing the impact of PARPi on the plasma concentration of Tie2 and, therefore, the decision-making utility of Tie2 as a vascular response biomarker for bevacizumab during combined bevacizumab-PARPi maintenance. DISCUSSION There is an urgent need to establish a test that tells patients and their doctors when VEGFi are working and when they stop working. The data generated from this study will be used to design a second trial aiming to prove conclusively the value of the Tie2 test. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04523116. Registered on 21 Aug 2020.
Collapse
Affiliation(s)
- Margherita Carucci
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK.
| | - Andrew Clamp
- The University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Cong Zhou
- Cancer Research National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Chris Hurt
- University of Southampton, Southampton, UK
| | - Rosalind Glasspool
- Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Tracy Cox
- The Christie NHS Foundation Trust, Manchester, UK
| | | | - Susan Campbell
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Annmarie Nelson
- Marie Curie Research Centre, Cardiff University, Cardiff, UK
| | | | | | - Abin Thomas
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Catharine Porter
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Magdalena Slusarczyk
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Alys Irving
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Caroline Dive
- Cancer Research National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Richard Adams
- Centre for Trials Research, Cardiff University, 6thFloor, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS, UK
| | - Gordon C Jayson
- The University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
2
|
Staropoli N, Ciliberto D, Luciano F, Napoli C, Costa M, Rossini G, Arbitrio M, Labanca C, Riillo C, Del Giudice T, Crispino A, Salvino A, Galvano A, Russo A, Tassone P, Tagliaferri P. The impact of PARP inhibitors in the whole scenario of ovarian cancer management: A systematic review and network meta-analysis. Crit Rev Oncol Hematol 2024; 193:104229. [PMID: 38065404 DOI: 10.1016/j.critrevonc.2023.104229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Carboplatin is still the cornerstone of the first-line treatment in advanced Epithelial Ovarian Cancer (aEOC) management and the clinical response to platinum-derived agents remains the major predictor of long-term outcomes. PATIENT AND METHODS We aimed to identify the best treatment of the aEOC in terms of efficacy and safety, considering all treatment phases. A systematic literature search has been done to compare all treatments in aEOC population. Randomized trials with available survival and safety data published in the 2011-2022 timeframe were enclosed. Only trials reporting the BRCA or HRD (Homologous Recombination Deficiency) status were considered. DATA EXTRACTION AND SYNTHESIS A ranking of treatment schedules on the progression-free survival (PFS) endpoint was performed. The random-effect model was used to elaborate and extract data. The Network Meta-Analysis (NMA) by Bayesian model was performed by STATA v17. Data on PFS were extracted in terms of Hazard ratio with relative confidence intervals. RESULTS This NMA involved 18 trials for a total of 9105 patients. Within 12 treatment groups, we performed 3 different sensitivity analyses including "all comers" Intention to Treat (ITT) population, BRCA-mutated (BRCAm), and HRD subgroups, respectively. Considering the SUCRA-reported cumulative PFS probabilities, we showed that in the ITT population, the inferred best treatment was niraparib plus bevacizumab with a SUCRA of 96.7. In the BRCAm subgroup, the best SUCRA was for olaparib plus chemotherapy (96,9). The HRD population showed an inferred best treatment for niraparib plus bevacizumab (SUCRA 98,4). Moreover, we reported a cumulative summary of PARPi toxicity, in which different 3-4 grade toxicity profiles were observed, despite the PARPi "class effect" in terms of efficacy. CONCLUSIONS Considering all aEOC subgroups, the best therapeutical option was identified as PARPi plus chemotherapy and/or antiangiogenetic agents, suggesting the relevance of combinatory approaches based on molecular profile. This work underlines the potential value of "chemo-free" regimens to prolong the platinum-free interval (PFI).
Collapse
Affiliation(s)
- Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy; Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy
| | - Domenico Ciliberto
- Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy
| | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Costa
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giacomo Rossini
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Catanzaro, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Teresa Del Giudice
- Oncology Unit, "De Lellis" Facility, AOU Renato Dulbecco, Catanzaro, Italy
| | - Antonella Crispino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Angela Salvino
- Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy; S.H.R.O., Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy; Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy; S.H.R.O., Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy; Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy.
| |
Collapse
|
3
|
Ho GY, Vandenberg CJ, Lim R, Christie EL, Garsed DW, Lieschke E, Nesic K, Kondrashova O, Ratnayake G, Radke M, Penington JS, Carmagnac A, Heong V, Kyran EL, Zhang F, Traficante N, Australian Ovarian Cancer Study, Huang R, Dobrovic A, Swisher EM, McNally O, Kee D, Wakefield MJ, Papenfuss AT, Bowtell DDL, Barker HE, Scott CL. The microtubule inhibitor eribulin demonstrates efficacy in platinum-resistant and refractory high-grade serous ovarian cancer patient-derived xenograft models. Ther Adv Med Oncol 2023; 15:17588359231208674. [PMID: 38028140 PMCID: PMC10666702 DOI: 10.1177/17588359231208674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease. Objectives To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC. Design and methods Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 (BRCA1/2), four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment studies were undertaken. Results Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with p < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to PD and significantly extended TTH (each PDX p < 0.02). Furthermore, four of these models were extremely sensitive to all three AMA tested, maintaining response until the end of the experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two BRCA2-mutant PDX models derived from heavily pre-treated individuals were sensitive to AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, known to upregulate drug efflux via MDR1. Conclusion The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of carboplatin/paclitaxel chemotherapy.
Collapse
Affiliation(s)
- Gwo Yaw Ho
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton Road, Clayton, VIC 3168, Australia
| | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ratana Lim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Marc Radke
- University of Washington, Seattle, WA, USA
| | - Jocelyn S. Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Amandine Carmagnac
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Valerie Heong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Elizabeth L. Kyran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Fan Zhang
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Alexander Dobrovic
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | | | - Orla McNally
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Damien Kee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Oncology, Austin Hospital, Heidelberg, VIC, Australia
| | - Matthew J. Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Anthony T. Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Holly E. Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Nasirzadeh M, Atari Hajipirloo S, Gholizadeh-Ghaleh Aziz S, Rasmi Y, Babaei G, Alipour S. Alantolactone triggers oxeiptosis in human ovarian cancer cells via Nrf2 signaling pathway. Biochem Biophys Rep 2023; 35:101537. [PMID: 37712005 PMCID: PMC10497985 DOI: 10.1016/j.bbrep.2023.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction A growing body of evidence indicated that Alantolactone (ALT) promotes Reactive Oxygen Species (ROS) generation exclusively in cancer cells. Therefore, the aim of this study was to investigate the effect of ALT on the molecular mechanism of oxeiptosis, as a novel cell death pathway due to the high levels of intracellular ROS in ovarian cancer. Methods MTT assay was used to evaluate the effect of ALT on SKOV3 cell viability. mRNA and protein expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2), KEAP1 (Kelch-like ECH-associated protein 1), PGAM5 (phosphoglycerate mutase family member 5), AIFM1 (Mitochondrial Apoptosis-Inducing Factor), Glutathione synthetase (GSS) and glutathione peroxidase (GPX) were analyzed by real time PCR and western blotting methods respectively. Results Our findings showed that ALT inhibits the proliferation of skov3 cells in a time and dose dependent manner and IC50 was 32 μM at 24h.A significant down-regulation of Nrf2, GSH and GPX mRNA levels was seen in skov3 cells incubated with 32 and 64 μM of ALT in comparison with control group, while, mRNA expression levels of PGAM5 and KEAP1 were increased.Western blot analysis showed that ALT significantly decreases protein levels of Nrf2 and increases PGAM5 and KEAP1.ALT dephosphorylated PS116-AIFM1 and total AIFM1 protein level was elevated. Conclusion Our results provided evidence that ALT could be a potential option for ovarian cancer treatment by ROS-mediated oxeiptosis.
Collapse
Affiliation(s)
- Mahdieh Nasirzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
| | - Somayeh Atari Hajipirloo
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Kotaniemi‐Talonen L, Pukkala E, Aittomäki K, Auranen A. Long-term risk of cancer among the first-degree relatives of epithelial ovarian cancer patients: A cohort study with 48 years of follow up. Acta Obstet Gynecol Scand 2023; 102:240-245. [PMID: 36645194 PMCID: PMC9951276 DOI: 10.1111/aogs.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The long-term risk of cancer among first-degree relatives of ovarian cancer patients, especially their offspring, is of apparent clinical importance. Risks caused by known inherited factors such as BRCA1 or BRCA2 pathogenic variants are well established, but these account for only about 15% of ovarian cancer cases. Less is known about the possible familial risks of sporadic ovarian cancers. MATERIAL AND METHODS Using registry data, we conducted a retrospective cohort study with a total of 6501 first-degree relatives of 559 epithelial ovarian cancer patients. We studied the occurrence of overall cancer and cancer in specific sites known or suspected to be associated with ovarian cancer (breast, cervix, colon, endometrium, lung and trachea, skin melanoma, ovary, pancreas, prostate, rectum, and stomach). RESULTS The overall number of cancers was not increased among the first-degree relatives of epithelial ovarian cancer patients during the up to 48 years of follow up. Among female relatives, the standardized incidence ratio for ovarian cancer was 1.92 (95% CI 1.27-2.79), mostly explained by a 2.30-fold (95% CI 1.46-3.45) risk among the patients' sisters. There was a decreasing trend in the standardized incidence ratio for ovarian cancer among patients' sisters by increasing age of the index patient. CONCLUSIONS In our study cohort, we did not observe an increase in the overall cancer risk among the first-degree relatives of epithelial ovarian cancer patients in comparison with the general population. The risk for ovarian cancer, however, was increased. Current recommendations suggest prophylactic removal of the fallopian tubes and ovaries only with identified inherited risk factors. Our results emphasize the role of genetic counseling and testing, particularly in young ovarian cancer patients and their close female relatives.
Collapse
Affiliation(s)
- Laura Kotaniemi‐Talonen
- Department of Obstetrics and GynecologyTampere University HospitalTampereFinland,Tays Cancer CentreTampere University HospitalTampereFinland,Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Eero Pukkala
- Finnish Cancer Registry—Institute for Statistical and Epidemiological Cancer ResearchHelsinkiFinland,Health Sciences Unit, Faculty of Social SciencesTampere UniversityTampereFinland
| | - Kristiina Aittomäki
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
| | - Annika Auranen
- Department of Obstetrics and GynecologyTampere University HospitalTampereFinland,Tays Cancer CentreTampere University HospitalTampereFinland,Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
6
|
Todisco E, Gigli F, Ronchini C, Amato V, Sammassimo S, Pastano R, Parma G, Lapresa MT, Bertolini F, Corsini C, Gregato G, Poletti C, Pelicci PG, Alcalay M, Colombo N, Tarella C. Hematological disorders after salvage PARPi treatment for ovarian cancer: Cytogenetic and molecular defects and clinical outcomes. Int J Cancer 2022; 151:1791-1803. [PMID: 35695283 PMCID: PMC9796966 DOI: 10.1002/ijc.34162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARPi) are increasingly employed as salvage therapy in epithelial ovarian cancer (EOC), but cytotoxic drug exposure along with PARP inhibition may favor development of hematological disorders. In our study, of 182 women with EOC treated with PARPi, 16 (8.7%) developed therapy-related myeloid neoplasms (t-MNs), with 12 cases of myelodysplasia and 4 of acute myeloid leukemia. All experienced persistent cytopenia after PARPi discontinuation. Seven patients had del(5q)/-5 and/or del(7q)/-7, nine had a complex karyotype and TP53 mutations, recently reported as risk factor for t-MNs in EOC post-PARPi, were found in 12 out of 13 tested patients. Four patients had a rapid and fatal outcome, one had stable disease, eleven underwent induction therapy, followed by allogeneic hematopoietic cell transplantation in seven. Three of these 11 patients experienced refractory disease, and 8 had complete remission. During a 6.8 months (range 2.3-49) median observation time, 3 out of 16 patients were alive, with one surviving patient free of both solid and hematological tumors. Ten patients died because of leukemia, two because of transplant-related events, one from heart failure. Five more patients experienced persistent cell blood count abnormalities following PARPi discontinuation, without reaching MDS diagnostic criteria. A customized Myelo-panel showed clonal hematopoiesis in all five patients. These findings confirm the actual risk of t-MNs in EOC patients after chemotherapy and prolonged PARPi therapy. The management of these patients is complex and outcomes are extremely poor. Careful diagnostic procedures are strongly recommended whenever unusual cytopenias develop in patients receiving PARPi therapy.
