1
|
Rottersman MG, Zhang W, Zhang J, Grigorean G, Burguener G, Carter C, Vang T, Hegarty J, Zhang X, Finnie S, Dubcovsky J. Deletion of wheat alpha-gliadins from chromosome 6D improves gluten strength and reduces immunodominant celiac disease epitopes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:94. [PMID: 40198388 PMCID: PMC11978689 DOI: 10.1007/s00122-025-04882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025]
Abstract
Wheat gliadins and glutenins confer valuable end-use characteristics but include amino acid sequences (epitopes) that can elicit celiac disease (CeD) in genetically predisposed individuals. The onset of CeD in these individuals is affected by the amount and duration of the exposure to immunogenic epitopes. Therefore, a reduction of epitopes that result in high immune responses in the majority of CeD patients (immunodominant epitopes) may reduce the incidence of CeD at a population level. We generated gamma radiation-induced deletions encompassing the α-gliadins in each of the three wheat genomes and characterized them using exome capture. These deletions, designated as Δgli-A2, Δgli-B2, and Δgli-D2, were deposited in GRIN-Global. The Δgli-A2 and Δgli-B2 deletions showed limited effects on breadmaking quality, but the Δgli-D2 deletion significantly increased gluten strength and improved breadmaking quality without compromising dough elasticity, protein content, or grain yield. The stronger effect of Δgli-D2 on gluten strength was associated with an increased proportion of glutenins and the deletion of α-gliadins with seven cysteines, which are absent in the GLI-A2 and GLI-B2 loci. We show that α-gliadins with seven cysteines are incorporated into the gluten polymer, where they likely function as chain terminators limiting the expansion of the gluten polymer and reducing its strength. In addition to its beneficial effects on breadmaking quality, the Δgli-D2 deletion eliminates major wheat immunodominant CeD epitopes. The deployment of this publicly available Δgli-D2 deletion can simultaneously improve wheat gluten strength and reduce the population-wide burden of CeD.
Collapse
Affiliation(s)
- Maria G Rottersman
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Junli Zhang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California, 451 E. Health Sciences Dr., Davis, CA, 95616, USA
| | - German Burguener
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD, 201815, USA
| | - Claudia Carter
- California Wheat Commission, 1240 Commerce Ave., Woodland, CA, 95776, USA
| | - Teng Vang
- California Wheat Commission, 1240 Commerce Ave., Woodland, CA, 95776, USA
| | - Joshua Hegarty
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Xiaoqin Zhang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Sean Finnie
- USDA-ARS E-202 Food Quality Building, Washington State University, Pullman, WA, 99164, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD, 201815, USA.
| |
Collapse
|
2
|
Dodero VI, Herrera MG. Oligomerization of 33-mer Gliadin Peptides: Supramolecular Assemblies in Celiac Disease. ChemMedChem 2025; 20:e202400789. [PMID: 39635969 DOI: 10.1002/cmdc.202400789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
The 33-mer gliadin peptide and its deamidated derivative, known as 33-mer DGP, are proteolytically resistant peptides central to the pathomechanism of celiac disease (CeD), the autoimmune presentation of gluten-related disorders (GRD). Both peptides can form spontaneous oligomers in the nanomolar concentration, leading to the formation of nanostructures. In other protein-related diseases, oligomers and aggregates are central in their pathomechanism; therefore, it was hypothesized that the oligomerization of proteolytical-resistant 33-mer gliadin peptides could be an underrecognized disease trigger. This review focuses on the current understanding of 33-mer peptides and their oligomers in vitro and cellular experiments. We intend to give the necessary details that incentivize the chemistry community to get involved in the effort to understand the self-assembly of gliadin peptides and the role of their supramolecular structures in CeD and the other GRD. More research is needed to design effective and safe chemical and/or nutritional interventions beyond the gluten-free diet.