Collapse
Affiliation(s)
- Elisabetta Todisco
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly,Ospedale di Busto Arsizio, ASST Valle OlonaBusto ArsizioItaly
| | - Federica Gigli
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
| | - Chiara Ronchini
- Laboratory of Clinical GenomicsIEO, European Institute of Oncology IRCCSMilanItaly
| | - Viviana Amato
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
| | - Simona Sammassimo
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
| | - Rocco Pastano
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly
| | - Gabriella Parma
- Department of GynecologyIEO, European Institute of Oncology IRCCSMilanItaly
| | | | - Francesco Bertolini
- Laboratory of Hematology‐OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Chiara Corsini
- Laboratory of Hematology‐OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Giuliana Gregato
- Laboratory of Hematology‐OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Claudia Poletti
- Laboratory of Hematology‐OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| | - Pier Giuseppe Pelicci
- Department of Experimental OncologyEuropean Institute of Oncology IRCCSMilanItaly,Department of Oncology and Hemato‐OncologyUniversity of MilanMilanItaly
| | - Myriam Alcalay
- Department of Experimental OncologyEuropean Institute of Oncology IRCCSMilanItaly,Department of Oncology and Hemato‐OncologyUniversity of MilanMilanItaly
| | - Nicoletta Colombo
- Department of GynecologyIEO, European Institute of Oncology IRCCSMilanItaly,Gynecologic Cancer ProgramEuropean Institute of Oncology IRCCS and University of Milan‐BicoccaMilanItaly
| | - Corrado Tarella
- Onco‐Hematology DivisionIEO, European Institute of Oncology IRCCSMilanItaly,Department of Health SciencesUniversity of MilanMilanItaly
| |
Collapse
|
7
|
Khaddour K, Felipe Fernandez M, Khabibov M, Garifullin A, Dressler D, Topchu I, Patel JD, Weinberg F, Boumber Y. The Prognostic and Therapeutic Potential of DNA Damage Repair Pathway Alterations and Homologous Recombination Deficiency in Lung Cancer. Cancers (Basel) 2022; 14:5305. [PMID: 36358724 PMCID: PMC9654807 DOI: 10.3390/cancers14215305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 03/28/2025] Open
Abstract
Lung cancer remains the second most commonly diagnosed cancer worldwide and the leading cause of cancer-related mortality. The mapping of genomic alterations and their role in lung-cancer progression has been followed by the development of new therapeutic options. Several novel drugs, such as targeted therapy and immunotherapy, have significantly improved outcomes. However, many patients with lung cancer do not benefit from existing therapies or develop progressive disease, leading to increased morbidity and mortality despite initial responses to treatment. Alterations in DNA-damage repair (DDR) genes represent a cancer hallmark that impairs a cell's ability to prevent deleterious mutation accumulation and repair. These alterations have recently emerged as a therapeutic target in breast, ovarian, prostate, and pancreatic cancers. The role of DDR alterations remains largely unknown in lung cancer. Nevertheless, recent research efforts have highlighted a potential role of some DDR alterations as predictive biomarkers of response to treatment. Despite the failure of PARP inhibitors (main class of DDR targeting agents) to improve outcomes in lung cancer patients, there is some evidence suggesting a role of PARP inhibitors and other DDR targeting agents in benefiting a distinct subset of lung cancer patients. In this review, we will discuss the existing literature on DDR alterations and homologous recombination deficiency (HRD) state as predictive biomarkers and therapeutic targets in both non-small cell lung and small cell lung cancer.
Collapse
Affiliation(s)
- Karam Khaddour
- Division of Hematology and Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Manuel Felipe Fernandez
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marsel Khabibov
- I. M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Airat Garifullin
- P. Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Danielle Dressler
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Iuliia Topchu
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jyoti D. Patel
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frank Weinberg
- Division of Hematology and Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yanis Boumber
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420012 Kazan, Russia
| |
Collapse
|
8
|
Omole EB, Aijaz I, Ellegate J, Isenhart E, Desouki MM, Mastri M, Humphrey K, Dougherty EM, Rosario SR, Nastiuk KL, Ohm JE, Eng KH. Combined BRCA2 and MAGEC3 Expression Predict Outcome in Advanced Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14194724. [PMID: 36230652 PMCID: PMC9562635 DOI: 10.3390/cancers14194724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Like BRCA2, MAGEC3 is an ovarian cancer predisposition gene that has been shown to have prognostic significance in ovarian cancer patients. Despite the clinical significance of each gene, no studies have been conducted to assess the clinical significance of their combined expression. We therefore sought to determine the relationship between MAGEC3 and BRCA2 expression in ovarian cancer and their association with patient characteristics and outcomes. Immunohistochemical staining was quantitated on tumor microarrays of human tumor samples obtained from 357 patients with epithelial ovarian cancer to ascertain BRCA2 expression levels. In conjunction with our previously published MAGEC3 expression data, we observed a weak inverse correlation of MAGEC3 with BRCA2 expression (r = −0.15; p < 0.05) in cases with full-length BRCA2. Patients with optimal cytoreduction, loss of MAGEC3, and detectable BRCA2 expression had better overall (median OS: 127.9 vs. 65.3 months, p = 0.035) and progression-free (median PFS: 85.3 vs. 18.8 months, p = 0.002) survival compared to patients that were BRCA2 expressors with MAGEC3 normal levels. Our results suggest that combined expression of MAGEC3 and BRCA2 serves as a better predictor of prognosis than each marker alone.
Collapse
Affiliation(s)
- Emmanuel B. Omole
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Iqbal Aijaz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - James Ellegate
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emily Isenhart
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mohamed M. Desouki
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kristen Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emily M. Dougherty
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kent L. Nastiuk
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joyce E. Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| | - Kevin H. Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
9
|
James NE, Woodman M, De La Cruz P, Eurich K, Ozsoy MA, Schorl C, Hanley LC, Ribeiro JR. Adaptive transcriptomic and immune infiltrate responses in the tumor immune microenvironment following neoadjuvant chemotherapy in high grade serous ovarian cancer reveal novel prognostic associations and activation of pro-tumorigenic pathways. Front Immunol 2022; 13:965331. [PMID: 36131935 PMCID: PMC9483165 DOI: 10.3389/fimmu.2022.965331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The high rate of ovarian cancer recurrence and chemoresistance necessitates further research into how chemotherapy affects the tumor immune microenvironment (TIME). While studies have shown that immune infiltrate increases following neoadjuvant (NACT) chemotherapy, there lacks a comprehensive understanding of chemotherapy-induced effects on immunotranscriptomics and cancer-related pathways and their relationship with immune infiltrate and patient responses. In this study, we performed NanoString nCounter® PanCancer IO360 analysis of 31 high grade serous ovarian cancer (HGSOC) patients with matched pre-treatment biopsy and post-NACT tumor. We observed increases in pro-tumorigenic and immunoregulatory pathways and immune infiltrate following NACT, with striking increases in a cohort of genes centered on the transcription factors ATF3 and EGR1. Using quantitative PCR, we analyzed several of the top upregulated genes in HGSOC cell lines, noting that two of them, ATF3 and AREG, were consistently upregulated with chemotherapy exposure and significantly increased in platinum resistant cells compared to their sensitive counterparts. Furthermore, we observed that pre-NACT immune infiltrate and pathway scores were not strikingly related to platinum free interval (PFI), but post-NACT immune infiltrate, pathway scores, and gene expression were. Finally, we found that higher levels of a cohort of proliferative and DNA damage-related genes was related to shorter PFI. This study underscores the complex alterations in the ovarian TIME following chemotherapy exposure and begins to untangle how immunologic factors are involved in mediating chemotherapy response, which will allow for the future development of novel immunologic therapies to combat chemoresistance.
Collapse
Affiliation(s)
- Nicole E. James
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
- *Correspondence: Nicole E. James,
| | - Morgan Woodman
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Payton De La Cruz
- Pathobiology Graduate Program, Brown University, Providence, RI, United States
| | - Katrin Eurich
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Melih Arda Ozsoy
- Department of Biochemistry, Brown University, Providence, RI, United States
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Linda C. Hanley
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Jennifer R. Ribeiro
- Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
10
|
James NE, Valenzuela AD, Emerson JB, Woodman M, Miller K, Hovanesian V, Ou J, Ribeiro JR. Intratumoral expression analysis reveals that OX40 and TIM-3 are prominently expressed and have variable associations with clinical outcomes in high grade serous ovarian cancer. Oncol Lett 2022; 23:188. [PMID: 35527785 PMCID: PMC9073576 DOI: 10.3892/ol.2022.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with ovarian cancer exhibit low response rates to anti-programmed cell death protein-1 (PD-1) based therapies, despite ovarian tumors demonstrating measurable immune responses. Therefore, the aim of the present study was to comparatively examine expression of notable immune co-stimulatory and co-inhibitory receptors in order identify the most abundant receptors that could potentially serve as therapeutic targets to enhance immunotherapy response in high grade serous ovarian cancer (HGSOC). The Cancer Genome Atlas (TCGA) was employed to compare levels of various HGSOC and pan-cancer cohorts. To confirm these findings at the protein level, immunofluorescence of select receptors was performed in 29 HGSOC patient tissue samples. TCGA and Kaplan Meier analysis was employed to determine the association of highly expressed immune receptors with clinical outcomes. TIM-3 and OX40 exhibited the highest expression in HGSOC at both the gene and protein level, with TIM-3 demonstrating highest levels on both CD8+ and CD4+ T cell subsets. Pan-cancer analysis determined that TIM-3 and OX40 levels were similar to those in immunotherapy-responsive cancers, while PD-1 exhibited much lower expression in HGSOC. Finally, OX40 was most strongly associated with improved patient survival. Overall, the current study suggested that TIM-3 and OX40 are frequently expressed intratumoral immune receptors in HGSOC and thus represent promising immune targets. Furthermore, the present analysis strongly suggested that OX40 was significantly associated with a longer survival and could potentially be utilized as a prognostic factor for improved patient outcomes in HGSOC.
Collapse
Affiliation(s)
- Nicole E. James
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Ashley D. Valenzuela
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Jenna B. Emerson
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Morgan Woodman
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Katherine Miller
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Virginia Hovanesian
- Rhode Island Hospital, Core Research Laboratories, Women and Infants Hospital, Providence, RI 02903, USA
| | - Joyce Ou
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Department of Pathology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Jennifer R. Ribeiro
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
11
|
Shah SM, Demidova EV, Lesh RW, Hall MJ, Daly MB, Meyer JE, Edelman MJ, Arora S. Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treat Rev 2022; 104:102337. [PMID: 35051883 PMCID: PMC9016579 DOI: 10.1016/j.ctrv.2021.102337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
DNA repair vulnerabilities are present in a significant proportion of cancers. Specifically, germline alterations in DNA repair not only increase cancer risk but are associated with treatment response and clinical outcomes. The therapeutic landscape of cancer has rapidly evolved with the FDA approval of therapies that specifically target DNA repair vulnerabilities. The clinical success of synthetic lethality between BRCA deficiency and poly(ADP-ribose) polymerase (PARP) inhibition has been truly revolutionary. Defective mismatch repair has been validated as a predictor of response to immune checkpoint blockade associated with durable responses and long-term benefit in many cancer patients. Advances in next generation sequencing technologies and their decreasing cost have supported increased genetic profiling of tumors coupled with germline testing of cancer risk genes in patients. The clinical adoption of panel testing for germline assessment in high-risk individuals has generated a plethora of genetic data, particularly on DNA repair genes. Here, we highlight the therapeutic relevance of germline aberrations in DNA repair to identify patients eligible for precision treatments such as PARP inhibitors (PARPis), immune checkpoint blockade, chemotherapy, radiation therapy and combined treatment. We also discuss emerging mechanisms that regulate DNA repair.
Collapse
Affiliation(s)
- Shreya M Shah
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Science Scholars Program, Temple University, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Kazan Federal University, Kazan, Russian Federation
| | - Randy W Lesh
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Joshua E Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Martin J Edelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Mullen J, Kato S, Sicklick JK, Kurzrock R. Targeting ARID1A mutations in cancer. Cancer Treat Rev 2021; 100:102287. [PMID: 34619527 DOI: 10.1016/j.ctrv.2021.102287] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Genes encoding SWI/SNF chromatin remodeling complex subunits are collectively mutated in approximately 20% of human cancers. ARID1A is a SWI/SNF subunit gene whose protein product binds DNA. ARID1A gene alterations result in loss of function. It is the most commonly mutated member of the SWI/SNF complex, being aberrant in ∼6% of cancers overall, including ovarian clear cell cancers (∼45% of patients) and uterine endometrioid cancers (∼37%). ARID1A has a crucial role in regulating gene expression that drives oncogenesis or tumor suppression. In particular, ARID1A participates in control of the PI3K/AKT/mTOR pathway, immune responsiveness to cancer, EZH2 methyltransferase activity, steroid receptor modulation, DNA damage checkpoints, and regulation of p53 targets and KRAS signaling. A variety of compounds may be of benefit in ARID1A-altered cancers: immune checkpoint blockade, and inhibitors of mTOR, EZH2, histone deacetylases, ATR and/or PARP. ARID1A alterations may also mediate resistance to platinum chemotherapy and estrogen receptor degraders/modulators.
Collapse
Affiliation(s)
- Jaren Mullen
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Surgery, Division of Surgical Oncology, UC San Diego School of Medicine, San Diego, CA, USA
| | | |
Collapse
|
13
|
Liu L, Xiong W. Effect of molecular targeted agents in chemotherapy for treating platinum-resistant recurrent ovarian cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26849. [PMID: 34397893 PMCID: PMC8360434 DOI: 10.1097/md.0000000000026849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to investigate the effect of molecular targeted agents (MTAs) in chemo on platinum-resistant recurrent ovarian cancer (ROC). We performed this meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statements. Randomized controlled trials reporting data about platinum-resistant ovarian cancer treated by MTAs were included. The endpoints for the present study included overall survival and progression-free survival. We analyzed 9 randomized controlled trials including 3631 patients with ROC. The pooled analysis indicated that a combination of MTAs with chemo could markedly increase objective response rate in those patients (P = .012). Nevertheless, the survival rate of those patients was not markedly changed (P = .19). Besides, the combination of MTAs with chemo dramatically aggravated the occurrence of adverse events (P < .05). Moreover, it resulted in the termination of treatment (P = .044) in those patients, but it had no effect on fatal adverse events (P = .16). Our results indicated that the combination of MTAs with chemo notably improved objective response rate in patients with platinum-resistant ROC, but its benefit did not translate into survival benefits.
Collapse
|
14
|
Jacob J, Necchi A, Grivas P, Hughes M, Sanford T, Mollapour M, Shapiro O, Talal A, Sokol E, Vergilio JA, Killian J, Lin D, Williams E, Tse J, Ramkissoon S, Severson E, Hemmerich A, Ferguson N, Edgerly C, Duncan D, Huang R, Chung J, Madison R, Alexander B, Venstrom J, Reddy P, McGregor K, Elvin J, Schrock A, Danziger N, Pavlick D, Ross J, Bratslavsky G. Comprehensive genomic profiling of histologic subtypes of urethral carcinomas. Urol Oncol 2021; 39:731.e1-731.e15. [PMID: 34215504 DOI: 10.1016/j.urolonc.2020.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Carcinoma of the urethra (UrthCa) is an uncommon Genitourinary (GU) malignancy that can progress to advanced metastatic disease. METHODS One hundred twenty-seven metastatic UrthCa underwent hybrid capture-based comprehensive genomic profiling to evaluate all classes of genomic alterations (GA). Tumor mutational burden was determined on up to 1.1 Mbp of sequenced DNA, and microsatellite instability was determined on 114 loci. PD-L1 expression was determined by IHC (Dako 22C3). RESULTS Forty-nine (39%) urothelial (UrthUC), 31 (24%) squamous (UrthSCC), 24 (19%) adenocarcinomas NOS (UrthAC), and 12 (9%) clear cell (UrthCC) were evaluated. UrthUC and UrthSCC are more common in men; UrthAC and UrthCC are more common in women. Ages were similar in all 4 groups. GA in PIK3CA were the most frequent potentially targetable GA; mTOR pathway GA in PTEN were also identified. GA in other potentially targetable genes were also identified including ERBB2 (6% in UrthUC, 3% in UrthSCC, and 12% in UrthAC), FGFR1-3 (3% in UrthSCC), BRAF (3% in UrthAC), PTCH1 (8% in UrthCC), and MET (8% in UrthCC). Possibly reflecting their higher GA/tumor status, potential for immunotherapy benefit associated with higher tumor mutational burden and PD-L1 staining levels were seen in UrthUC and UrthSCC compared to UrthAC and UrthCC. Microsatellite instability high status was absent throughout. CONCLUSIONS Comprehensive genomic profiling reveals GA that may be predictive of both targeted and immunotherapy benefit in patients with advanced UrthCa and that could potentially be used in future adjuvant, neoadjuvant, and metastatic disease trials.
Collapse
Affiliation(s)
- Joseph Jacob
- SUNY Upstate Medical University, Department of Urology, Syracuse, NY
| | | | | | - Michael Hughes
- SUNY Upstate Medical University, Department of Urology, Syracuse, NY
| | - Thomas Sanford
- SUNY Upstate Medical University, Department of Urology, Syracuse, NY
| | - Mehdi Mollapour
- SUNY Upstate Medical University, Department of Urology, Syracuse, NY; SUNY Upstate Medical University Department of Biochemistry and Molecular Biology, Syracuse, NY
| | - Oleg Shapiro
- SUNY Upstate Medical University, Department of Urology, Syracuse, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey Ross
- SUNY Upstate Medical University, Department of Urology, Syracuse, NY; Foundation Medicine, Cambridge, MA
| | - Gennady Bratslavsky
- SUNY Upstate Medical University, Department of Urology, Syracuse, NY; SUNY Upstate Medical University Department of Biochemistry and Molecular Biology, Syracuse, NY.
| |
Collapse
|
15
|
Grivas P, Loriot Y, Morales-Barrera R, Teo MY, Zakharia Y, Feyerabend S, Vogelzang NJ, Grande E, Adra N, Alva A, Necchi A, Rodriguez-Vida A, Gupta S, Josephs DH, Srinivas S, Wride K, Thomas D, Simmons A, Loehr A, Dusek RL, Nepert D, Chowdhury S. Efficacy and safety of rucaparib in previously treated, locally advanced or metastatic urothelial carcinoma from a phase 2, open-label trial (ATLAS). BMC Cancer 2021; 21:593. [PMID: 34030643 PMCID: PMC8147008 DOI: 10.1186/s12885-021-08085-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND ATLAS evaluated the efficacy and safety of the PARP inhibitor rucaparib in patients with previously treated locally advanced/unresectable or metastatic urothelial carcinoma (UC). METHODS Patients with UC were enrolled independent of tumor homologous recombination deficiency (HRD) status and received rucaparib 600 mg BID. The primary endpoint was investigator-assessed objective response rate (RECIST v1.1) in the intent-to-treat and HRD-positive (loss of genome-wide heterozygosity ≥10%) populations. Key secondary endpoints were progression-free survival (PFS) and safety. Disease control rate (DCR) was defined post-hoc as the proportion of patients with a confirmed complete or partial response (PR), or stable disease lasting ≥16 weeks. RESULTS Of 97 enrolled patients, 20 (20.6%) were HRD-positive, 30 (30.9%) HRD-negative, and 47 (48.5%) HRD-indeterminate. Among 95 evaluable patients, there were no confirmed responses. However, reductions in the sum of target lesions were observed, including 6 (6.3%) patients with unconfirmed PR. DCR was 11.6%; median PFS was 1.8 months (95% CI, 1.6-1.9). No relationship was observed between HRD status and efficacy endpoints. Median treatment duration was 1.8 months (range, 0.1-10.1). Most frequent any-grade treatment-emergent adverse events were asthenia/fatigue (57.7%), nausea (42.3%), and anemia (36.1%). Of 64 patients with data from tumor tissue samples, 10 (15.6%) had a deleterious alteration in a DNA damage repair pathway gene, including four with a deleterious BRCA1 or BRCA2 alteration. CONCLUSIONS Rucaparib did not show significant activity in unselected patients with advanced UC regardless of HRD status. The safety profile was consistent with that observed in patients with ovarian or prostate cancer. TRIAL REGISTRATION This trial was registered in ClinicalTrials.gov (NCT03397394). Date of registration: 12 January 2018. This trial was registered in EudraCT (2017-004166-10).
Collapse
Affiliation(s)
- P Grivas
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, 98109, USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
- Seattle Cancer Care Alliance, 1144 Eastlake Avenue E, LG- 465, Seattle, WA, 98109, USA.
| | - Y Loriot
- Department of Medicine, Gustave Roussy Cancer Campus, INSERM U981, Université Paris-Saclay, 39 Rue Camille Desmoulins, 94800, Villejuif, France
| | | | - M Y Teo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Y Zakharia
- Division of Hematology, Oncology, and Blood and Marrow Transplant, University of Iowa and Holden Comprehensive Cancer Center, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - S Feyerabend
- Studienpraxis Urologie, Steinengrabenstraße 17, 72622, Nürtingen, Germany
| | - N J Vogelzang
- Division of Hematology/Oncology, Comprehensive Cancer Centers of Nevada, 3730 S Eastern Avenue, Las Vegas, NV, 89169, USA
| | - E Grande
- Department of Medical Oncology, MD Anderson Cancer Center, Calle de Arturo Soria, 270 28033, Madrid, Spain
| | - N Adra
- Department of Medicine, Indiana University Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - A Alva
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, 1500 E Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - A Necchi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133, Milan, Italy
| | - A Rodriguez-Vida
- Medical Oncology Department, Hospital del Mar, Passeig Maritim 25-29, 08003, Barcelona, Spain
| | - S Gupta
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, 1950 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - D H Josephs
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK
| | - S Srinivas
- Division of Medical Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - K Wride
- Clovis Oncology, Inc., 5500 Flatiron Parkway, Boulder, CO, 80301, USA
| | - D Thomas
- Clovis Oncology, Inc., 5500 Flatiron Parkway, Boulder, CO, 80301, USA
| | - A Simmons
- Clovis Oncology, Inc., 5500 Flatiron Parkway, Boulder, CO, 80301, USA
| | - A Loehr
- Clovis Oncology, Inc., 5500 Flatiron Parkway, Boulder, CO, 80301, USA
| | - R L Dusek
- Clovis Oncology, Inc., 5500 Flatiron Parkway, Boulder, CO, 80301, USA
| | - D Nepert
- Clovis Oncology, Inc., 5500 Flatiron Parkway, Boulder, CO, 80301, USA
| | - S Chowdhury
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust & Sarah Cannon Research Institute, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
16
|
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag Res 2021; 13:3081-3100. [PMID: 33854378 PMCID: PMC8041604 DOI: 10.2147/cmar.s292992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a common and complex malignancy with poor prognostic outcome. Most women with ovarian cancer are diagnosed with advanced stage disease due to a lack of effective detection strategies in the early stage. Traditional treatment with cytoreductive surgery and platinum-based combination chemotherapy has not significantly improved prognosis and 5-year survival rates are still extremely poor. Therefore, novel treatment strategies are needed to improve the treatment of ovarian cancer patients. Recent advances of next generation sequencing technologies have both confirmed previous known mutated genes and discovered novel candidate genes in ovarian cancer. In this review, we illustrate recent advances in identifying ovarian cancer gene mutations, including those of TP53, BRCA1/2, PIK3CA, and KRAS genes. In addition, we discuss advances in targeting therapies for ovarian cancer based on these mutated genes in ovarian cancer. Further, we associate between detection of mutation genes by liquid biopsy and the potential early diagnostic value in ovarian cancer.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Dong
- Department of Gynecology, Cheng Du Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shanli Xie
- First People's Hospital of Guangyuan, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
17
|
Tate S, Nishikimi K, Matsuoka A, Otsuka S, Shozu M. Safety and Efficacy of Weekly Paclitaxel and Cisplatin Chemotherapy for Ovarian Cancer Patients with Hypersensitivity to Carboplatin. Cancers (Basel) 2021; 13:cancers13040640. [PMID: 33562736 PMCID: PMC7915680 DOI: 10.3390/cancers13040640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary This study was conducted to evaluate the safety and efficacy of weekly paclitaxel and cisplatin chemotherapy in patients with ovarian cancer who developed carboplatin hypersensitivity reaction. Eighty-six (86) patients who developed hypersensitivity reactions for carboplatin were treated with weekly paclitaxel and cisplatin chemotherapy, and 71 (83%) of the 86 patients were able to receive treatment without hypersensitivity reaction to cisplatin. The severity of the hypersensitivity reaction for cisplatin observed in all 15 patients was below grade 2, and there were no deaths due to hypersensitivity reaction to cisplatin. The majority of patients (55 patients, 64%) completed the scheduled weekly paclitaxel and cisplatin chemotherapy, and only 9 patients (10%) discontinued treatment due to hypersensitivity reaction within 6 cycles. Weekly paclitaxel and cisplatin chemotherapy were well-tolerated and effective for patients who developed carboplatin hypersensitivity reaction. Abstract Background: This study aimed to evaluate the safety and efficacy of weekly paclitaxel and cisplatin chemotherapy (wTP) in patients with ovarian cancer who developed carboplatin hypersensitivity reaction (HSR). Methods: We retrospectively investigated 86 patients with ovarian, fallopian tube, and peritoneal carcinoma who developed carboplatin HSR during previous chemotherapy (carboplatin and paclitaxel) at our institution between 2011 and 2019. After premedication was administered, paclitaxel was administered over 1 h, followed by cisplatin over 1 h (paclitaxel 80 mg/m2; cisplatin 25 mg/m2; 1, 8, 15 day/4 weeks). We investigated the incidence of patients who successfully received wTP for at least one cycle, treatments compliance, progression-free survival (PFS), and overall survival (OS). Results: The median number of wTP administration cycles was 4 (Interquartile Range IQR, 3–7), 71 patients (83%) successfully received wTP, and 15 patients (17%) developed cisplatin HSR. The efficacy of treatment was as follows: 55 (64%) patients completed the scheduled wTP, 9 (10%) patients discontinued due to HSR to cisplatin within 6 cycles, 1 (1%) patient discontinued due to renal toxicity (grade 2) at the 6th cycle, and 21 (24%) patients discontinued due to progressive disease within 6 cycles. The median PFS and OS after administration of wTP were 10.9 months (95% CI: 7.7–17.7) and 25.9 months (95% CI: 19.0–50.2), respectively. Conclusions: wTP was safe and well-tolerated in patients who developed carboplatin HSR.
Collapse
|
18
|
Feng Y, Le F, Tian P, Zhong Y, Zhan F, Huang G, Hu H, Chen T, Tan B. GTW inhibits the Epithelial to Mesenchymal Transition of Epithelial Ovarian Cancer via ILK/AKT/GSK3β/Slug Signalling Pathway. J Cancer 2021; 12:1386-1397. [PMID: 33531984 PMCID: PMC7847657 DOI: 10.7150/jca.52418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) accounts for the most lethal of all gynaecological cancers which is attributed to metastasis, invasiveness and drug resistance. A crucial link has been found between epithelial-mesenchymal transition (EMT) and cancer metastasis and chemo-resistance. Previous studies have confirmed that one of the main components of tripterygium glycosides (GTW)-triptolide (TPL) has anticancer effects. Methods: The purpose of this study is to determine whether GTW could inhibit EMT in A2780/DPP cells in vitro and in vivo, and explore the underlying mechanism. Results: In vitro results showed that GTW inhibited cell proliferation, invasion and migration, and intensified the sensitivity of A2780/DDP cells to cisplatin (DDP). GTW, especially GTW+DDP, significantly inhibited the expression of N-cadherin, integrin-linked kinase (ILK), phospho-protein kinase B/AKT (PKB/p-AKT), phospho-glycogen synthase kinase (p-GSK3β) and Slug, while it increased E-cadherin levels by inhibiting EMT via the ILK/AKT/GSK3β/Slug signalling pathway. Animal results indicated that GTW, especially GTW+DDP, significantly reduced tumour burden, prolonged the life span of mice, and down-regulated the levels of tumour markers CA125 and HE4 by regulating EMT through the ILK/AKT/GSK3β/Slug signalling pathway. Conclusion: Our results highlighted the significance of EMT in EOC metastasis, invasiveness and resistance to DDP and investigated the potential role of GTW as an adjuvant therapeutic agent in chemo-resistant EOC.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fuyin Le
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Puyuan Tian
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yanying Zhong
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fuliang Zhan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Genhua Huang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hui Hu
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Buzhen Tan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
19
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
20
|
Sheta R, Bachvarova M, Plante M, Renaud MC, Sebastianelli A, Gregoire J, Navarro JM, Perez RB, Masson JY, Bachvarov D. Development of a 3D functional assay and identification of biomarkers, predictive for response of high-grade serous ovarian cancer (HGSOC) patients to poly-ADP ribose polymerase inhibitors (PARPis): targeted therapy. J Transl Med 2020; 18:439. [PMID: 33213473 PMCID: PMC7678187 DOI: 10.1186/s12967-020-02613-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background Poly(ADP-ribose) polymerase inhibitors (PARPis) specifically target homologous recombination deficiency (HRD) cells and display good therapeutic effect in women with advanced-stage BRCA1/2-mutated breast and epithelial ovarian cancer (EOC). However, about 50% of high grade serous ovarian cancers (HGSOC) present with HRD due to epigenetic BRCA1 inactivation, as well as genetic/epigenetic inactivation(s) of other HR genes, a feature known as “BRCAness”. Therefore, there is a potential for extending the use of PARPis to these patients if HR status can be identified. Methods We have developed a 3D (spheroid) functional assay to assess the sensitivity of two PARPis (niraparib and olaparib) in ascites-derived primary cell cultures (AsPCs) from HGSOC patients. A method for AsPCs preparation was established based on a matrix (agarose), allowing for easy isolation and successive propagation of monolayer and 3D AsPCs. Based on this method, we performed cytotoxicity assays on 42 AsPCs grown both as monolayers and spheroids. Results The response to PARPis treatment in monolayer AsPCs, was significantly higher, compared to 3D AsPCs, as 88% and 52% of the monolayer AsPCs displayed sensitivity to niraparib and olaparib respectively, while 66% of the 3D AsPCs were sensitive to niraparib and 38% to olaparib, the latter being more consistent with previous estimates of HRD (40%–60%) in EOC. Moreover, niraparib displayed a significantly stronger cytotoxic effect in both in 3D and monolayer AsPCs, which was confirmed by consecutive analyses of the HR pathway activity (γH2AX foci formation) in PARPis-sensitive and resistant AsPCs. Global gene expression comparison of 6 PARPi-resistant and 6 PARPi-sensitive 3D AsPCs was indicative for the predominant downregulation of numerous genes and networks with previously demonstrated roles in EOC chemoresistance, suggesting that the PARPis-sensitive AsPCs could display enhanced sensitivity to other chemotherapeutic drugs, commonly applied in cancer management. Microarray data validation identified 24 potential gene biomarkers associated with PARPis sensitivity. The differential expression of 7 selected biomarkers was consecutively confirmed by immunohistochemistry in matched EOC tumor samples. Conclusion The application of this assay and the potential biomarkers with possible predictive significance to PARPis therapy of EOC patients now need testing in the setting of a clinical trial.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jamilet Miranda Navarro
- Bioinformatics Department, Center for Genetic Engineering and Biotechnology, 10600, Havana, CP, Cuba
| | - Ricardo Bringas Perez
- Bioinformatics Department, Center for Genetic Engineering and Biotechnology, 10600, Havana, CP, Cuba
| | - Jean-Yves Masson
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, G1V 0A6, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Université Laval, Québec, QC, G1V 0A6, Canada. .,Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.
| |
Collapse
|
21
|
Cheasley D, Nigam A, Zethoven M, Hunter S, Etemadmoghadam D, Semple T, Allan P, Carey MS, Fernandez ML, Dawson A, Köbel M, Huntsman DG, Le Page C, Mes-Masson AM, Provencher D, Hacker N, Gao Y, Bowtell D, deFazio A, Gorringe KL, Campbell IG. Genomic analysis of low-grade serous ovarian carcinoma to identify key drivers and therapeutic vulnerabilities. J Pathol 2020; 253:41-54. [PMID: 32901952 DOI: 10.1002/path.5545] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
Low-grade serous ovarian carcinoma (LGSOC) is associated with a poor response to existing chemotherapy, highlighting the need to perform comprehensive genomic analysis and identify new therapeutic vulnerabilities. The data presented here represent the largest genetic study of LGSOCs to date (n = 71), analysing 127 candidate genes derived from whole exome sequencing cohorts to generate mutation and copy-number variation data. Additionally, immunohistochemistry was performed on our LGSOC cohort assessing oestrogen receptor, progesterone receptor, TP53, and CDKN2A status. Targeted sequencing identified 47% of cases with mutations in key RAS/RAF pathway genes (KRAS, BRAF, and NRAS), as well as mutations in putative novel driver genes including USP9X (27%), MACF1 (11%), ARID1A (9%), NF2 (4%), DOT1L (6%), and ASH1L (4%). Immunohistochemistry evaluation revealed frequent oestrogen/progesterone receptor positivity (85%), along with CDKN2A protein loss (10%) and CDKN2A protein overexpression (6%), which were linked to shorter disease outcomes. Indeed, 90% of LGSOC samples harboured at least one potentially actionable alteration, which in 19/71 (27%) cases were predictive of clinical benefit from a standard treatment, either in another cancer's indication or in LGSOC specifically. In addition, we validated ubiquitin-specific protease 9X (USP9X), which is a chromosome X-linked substrate-specific deubiquitinase and tumour suppressor, as a relevant therapeutic target for LGSOC. Our comprehensive genomic study highlighted that there is an addiction to a limited number of unique 'driver' aberrations that could be translated into improved therapeutic paths. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Abhimanyu Nigam
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Bioinformatics Consulting Core, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sally Hunter
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Dariush Etemadmoghadam
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy Semple
- Molecular Genomics Core, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Prue Allan
- Department of Clinical Pathology, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne, VIC, Australia
| | - Mark S Carey
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marta L Fernandez
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amy Dawson
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cécile Le Page
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Neville Hacker
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Yunkai Gao
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - David Bowtell
- Cancer Genetics and Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney and the Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Rivera D, Paudice M, Gismondi V, Anselmi G, Vellone VG, Varesco L. Implementing NGS-based BRCA tumour tissue testing in FFPE ovarian carcinoma specimens: hints from a real-life experience within the framework of expert recommendations. J Clin Pathol 2020; 74:596-603. [PMID: 32895300 DOI: 10.1136/jclinpath-2020-206840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
AIMS Next Generation Sequencing (NGS)-based BRCA tumour tissue testing poses several challenges. As a first step of its implementation within a regional health service network, an in-house validation study was compared with published recommendations. METHODS Epithelial ovarian cancer (EOC) formalin-fixed paraffin-embedded specimens stored in the archives of the eight regional pathology units were selected from a consecutive series of patients with known BRCA germline status. Two expert pathologists evaluated tumour cell content for manual macrodissection. DNA extraction, library preparation and NGS analyses were performed blinded to the germinal status. Parameters used in the study were confronted with guidelines for the validation of NGS-based oncology panels and for BRCA tumour tissue testing. RESULTS NGS analyses were successful in 66 of 67 EOC specimens, with good quality metrics and high reproducibility among different runs. In all, 19 BRCA pathogenic variants were identified: 12 were germline and 7 were somatic. A 100% concordance with blood tests was detected for germline variants. A BRCA1 variant showed a controversial classification. In different areas of two early stage EOCs showing somatic variants, intratumour heterogeneity not relevant for test results (variant allele frequency >5%) was observed. Compared with expert recommendations, main limitations of the study were absence of controls with known somatic BRCA status and exclusion from the validation of BRCA copy number variations (CNV). CONCLUSIONS A close collaboration between pathology and genetics units provides advantages in the implementation of BRCA tumour tissue testing. The development of tools for designing and interpreting complex testing in-house validation could improve process quality.
Collapse
Affiliation(s)
- Daniela Rivera
- Hereditary Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Michele Paudice
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Univeristy of Genoa, Genova, Liguria, Italy
| | - Viviana Gismondi
- Hereditary Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Giorgia Anselmi
- Anatomic Pathology University Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Valerio Gaetano Vellone
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Univeristy of Genoa, Genova, Liguria, Italy .,Anatomic Pathology University Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Liliana Varesco
- Hereditary Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | | |
Collapse
|
23
|
James NE, Emerson JB, Borgstadt AD, Beffa L, Oliver MT, Hovanesian V, Urh A, Singh RK, Rowswell-Turner R, DiSilvestro PA, Ou J, Moore RG, Ribeiro JR. The biomarker HE4 (WFDC2) promotes a pro-angiogenic and immunosuppressive tumor microenvironment via regulation of STAT3 target genes. Sci Rep 2020; 10:8558. [PMID: 32444701 PMCID: PMC7244765 DOI: 10.1038/s41598-020-65353-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal gynecologic malignancy arising from the fallopian tubes that has a high rate of chemoresistant recurrence and low five-year survival rate. The ovarian cancer biomarker HE4 is known to promote proliferation, metastasis, chemoresistance, and suppression of cytotoxic lymphocytes. In this study, we sought to examine the effects of HE4 on signaling within diverse cell types that compose the tumor microenvironment. HE4 was found to activate STAT3 signaling and promote upregulation of the pro-angiogenic STAT3 target genes IL8 and HIF1A in immune cells, ovarian cancer cells, and endothelial cells. Moreover, HE4 promoted increases in tube formation in an in vitro model of angiogenesis, which was also dependent upon STAT3 signaling. Clinically, HE4 and IL8 levels positively correlated in ovarian cancer patient tissue. Furthermore, HE4 serum levels correlated with microvascular density in EOC tissue and inversely correlated with cytotoxic T cell infiltration, suggesting that HE4 may cause deregulated blood vessel formation and suppress proper T cell trafficking in tumors. Collectively, this study shows for the first time that HE4 has the ability to affect signaling events and gene expression in multiple cell types of the tumor microenvironment, which could contribute to angiogenesis and altered immunogenic responses in ovarian cancer.
Collapse
Affiliation(s)
- Nicole E James
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA
| | - Jenna B Emerson
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Ashley D Borgstadt
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Lindsey Beffa
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew T Oliver
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Virginia Hovanesian
- Rhode Island Hospital, Digital Imaging and Analysis Core Facility, Providence, RI, USA
| | - Anze Urh
- Northwell Health Physician Partners Gynecologic Oncology, Brightwaters, NY, USA
| | - Rakesh K Singh
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Paul A DiSilvestro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Joyce Ou
- Warren-Alpert Medical School of Brown University, Providence, RI, USA.,Women and Infants Hospital, Department of Pathology, Providence, RI, USA
| | | | - Jennifer R Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA. .,Warren-Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
24
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. J Hematol Oncol 2020; 13:39. [PMID: 32316968 PMCID: PMC7175546 DOI: 10.1186/s13045-020-00874-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies reported throughout the world. The initial, standard-of-care, adjuvant chemotherapy in epithelial ovarian cancer is usually a platinum drug, such as cisplatin or carboplatin, combined with a taxane. However, despite surgical removal of the tumor and initial high response rates to first-line chemotherapy, around 80% of women will develop cancer recurrence. Effective strategies, including chemotherapy and new research models, are necessary to improve the prognosis. The replication stress response (RSR) is characteristic of the development of tumors, including ovarian cancer. Hence, RSR pathway and DNA repair proteins have emerged as a new area for anticancer drug development. Although clinical trials have shown poly (ADP-ribose) polymerase inhibitors (PARPi) response rates of around 40% in women who carry a mutation in the BRCA1/2 genes, PARPi is responsible for tumor suppression, but not for complete tumor regression. Recent reports suggest that cells with impaired homologous recombination (HR) activities due to mutations in TP53 gene or specific DNA repair proteins are specifically sensitive to ataxia telangiectasia and Rad3-related protein (ATR) inhibitors. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA damage. This review describes the use of DNA repair checkpoint inhibitors as single agents and strategies combining these inhibitors with DNA-damaging compounds for ovarian cancer therapy, as well as the new platforms used for optimizing ovarian cancer therapy.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
25
|
Wambecke A, Ahmad M, Lambert B, Joly F, Poulain L, Denoyelle C, Meryet-Figuiere M. The influence of long non-coding RNAs on the response to chemotherapy in ovarian cancer. Gynecol Oncol 2019; 156:726-733. [PMID: 31883617 DOI: 10.1016/j.ygyno.2019.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
With 240,000 new cases and 152,000 deaths per year, ovarian cancer is the leading cause of death from gynecologic malignancies. Late diagnosis because of asymptomatic development in early stages and resistance to existing treatments are the major causes of therapeutic failure in ovarian cancer. The recent discovery of tens of thousands of long non-coding RNAs and their action as oncogenes or tumor suppressors in pathways matching all the hallmarks of cancer in most - if not all - malignancies have attracted attention of the scientific community. A growing number of studies have implicated lncRNAs in diverse aspects of ovarian carcinoma biology. We present lncRNAs which have been involved in response to the different drugs currently used for the treatment of ovarian cancers, from first-line platinum salts and taxanes to the newly available PARP inhibitors. The data already available supports the potential use of several lncRNAs, alone or in combination with other molecules, as potential biomarkers for the prediction of response to treatment. Understanding the determinants of their action might reveal new potential therapeutic targets.
Collapse
Affiliation(s)
- Anaïs Wambecke
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Caen, France; Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Mohammad Ahmad
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Caen, France; Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Bernard Lambert
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Caen, France; Cancer Centre François Baclesse, UNICANCER, Caen, France; CNRS, Normandy Regional Delegation, Caen, France
| | - Florence Joly
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Caen, France; Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Laurent Poulain
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Caen, France; Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Christophe Denoyelle
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Caen, France; Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuiere
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Caen, France; Cancer Centre François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
26
|
Gitto SB, Kim H, Rafail S, Omran DK, Medvedev S, Kinose Y, Rodriguez-Garcia A, Flowers AJ, Xu H, Schwartz LE, Powell DJ, Simpkins F. An autologous humanized patient-derived-xenograft platform to evaluate immunotherapy in ovarian cancer. Gynecol Oncol 2019; 156:222-232. [PMID: 31818495 DOI: 10.1016/j.ygyno.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to "humanize" ovarian cancer patient-derived xenograft (PDX) models by autologous transfer of patient-matched tumor infiltrating lymphocytes (TILs) to evaluate immunotherapies. METHODS Orthotopic high-grade serous ovarian cancer (HGSOC) PDX models were established from three patient donors. Models were molecularly and histologically validated by immunohistochemistry. TILs were expanded from donor tumors using a rapid expansion protocol. Ex vivo TIL and tumor co-cultures were performed to validate TIL reactivity against patient-matched autologous tumor cells. Expression of TIL activation markers and cytokine secretion was quantitated by flow cytometry and ELISA. As proof of concept, the efficacy of anti-PD-1 monotherapy was tested in autologous TIL/tumor HGSOC PDX models. RESULTS Evaluation of T-cell activation in autologous TIL/tumor co-cultures resulted in an increase in HLA-dependent IFNγ production and T-cell activation. In response to increased IFNγ production, tumor cell expression of PD-L1 was increased. Addition of anti-PD-1 antibody to TIL/tumor co-cultures increased autologous tumor lysis in a CCNE1 amplified model. Orthotopic HGSOC PDX models from parallel patient-matched tumors maintained their original morphology and molecular marker profile. Autologous tumor-reactive TIL administration in patient-matched PDX models resulted in reduced tumor burden and increased survival, in groups that also received anti-PD-1 therapy. CONCLUSIONS This study validates a novel, clinically relevant model system for in vivo testing of immunomodulating therapeutic strategies for ovarian cancer, and provides a unique platform for assessing patient-specific T-cell response to immunotherapy.
Collapse
Affiliation(s)
- Sarah B Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hyoung Kim
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Stavros Rafail
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Dalia K Omran
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Sergey Medvedev
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yasuto Kinose
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Alba Rodriguez-Garcia
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ahron J Flowers
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Haineng Xu
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lauren E Schwartz
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Fiona Simpkins
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Tomao F, Bardhi E, Di Pinto A, Sassu CM, Biagioli E, Petrella MC, Palaia I, Muzii L, Colombo N, Panici PB. Parp inhibitors as maintenance treatment in platinum sensitive recurrent ovarian cancer: An updated meta-analysis of randomized clinical trials according to BRCA mutational status. Cancer Treat Rev 2019; 80:101909. [DOI: 10.1016/j.ctrv.2019.101909] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/01/2023]
|
28
|
Poveda AM, Davidson R, Blakeley C, Milner A. Olaparib maintenance monotherapy in platinum-sensitive, relapsed ovarian cancer without germline BRCA mutations: OPINION Phase IIIb study design. Future Oncol 2019; 15:3651-3663. [DOI: 10.2217/fon-2019-0343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The poly(ADP-ribose) polymerase inhibitor olaparib (Lynparza™) is approved for maintenance treatment of platinum-sensitive relapsed ovarian cancer. OPINION is a single-arm, open-label, multicenter, Phase IIIb study to assess the efficacy and safety of olaparib tablet maintenance therapy in women with high-grade serous or endometrioid platinum-sensitive relapsed ovarian cancer without a germline BRCA1 or BRCA2 mutation. Eligible patients should have received ≥2 prior lines of platinum-based chemotherapy and be in complete or partial response following their most recent course or have no evidence of disease. Patients will receive olaparib tablets (300 mg twice daily) until disease progression, unacceptable toxicity or another discontinuation criterion. The primary end point is investigator-assessed progression-free survival; secondary end points include progression-free survival according to tumor homologous recombination deficiency status. Clinical trial registration: NCT03402841.
Collapse
Affiliation(s)
- Andres M Poveda
- Department of Gynecologic Oncology, Initia Oncology, 46010 Valencia, Spain
| | | | | | - Alvin Milner
- Biometrics & Information Sciences, AstraZeneca, Cambridge, CB2 8PA, UK
| |
Collapse
|
29
|
Kanakkanthara A, Kurmi K, Ekstrom TL, Hou X, Purfeerst ER, Heinzen EP, Correia C, Huntoon CJ, O'Brien D, Wahner Hendrickson AE, Dowdy SC, Li H, Oberg AL, Hitosugi T, Kaufmann SH, Weroha SJ, Karnitz LM. BRCA1 Deficiency Upregulates NNMT, Which Reprograms Metabolism and Sensitizes Ovarian Cancer Cells to Mitochondrial Metabolic Targeting Agents. Cancer Res 2019; 79:5920-5929. [PMID: 31619387 DOI: 10.1158/0008-5472.can-19-1405] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/05/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
BRCA1 plays a key role in homologous recombination (HR) DNA repair. Accordingly, changes that downregulate BRCA1, including BRCA1 mutations and reduced BRCA1 transcription, due to promoter hypermethylation or loss of the BRCA1 transcriptional regulator CDK12, disrupt HR in multiple cancers. In addition, BRCA1 has also been implicated in the regulation of metabolism. Here, we show that reducing BRCA1 expression, either by CDK12 or BRCA1 depletion, led to metabolic reprogramming of ovarian cancer cells, causing decreased mitochondrial respiration and reduced ATP levels. BRCA1 depletion drove this reprogramming by upregulating nicotinamide N-methyltransferase (NNMT). Notably, the metabolic alterations caused by BRCA1 depletion and NNMT upregulation sensitized ovarian cancer cells to agents that inhibit mitochondrial metabolism (VLX600 and tigecycline) and to agents that inhibit glucose import (WZB117). These observations suggest that inhibition of energy metabolism may be a potential strategy to selectively target BRCA1-deficient high-grade serous ovarian cancer, which is characterized by frequent BRCA1 loss and NNMT overexpression. SIGNIFICANCE: Loss of BRCA1 reprograms metabolism, creating a therapeutically targetable vulnerability in ovarian cancer.
Collapse
Affiliation(s)
- Arun Kanakkanthara
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Kiran Kurmi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | | | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Ethan P Heinzen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | - Daniel O'Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | - Sean C Dowdy
- Division of Gynecologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Taro Hitosugi
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Larry M Karnitz
- Department of Oncology, Mayo Clinic, Rochester, Minnesota. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
30
|
Lohse I, Azzam DJ, Al-Ali H, Volmar CH, Brothers SP, Ince TA, Wahlestedt C. Ovarian Cancer Treatment Stratification Using Ex Vivo Drug Sensitivity Testing. Anticancer Res 2019; 39:4023-4030. [PMID: 31366484 DOI: 10.21873/anticanres.13558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Treatment options for patients with platinum-resistant ovarian cancer are generally palliative in nature and rarely have realistic potential to be curative. Because many patients with recurrent ovarian cancer receive aggressive chemotherapy for prolonged periods, sometimes continuously, therapy-related toxicities are a major factor in treatment decisions. The use of ex vivo drug sensitivity screens has the potential to improve the treatment of patients with platinum-resistant ovarian cancer by providing personalized treatment plans and thus reducing toxicity from unproductive therapy attempts. MATERIALS AND METHODS We evaluated the treatment responses of a set of six early-passage patient-derived ovarian cancer cell lines towards a set of 30 Food and Drug Administration-approved chemotherapy drugs using drug-sensitivity testing. RESULTS We observed a wide range of treatment responses of the cell lines. While most compounds displayed vastly different treatment responses between cell lines, we found that some compounds such as docetaxel and cephalomannine reduced cell survival of all cell lines. CONCLUSION We propose that ex vivo drug-sensitivity screening holds the potential to greatly improve patient outcomes, especially in a population where multiple continuous treatments are not an option due to advanced disease, rapid disease progression, age or poor overall health. This approach may also be useful to identify potential novel therapeutics for patients with ovarian cancer.
Collapse
Affiliation(s)
- Ines Lohse
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, U.S.A
| | - Diana J Azzam
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, U.S.A
| | - Hassan Al-Ali
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, U.S.A.,Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Peggy and Harold Katz Drug Discovery Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, U.S.A
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, U.S.A
| | - Shaun P Brothers
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, U.S.A
| | - Tan A Ince
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, U.S.A.,Department of Pathology and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, U.S.A
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A. .,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, U.S.A
| |
Collapse
|
31
|
Kim B, Sun S, Varner JA, Howell SB, Ruoslahti E, Sailor MJ. Securing the Payload, Finding the Cell, and Avoiding the Endosome: Peptide-Targeted, Fusogenic Porous Silicon Nanoparticles for Delivery of siRNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902952. [PMID: 31267590 PMCID: PMC6710136 DOI: 10.1002/adma.201902952] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/08/2019] [Indexed: 05/06/2023]
Abstract
Despite the promise of ribonucleic acid interference therapeutics, the delivery of oligonucleotides selectively to diseased tissues in the body, and specifically to the cellular location in the tissues needed to provide optimal therapeutic outcome, remains a significant challenge. Here, key material properties and biological mechanisms for delivery of short interfering RNAs (siRNAs) to effectively silence target-specific cells in vivo are identified. Using porous silicon nanoparticles as the siRNA host, tumor-targeting peptides for selective tissue homing, and fusogenic lipid coatings to induce fusion with the plasma membrane, it is shown that the uptake mechanism can be engineered to be independent of common receptor-mediated endocytosis pathways. Two examples of the potential broad clinical applicability of this concept in a mouse xenograft model of ovarian cancer peritoneal carcinomatosis are provided: silencing the Rev3l subunit of polymerase Pol ζ to impair DNA repair in combination with cisplatin; and reprogramming tumor-associated macrophages into a proinflammatory state.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Judith A Varner
- Moores Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Stephen B Howell
- Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
32
|
Qu S, Chen Q, Yi Y, Shao K, Zhang W, Wang Y, Bai J, Li X, Liu Z, Wang X, Jing R, Guan Y, Yi X, Yan M, Cao B, Chen F, Zhu S, Yang X, Wu Y, Huang J. A Reference System for BRCA Mutation Detection Based on Next-Generation Sequencing in the Chinese Population. J Mol Diagn 2019; 21:677-686. [DOI: 10.1016/j.jmoldx.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/17/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
|
33
|
James NE, Beffa L, Oliver MT, Borgstadt AD, Emerson JB, Chichester CO, Yano N, Freiman RN, DiSilvestro PA, Ribeiro JR. Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget 2019; 10:3315-3327. [PMID: 31164954 PMCID: PMC6534361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/14/2019] [Indexed: 11/05/2022] Open
Abstract
Dual specificity phosphatase 6 (DUSP6) is a protein phosphatase that deactivates extracellular-signal-regulated kinase (ERK). Since the ovarian cancer biomarker human epididymis protein 4 (HE4) interacts with the ERK pathway, we sought to determine the relationship between DUSP6 and HE4 and elucidate DUSP6's role in epithelial ovarian cancer (EOC). Viability assays revealed a significant decrease in cell viability with pharmacological inhibition of DUSP6 using (E/Z)-BCI hydrochloride in ovarian cancer cells treated with carboplatin or paclitaxel, compared to treatment with either agent alone. Quantitative PCR was used to evaluate levels of ERK pathway response genes to BCI in combination with recombinant HE4 (rHE4), carboplatin, and paclitaxel. Expression of EGR1, a promoter of apoptosis, was higher in cells co-treated with BCI and paclitaxel or carboplatin than in cells treated with chemotherapeutic agents alone, while expression of the proto-oncogene c-JUN was decreased with co-treatment. The effect of BCI on the expression of these two genes opposed that of rHE4. Pathway focused quantitative PCR also revealed suppression of ERBB3 in cells co-treated with BCI plus carboplatin or paclitaxel. Finally, expression levels of DUSP6 in EOC tissue were evaluated by immunohistochemistry, revealing significantly increased levels of DUSP6 in serous EOC tissue compared to adjacent normal tissue. A positive correlation between HE4 and DUSP6 levels was determined by Spearman Rank correlation. In conclusion, DUSP6 inhibition sensitizes ovarian cancer cells to chemotherapeutic agents and alters gene expression of ERK response genes, suggesting that DUSP6 could plausibly function as a novel therapeutic target to reduce chemoresistance in EOC.
Collapse
Affiliation(s)
- Nicole E. James
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
- Department of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lindsey Beffa
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Matthew T. Oliver
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Ashley D. Borgstadt
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Jenna B. Emerson
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | | | - Naohiro Yano
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Richard N. Freiman
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Paul A. DiSilvestro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Jennifer R. Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| |
Collapse
|
34
|
Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget 2019. [DOI: 10.18632/oncotarget.26915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
35
|
Gorodnova T, Sokolenko A, Ni V, Ivantsov A, Kotiv K, Petrik S, Amelina I, Berlev I, Imyanitov E. BRCA1-associated and sporadic ovarian carcinomas: outcomes of primary cytoreductive surgery or neoadjuvant chemotherapy. Int J Gynecol Cancer 2019; 29:779-786. [PMID: 30839285 DOI: 10.1136/ijgc-2018-000175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Tumors arising in BRCA1/2 mutation carriers are characterized by increased platinum sensitivity; however, it is unknown whether this feature should be considered while choosing between primary surgical versus systemic treatment. This study aimed to compare outcomes of ovarian cancer patients undergoing either primary surgery or interval cytoreduction based on BRCA1/2 status. METHODS The study included consecutive ovarian cancer patients, who were treated at the N.N. Petrov Institute of Oncology (St Petersburg, Russia) from 2000 to 2013 and who underwent complete or optimal cytoreductive surgery. A comparison of disease outcomes was performed for the total group of ovarian cancer patients as well as for 69 BRCA1-mutated and 151 sporadic high-grade serous advanced-stage ovarian carcinomas. Frequency comparisons were performed by Chi-square test or Fisher exact test. Disease-free interval and overall survival were analyzed by Mann-Whitney U-test and Kaplan-Meier method. Hazard ratios were calculated by Cox regression analysis. RESULTS The analysis included 283 consecutive patients who underwent optimal cytoreduction (size of residual tumor <1 cm (n=156)) or complete tumor excision (n=127) on primary surgery (n=168) or after neoadjuvant chemotherapy (n=115). 84 patients carried germline mutation in BRCA1 (n=77) or BRCA2 (n=7) genes, while 199 ovarian cancer patients were classified as sporadic. High-grade serous ovarian cancer patients treated with neoadjuvant chemotherapy had a lower disease-free interval compared with those undergoing primary surgery followed by adjuvant therapy (7.8 vs 14.2 months, p<0.001). This difference was attributed mainly to sporadic cases (5.1 vs 12.2 months, p<0.001), while BRCA1-associated cancers had a similar disease-free interval regardless of the sequence of treatments (12.5 vs 15.8 months, p=0.53). When treated with neoadjuvant chemotherapy, BRCA1-mutated patients had improved overall survival as compared with sporadic cases (45.7 vs 25.3 months, p=0.007), while patients subjected to primary surgery showed similar overall survival irrespective of BRCA1 status (54.6 vs 53.9 months, p=0.56). A total of 29/61 (48%) BRCA1/2-associated patients relapsed as a single local tumor; this was lower in sporadic cancer patients (38/134 (28%); p=0.01). CONCLUSION In BRCA1 mutation carriers, the oncologic outcomes are similar when comparing primary surgery versus neoadjuvant chemotherapy. In addition, BRCA1-mutation carriers often have a single site of disease when diagnosed with recurrent ovarian cancer.
Collapse
Affiliation(s)
- Tatyana Gorodnova
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
| | - Anna Sokolenko
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russian Federation
| | - Valeria Ni
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russian Federation
| | - Alexandr Ivantsov
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russian Federation
| | - Khristina Kotiv
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
| | - Sergey Petrik
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
| | - Inna Amelina
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
| | - Igor Berlev
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
- I.I. Mechnikov North-Western Medical University, St.-Petersburg, Russian Federation
| | - Evgeny Imyanitov
- N.N. Petrov Institute of Oncology, St.-Petersburg, Russian Federation
- St.-Petersburg Pediatric Medical University, St.-Petersburg, Russian Federation
- I.I. Mechnikov North-Western Medical University, St.-Petersburg, Russian Federation
- St.-Petersburg State University, St.-Petersburg, Russian Federation
| |
Collapse
|
36
|
Lodovichi S, Mercatanti A, Cervelli T, Galli A. Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets. Oncotarget 2019; 10:2722-2737. [PMID: 31105872 PMCID: PMC6505629 DOI: 10.18632/oncotarget.26812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge of interaction network between different proteins can be a useful tool in cancer therapy. To develop new therapeutic treatments, understanding how these proteins contribute to dysregulated cellular pathways is an important task. PARP1 inhibitors are drugs used in cancer therapy, in particular where DNA repair is defective. It is crucial to find new candidate interactors of PARP1 as new therapeutic targets in order to increase efficacy of PARP1 inhibitors and expand their clinical utility. By a yeast-based genome wide screening, we previously discovered 90 candidate deletion genes that suppress growth-inhibition phenotype conferred by PARP1 in yeast. Here, we performed an integrated and computational analysis to deeply study these genes. First, we identified which pathways these genes are involved in and putative relations with PARP1 through g:Profiler. Then, we studied mutation pattern and their relation to cancer by interrogating COSMIC and DisGeNET database; finally, we evaluated expression and alteration in several cancers with cBioPortal, and the interaction network with GeneMANIA. We identified 12 genes belonging to PARP1-related pathways. We decided to further validate RIT1, INCENP and PSTA1 in MCF7 breast cancer cells. We found that RIT1 and INCENP affected PARylation and PARP1 protein level more significantly in PARP1 inhibited cells. Furthermore, downregulation of RIT1, INCENP and PSAT1 affected olaparib sensitivity of MCF7 cells. Our study identified candidate genes that could have an effect on PARP inhibition therapy. Moreover, we also confirm that yeast-based screenings could be very helpful to identify novel potential therapy factors.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy.,PhD Student in Clinical and Translational Science Program, University of Pisa, Pisa, Italy
| | - Alberto Mercatanti
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| |
Collapse
|
37
|
Marx S, Van Gysel M, Breuer A, Dal Maso T, Michiels C, Wouters J, Le Calvé B. Potentialization of anticancer agents by identification of new chemosensitizers active under hypoxia. Biochem Pharmacol 2019; 162:224-236. [DOI: 10.1016/j.bcp.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
|
38
|
Moffitt L, Karimnia N, Stephens A, Bilandzic M. Therapeutic Targeting of Collective Invasion in Ovarian Cancer. Int J Mol Sci 2019; 20:E1466. [PMID: 30909510 PMCID: PMC6471817 DOI: 10.3390/ijms20061466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is the seventh most commonly diagnosed cancer amongst women and has the highest mortality rate of all gynaecological malignancies. It is a heterogeneous disease attributed to one of three cell types found within the reproductive milieu: epithelial, stromal, and germ cell. Each histotype differs in etiology, pathogenesis, molecular biology, risk factors, and prognosis. Furthermore, the origin of ovarian cancer remains unclear, with ovarian involvement secondary to the contribution of other gynaecological tissues. Despite these complexities, the disease is often treated as a single entity, resulting in minimal improvement to survival rates since the introduction of platinum-based chemotherapy over 30 years ago. Despite concerted research efforts, ovarian cancer remains one of the most difficult cancers to detect and treat, which is in part due to the unique mode of its dissemination. Ovarian cancers tend to invade locally to neighbouring tissues by direct extension from the primary tumour, and passively to pelvic and distal organs within the peritoneal fluid or ascites as multicellular spheroids. Once at their target tissue, ovarian cancers, like most epithelial cancers including colorectal, melanoma, and breast, tend to invade as a cohesive unit in a process termed collective invasion, driven by specialized cells termed "leader cells". Emerging evidence implicates leader cells as essential drivers of collective invasion and metastasis, identifying collective invasion and leader cells as a viable target for the management of metastatic disease. However, the development of targeted therapies specifically against this process and this subset of cells is lacking. Here, we review our understanding of metastasis, collective invasion, and the role of leader cells in ovarian cancer. We will discuss emerging research into the development of novel therapies targeting collective invasion and the leader cell population.
Collapse
Affiliation(s)
- Laura Moffitt
- Hudson Institute of Medical Research, Clayton VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Nazanin Karimnia
- Hudson Institute of Medical Research, Clayton VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Andrew Stephens
- Hudson Institute of Medical Research, Clayton VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
39
|
Han Y, Chen MK, Wang HL, Hsu JL, Li CW, Chu YY, Liu CX, Nie L, Chan LC, Yam C, Wang SC, He GJ, Hortobagyi GN, Tan XD, Hung MC. Synergism of PARP inhibitor fluzoparib (HS10160) and MET inhibitor HS10241 in breast and ovarian cancer cells. Am J Cancer Res 2019; 9:608-618. [PMID: 30949414 PMCID: PMC6448061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are promising targeted therapeutics for breast and ovarian cancers bearing a germline BRCA1/2 mutation (BRCA m), and several have already received regulatory approval in the United States. In patients with a BRCA m cancer, PARPi can increase the burden of unrepaired DNA double-strand breaks by blocking PARP activity and trapping PARP1 onto damaged DNA. Resistance to PARP inhibitors can block the formation of DNA double-strand breaks through BRCA-related DNA repair pathway. MET is a hyper-activated receptor tyrosine kinase expressed in multiple cancer types and the activation contributes to resistance to DNA damage-inducing therapeutic drugs. Our previous study showed that MET inhibition by pan-kinase inhibitors has synergism with PARPi in suppressing growth of breast cancer in vitro and in xenograft tumor models. In this study, we validated the inhibitory effect of novel inhibitors, HS10241 (selective MET inhibitor) and HS10160 (PARPi), to their target respectively in triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC) cells. We further demonstrated that these two inhibitors function synergistically in eliminating TNBC and HGSOC cells; combining with HS10241 increased DNA double-strand breaks induced by HS10160 in cancer cells; and PARP1 tyrosine (Y)-907 phosphorylation (PARP1 p-Y907) can be an effective biomarker as an indicator of MET-mediated PARPi in HGSOC. Our results suggest that the combination of HS10241 and HS10160 may benefit patients bearing tumors overexpressing MET as well as those resistant to single-agent PARPi treatment.
Collapse
Affiliation(s)
- Ye Han
- Department of Second Breast Surgery, China Medical University Affiliated Shengjing HospitalShenyang, P. R. China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Univeristy of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at HoustonHouston, TX 77030, USA
| | - Hung-Ling Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Chun-Xiao Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Lei Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Univeristy of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at HoustonHouston, TX 77030, USA
| | - Clinton Yam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Univeristy of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at HoustonHouston, TX 77030, USA
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Gui-Jin He
- Department of Second Breast Surgery, China Medical University Affiliated Shengjing HospitalShenyang, P. R. China
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Xiao-Dong Tan
- Department of Thyroid and Pancreatic Surgery, China Medical University Affiliated Shengjing HospitalShenyang, P. R. China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Univeristy of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at HoustonHouston, TX 77030, USA
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| |
Collapse
|
40
|
Morgan RD, Clamp AR, Zhou C, Saunders G, Mescallado N, Welch R, Mitchell C, Hasan J, Jayson GC. Dose-dense cisplatin with gemcitabine for relapsed platinum-resistant ovarian cancer. Int J Gynecol Cancer 2019; 29:341-345. [PMID: 30674568 DOI: 10.1136/ijgc-2018-000067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Standard of care treatment for women who develop relapsed ovarian cancer includes sequential platinum- and/or paclitaxel-based chemotherapy, with reducing disease-free intervals. Once platinum resistance develops, treatment options become limited and dose-dense regimens may be offered. We report the efficacy and safety of dose-dense cisplatin with gemcitabine chemotherapy for relapsed platinum-resistant ovarian cancer. METHODS A retrospective analysis of all patients with relapsed, platinum-resistant ovarian, primary peritoneal or fallopian tube cancer treated with cisplatin 35 mg/m2 of body surface area by intravenous infusion with gemcitabine 1000 mg/m2 of body surface area by intravenous infusion on days 1 and 8 of every 21-day treatment cycle between 1 January 2009 and 1 June 2017. RESULTS Ninety-four eligible patients had received a median of three (range one-eight) prior lines of cytotoxic therapy for relapsed ovarian cancer. Sixty patients (64%) had received ≥ 1 prior dose-dense chemotherapy regimen. Dose-dense cisplatin with gemcitabine was associated with a median progression-free survival (PFS) of 4.4 months (95% CI 3.6 to 5.3) and overall survival of 7.6 months (95% CI 5.6 to 9.6). The median PFS for dose-dense cisplatin with gemcitabine as first- (n = 34), second- (n = 42), and third-line or later (n = 18) dose-dense therapy was 4.2 (95% CI 3.2 to 5.2), 5.0 (95% CI 3.5 to 6.5), and 4.2 (95% CI 3.3 to 5.1) months respectively. The RECIST objective response rate for first-, second-, and third-line dose-dense cisplatin with gemcitabine was 23%, 14 %, and 7 % respectively. The most common grade 3 - 4 adverse events were thrombocytopenia (20%), anemia (18%), and neutropenia (14%). DISCUSSION Dose-dense cisplatin with gemcitabine provides modest efficacy whether it is used as a first- or subsequent line of dose-dense chemotherapy to treat relapsed platinum-resistant ovarian cancer and the toxicity is manageable with supportive measures.
Collapse
Affiliation(s)
- Robert D Morgan
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Andrew R Clamp
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Cong Zhou
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | | | | | | | | | | | - Gordon C Jayson
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Morgan RD, Burghel GJ, Flaum N, Bulman M, Clamp AR, Hasan J, Mitchell CL, Schlecht H, Woodward ER, Lallo FI, Crosbie EJ, Edmondson RJ, Wallace AJ, Jayson GC, Evans DGR. Prevalence of germline pathogenic BRCA1/2 variants in sequential epithelial ovarian cancer cases. J Med Genet 2019; 56:301-307. [DOI: 10.1136/jmedgenet-2018-105792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 12/29/2022]
Abstract
IntroductionPoly(ADP-ribose) polymerase inhibitors significantly improve progression-free survival in platinum-sensitive high-grade serous and endometrioid ovarian carcinoma, with greatest benefits observed in women with a pathogenic BRCA1/2 variant. Consequently, the demand for germline BRCA1/2 testing in ovarian cancer has increased substantially, leading to the screening of unselected populations of patients. We aimed to determine the prevalence of pathogenic germline BRCA1/2 variants in women diagnosed with epithelial ovarian cancer, categorised according to the established risk factors for hereditary breast and ovarian cancer syndrome and the Manchester BRCA Score, to inform risk stratification.MethodsA cohort of sequential epithelial ovarian cancer cases recruited between June 2013 and September 2018 underwent germline BRCA1/2 testing by next-generation sequencing and multiplex ligation-dependent probe amplification.ResultsFive hundred and fifty-seven patients were screened. Of these, 18% had inherited a pathogenic BRCA1/2 variant. The prevalence of pathogenic BRCA1/2 variants was >10% in women diagnosed with ovarian cancer earlier than 60 years of age (21%) and those diagnosed later than 60 years of age with a family history of breast and/or ovarian cancer (17%) or a medical history of breast cancer (34%). The prevalence of pathogenic BRCA1/2 variants was also >10% in women with a Manchester BRCA Score of ≥15 points (14%).DiscussionOur study suggests that age at diagnosis, family history of breast and/or ovarian cancer, medical history of breast cancer or a Manchester BRCA Score of ≥15 points are associated with a >10% prevalence of germline pathogenic BRCA1/2 variants in epithelial ovarian cancer.
Collapse
|
42
|
Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc Natl Acad Sci U S A 2019; 116:2210-2219. [PMID: 30659155 DOI: 10.1073/pnas.1818357116] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In ovarian cancer patients, tumor fibrosis and angiotensin-driven fibrogenic signaling have been shown to inversely correlate with survival. We sought to enhance drug delivery and therapeutic efficacy by remodeling the dense extracellular matrix in two orthotopic human ovarian carcinoma xenograft models. We hypothesized that targeting the angiotensin signaling axis with losartan, an approved angiotensin system inhibitor, could reduce extracellular matrix content and the associated "solid stress," leading to better anticancer therapeutic effect. We report here four translatable findings: (i) losartan treatment enhances the efficacy of paclitaxel-a drug used for ovarian cancer treatment-via normalizing the tumor microenvironment, resulting in improved vessel perfusion and drug delivery; (ii) losartan depletes matrix via inducing antifibrotic miRNAs that should be tested as candidate biomarkers of response or resistance to chemotherapy; (iii) although losartan therapy alone does not reduce tumor burden, it reduces both the incidence and the amount of ascites formed; and (iv) our retrospective analysis revealed that patients receiving angiotensin system inhibitors concurrently with standard treatment for ovarian cancer exhibited 30 mo longer overall survival compared with patients on other antihypertensives. Our findings provide the rationale and supporting data for a clinical trial on combined losartan and chemotherapy in ovarian cancer patients.
Collapse
|
43
|
Césaire M, Thariat J, Candéias SM, Stefan D, Saintigny Y, Chevalier F. Combining PARP inhibition, radiation, and immunotherapy: A possible strategy to improve the treatment of cancer? Int J Mol Sci 2018; 19:ijms19123793. [PMID: 30487462 PMCID: PMC6321381 DOI: 10.3390/ijms19123793] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy has revolutionized the practice of oncology, improving survival in certain groups of patients with cancer. Immunotherapy can synergize with radiation therapy, increase locoregional control, and have abscopal effects. Combining it with other treatments, such as targeted therapies, is a promising means of improving the efficacy of immunotherapy. Because the value of immunotherapy is amplified with the expression of tumor antigens, coupling poly(ADP-ribose) polymerase (PARP) inhibitors and immunotherapy might be a promising treatment for cancer. Further, PARP inhibitors (PARPis) are being combined with radiation therapy to inhibit DNA repair functions, thus enhancing the effects of radiation; this association might interact with the antitumor immune response. Cytotoxic T lymphocytes are central to the antitumor immune response. PARP inhibitors and ionizing radiation can enhance the infiltration of cytotoxic T lymphocytes into the tumor bed, but they can also enhance PD-1/PDL-1 expression. Thus, the addition of immune checkpoint inhibitors with PARP inhibitors and/or ionizing radiation could counterbalance such immunosuppressive effects. With the present review article, we proposed to evaluate some of these associated therapies, and we explored the biological mechanisms and medical benefits of the potential combination of radiation therapy, immunotherapy, and PARP inhibitors.
Collapse
Affiliation(s)
- Mathieu Césaire
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14076 Caen, France.
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, 14076 Caen, France.
- Radiotherapy Unit, Centre François Baclesse, 14000 Caen, France.
| | - Juliette Thariat
- Radiotherapy Unit, Centre François Baclesse, 14000 Caen, France.
| | - Serge M Candéias
- ProMD, Chemistry and Biology of Metals Laboratory, Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38054 Grenoble, France.
| | - Dinu Stefan
- Radiotherapy Unit, Centre François Baclesse, 14000 Caen, France.
| | - Yannick Saintigny
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14076 Caen, France.
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, 14076 Caen, France.
| | - François Chevalier
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14076 Caen, France.
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, 14076 Caen, France.
| |
Collapse
|
44
|
Li W, Liu Z, Liang B, Chen S, Zhang X, Tong X, Lou W, Le L, Tang X, Fu F. Identification of core genes in ovarian cancer by an integrative meta-analysis. J Ovarian Res 2018; 11:94. [PMID: 30453999 PMCID: PMC6240943 DOI: 10.1186/s13048-018-0467-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer is one of the most severe public health threats in women. Since it is still challenging to screen in early stages, identification of core genes that play an essential role in epithelial ovarian cancer initiation and progression is of vital importance. RESULTS Seven gene expression datasets (GSE6008, GSE18520, GSE26712, GSE27651, GSE29450, GSE36668, and GSE52037) containing 396 ovarian cancer samples and 54 healthy control samples were analyzed to identify the significant differentially expressed genes (DEGs). We identified 563 DEGs, including 245 upregulated and 318 downregulated genes. Enrichment analysis based on the gene ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that the upregulated genes were significantly enriched in cell division, cell cycle, tight junction, and oocyte meiosis, while the downregulated genes were associated with response to endogenous stimuli, complement and coagulation cascades, the cGMP-PKG signaling pathway, and serotonergic synapse. Two significant modules were identified from a protein-protein interaction network by using the Molecular Complex Detection (MCODE) software. Moreover, 12 hub genes with degree centrality more than 29 were selected from the protein-protein interaction network, and module analysis illustrated that these 12 hub genes belong to module 1. Furthermore, Kaplan-Meier analysis for overall survival indicated that 9 of these hub genes was correlated with poor prognosis of epithelial ovarian cancer patients. CONCLUSION The present study systematically validates the results of previous studies and fills the gap regarding a large-scale meta-analysis in the field of epithelial ovarian cancer. Furthermore, hub genes that could be used as a novel biomarkers to facilitate early diagnosis and therapeutic approaches are evaluated, providing compelling evidence for future genomic-based individualized treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Wenyu Li
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Zheran Liu
- Queen Mary School, Medical College of Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Bowen Liang
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Siyang Chen
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Xinping Zhang
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Xiaoqin Tong
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Weiming Lou
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Lulu Le
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Xiaoli Tang
- School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
| |
Collapse
|
45
|
Manchanda R, Gaba F. Population Based Testing for Primary Prevention: A Systematic Review. Cancers (Basel) 2018; 10:cancers10110424. [PMID: 30400647 PMCID: PMC6266041 DOI: 10.3390/cancers10110424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
The current clinical model for genetic testing is based on clinical-criteria/family-history (FH) and a pre-defined mutation probability threshold. It requires people to develop cancer before identifying unaffected individuals in the family to target prevention. This process is inefficient, resource intensive and misses >50% of individuals or mutation carriers at risk. Population genetic-testing can overcome these limitations. It is technically feasible to test populations on a large scale; genetic-testing costs are falling and acceptability and awareness are rising. MEDLINE, EMBASE, Pubmed, CINAHL and PsychINFO databases were searched using free-text and MeSH terms; retrieved reference lists of publications were screened; additionally, web-based platforms, Google, and clinical-trial registries were searched. Quality of studies was evaluated using appropriate check-lists. A number of studies have evaluated population-based BRCA-testing in the Jewish population. This has been found to be acceptable, feasible, clinically-effective, safe, associated with high satisfaction rates and extremely cost-effective. Data support change in guidelines for population-based BRCA-testing in the Jewish population. Population panel testing for BRCA1/BRCA2/RAD51C/RAD51D/BRIP1/PALB2 gene mutations is the most cost-effective genetic-testing strategy in general-population women and can prevent thousands more breast and ovarian cancers than current clinical-criteria based approaches. A few ongoing studies are evaluating population-based genetic-testing for multiple cancer susceptibility genes in the general population but more implementation studies are needed. A future population-testing programme could also target other chronic diseases.
Collapse
Affiliation(s)
- Ranjit Manchanda
- Barts Cancer Institute, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK.
- Department of Gynaecological Oncology, St Bartholomew's Hospital, London EC1A 7BE, UK.
- Gynaecological Cancer Research Centre, Department of Women's Cancer, Institute for Women's Health, University College London, 149 Tottenham Court Road, London W1T 7DN, UK.
| | - Faiza Gaba
- Barts Cancer Institute, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK.
- Department of Gynaecological Oncology, St Bartholomew's Hospital, London EC1A 7BE, UK.
| |
Collapse
|
46
|
Staropoli N, Ciliberto D, Del Giudice T, Iuliano E, Cucè M, Grillone F, Salvino A, Barbieri V, Russo A, Tassone P, Tagliaferri P. The Era of PARP inhibitors in ovarian cancer: “Class Action” or not? A systematic review and meta-analysis. Crit Rev Oncol Hematol 2018; 131:83-89. [DOI: 10.1016/j.critrevonc.2018.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 02/08/2023] Open
|
47
|
Sakurada S, Watanabe Y, Tokunaga H, Takahashi F, Yamada H, Takehara K, Yaegashi N. Clinicopathologic features and BRCA mutations in primary fallopian tube cancer in Japanese women. Jpn J Clin Oncol 2018; 48:794-798. [PMID: 29982601 DOI: 10.1093/jjco/hyy095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/09/2018] [Indexed: 01/24/2023] Open
Abstract
Objective The present study aimed to clarify the clinicopathological features, including the level of p53 protein expression and BRCA mutations, of primary fallopian tube cancer (PFTC) in Japanese women. Methods A multicenter clinical survey was conducted at three Japanese institutions. Clinical data in patients with PFTC between 1998 and 2016 were collected. Immunohistochemical staining of p53 and BRCA mutation analysis by exome sequence using paraffin-embedded surgical resected specimens were performed. Results A total of 40 patients with PFTC were enrolled in the study. The median age was 58 years (range: 38-78 years); 31 patients were menopausal. Thirty-four (85.0%) patients were diagnosed with serous adenocarcinoma (high grade, 33; low grade, 1). PFTC was classified into ampulla type, fimbriae type and undeterminable type by tumor-occupying lesion; ampulla type and fimbriae type occurred with the same frequency. Among 30 patients with high-grade serous adenocarcinoma, 6 patients showed germline mutations of BRCA1 (stop-gain 4 and frameshift deletion 2) and 2 patients showed germline mutation of BRCA2 (stop-gain 1 and frameshift deletion 1). However, only 1 patient had familial history of breast or ovarian cancer. Patients with BRCA mutations in the germline were frequently observed in ampulla type and FIGO stage I/II cancers, but no significant difference in the frequency of p53 overexpression and overall survival was observed. Conclusions Among Japanese patients with PFTC, 26.7% presented with BRCA mutations in the germline. Additionally, p53 was important for the carcinogenesis in fallopian tubes, independent of the specific BRCA mutation.
Collapse
Affiliation(s)
- Shoko Sakurada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoh Watanabe
- Department of Obstetrics and Gynecology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Hideki Tokunaga
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiaki Takahashi
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Hidekazu Yamada
- Department of Gynecology, Miyagi Cancer Center, Sendai, Japan
| | | | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
48
|
Moore KN, O'Malley DM, Vergote I, Martin LP, Gonzalez-Martin A, Malek K, Birrer MJ. Safety and activity findings from a phase 1b escalation study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with carboplatin in patients with platinum-sensitive ovarian cancer. Gynecol Oncol 2018; 151:46-52. [DOI: 10.1016/j.ygyno.2018.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023]
|
49
|
Kim S, Han Y, Kim SI, Kim HS, Kim SJ, Song YS. Tumor evolution and chemoresistance in ovarian cancer. NPJ Precis Oncol 2018; 2:20. [PMID: 30246154 PMCID: PMC6141595 DOI: 10.1038/s41698-018-0063-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Development of novel strategies to overcome chemoresistance is central goal in ovarian cancer research. Natural history of the cancer development and progression is being reconstructed by genomic datasets to understand the evolutionary pattern and direction. Recent studies suggest that intra-tumor heterogeneity (ITH) is the main cause of treatment failure by chemoresistance in many types of cancers including ovarian cancer. ITH increases the fitness of tumor to adapt to incompatible microenvironment. Understanding ITH in relation to the evolutionary pattern may result in the development of the innovative approach based on individual variability in the genetic, environment, and life style. Thus, we can reach the new big stage conquering the cancer. In this review, we will discuss the recent advances in understanding ovarian cancer biology through the use of next generation sequencing (NGS) and highlight areas of recent progress to improve precision medicine in ovarian cancer.
Collapse
Affiliation(s)
- Soochi Kim
- Seoul National University Hospital Biomedical Research Institute, Seoul, 03080 Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080 Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Hee-Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Seong Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do 16229 Republic of Korea
- Department of transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do 16229 Republic of Korea
| | - Yong Sang Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080 Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| |
Collapse
|
50
|
Rapid detection of copy number variations and point mutations in BRCA1/2 genes using a single workflow by ion semiconductor sequencing pipeline. Oncotarget 2018; 9:33648-33655. [PMID: 30263092 PMCID: PMC6154752 DOI: 10.18632/oncotarget.26000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/04/2018] [Indexed: 01/29/2023] Open
Abstract
Molecular analysis of BRCA1 (MIM# 604370) and BRCA2 (MIM #600185) genes is essential for familial breast and ovarian cancer prevention and treatment. An efficient, rapid, cost-effective accurate strategy for the detection of pathogenic variants is crucial. Mutations detection of BRCA1/2 genes includes screening for single nucleotide variants (SNVs), small insertions or deletions (indels), and Copy Number Variations (CNVs). Sanger sequencing is unable to identify CNVs and therefore Multiplex Ligation Probe amplification (MLPA) or Multiplex Amplicon Quantification (MAQ) is used to complete the BRCA1/2 genes analysis. The rapid evolution of Next Generation Sequencing (NGS) technologies allows the search for point mutations and CNVs with a single platform and workflow. In this study we test the possibilities of NGS technology to simultaneously detect point mutations and CNVs in BRCA1/2 genes, using the OncomineTM BRCA Research Assay on Personal Genome Machine (PGM) Platform with Ion Reporter Software for sequencing data analysis (Thermo Fisher Scientific). Comparison between the NGS-CNVs, MLPA and MAQ results shows how the NGS approach is the most complete and fast method for the simultaneous detection of all BRCA mutations, avoiding the usual time consuming multistep approach in the routine diagnostic testing of hereditary breast and ovarian cancers.
Collapse
|