Collapse
Affiliation(s)
- Verónica I Dodero
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - María G Herrera
- Molecular Cell Biology, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
3
|
Dotsenko V, Tewes B, Hils M, Pasternack R, Isola J, Taavela J, Popp A, Sarin J, Huhtala H, Hiltunen P, Zimmermann T, Mohrbacher R, Greinwald R, Lundin KEA, Schuppan D, Mäki M, Viiri K. Transcriptomic analysis of intestine following administration of a transglutaminase 2 inhibitor to prevent gluten-induced intestinal damage in celiac disease. Nat Immunol 2024; 25:1218-1230. [PMID: 38914866 PMCID: PMC11224021 DOI: 10.1038/s41590-024-01867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
Transglutaminase 2 (TG2) plays a pivotal role in the pathogenesis of celiac disease (CeD) by deamidating dietary gluten peptides, which facilitates antigenic presentation and a strong anti-gluten T cell response. Here, we elucidate the molecular mechanisms underlying the efficacy of the TG2 inhibitor ZED1227 by performing transcriptional analysis of duodenal biopsies from individuals with CeD on a long-term gluten-free diet before and after a 6-week gluten challenge combined with 100 mg per day ZED1227 or placebo. At the transcriptome level, orally administered ZED1227 effectively prevented gluten-induced intestinal damage and inflammation, providing molecular-level evidence that TG2 inhibition is an effective strategy for treating CeD. ZED1227 treatment preserved transcriptome signatures associated with mucosal morphology, inflammation, cell differentiation and nutrient absorption to the level of the gluten-free diet group. Nearly half of the gluten-induced gene expression changes in CeD were associated with the epithelial interferon-γ response. Moreover, data suggest that deamidated gluten-induced adaptive immunity is a sufficient step to set the stage for CeD pathogenesis. Our results, with the limited sample size, also suggest that individuals with CeD might benefit from an HLA-DQ2/HLA-DQ8 stratification based on gene doses to maximally eliminate the interferon-γ-induced mucosal damage triggered by gluten.
Collapse
Affiliation(s)
- Valeriia Dotsenko
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | | | | | | | - Jorma Isola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Jilab Inc, Tampere, Finland
| | - Juha Taavela
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Alina Popp
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- University of Medicine and Pharmacy 'Carol Davila' and National Institute for Mother and Child Health, Bucharest, Romania
| | | | - Heini Huhtala
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Pauliina Hiltunen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | | | | | | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Detlef Schuppan
- Institute of Translational Immunology and Celiac Center, Medical Center, Johannes-Gutenberg University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Markku Mäki
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
4
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Kurochkina L, Pozdyshev D, Kusaykin M, Barinova K, Ermakova S, Semenyuk P. Sulfated polysaccharides accelerate gliadin digestion and reduce its toxicity. Biochem Biophys Res Commun 2024; 695:149439. [PMID: 38160531 DOI: 10.1016/j.bbrc.2023.149439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Celiac disease and other types of gluten intolerance significantly affect the life quality of patients making them restrict the diet removing all food produced from wheat, rye, oat, and barley flour, and some other products. These disorders arise from protease resistance of poorly soluble proteins prolamins, contained in gluten. Enhanced proteolytic digestion of gliadins might be considered as a prospective approach for the treatment of celiac disease and other types of gluten intolerance. Herein, we tested a range of sulfated polymers (kappa-carrageenan, dextran sulfate and different polysaccharides from brown seaweeds, and a synthetic polystyrene sulfonate) for the ability to activate gliadin digestion by human digestive proteases, pepsin and trypsin. Sulfated polysaccharide from Fucus evanescens enhanced proteolytic digestion of gliadins from wheat flour and reduced its cytotoxicity on intestinal epithelial Caco-2 cell culture. Regarding the non-toxic nature of fucoidans, the results provide a basis for polymer-based drugs or additives for the symptomatic treatment of gluten intolerance.
Collapse
Affiliation(s)
- Lidia Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ksenia Barinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
6
|
Yazici GN, Yilmaz I, Ozer MS. Celiac Disease: Myth or Reality. ADVANCES IN WHEAT BREEDING 2024:665-720. [DOI: 10.1007/978-981-99-9478-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Kaushik M, Mulani E, Mahendru-Singh A, Makharia G, Mohan S, Mandal PK. Comparative Expression Profile of Genes Encoding Intolerant Proteins in Bread vs. Durum Wheat During Grain Development. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:3200-3210. [DOI: 10.1007/s00344-022-10785-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/23/2022] [Indexed: 08/30/2023]
|
8
|
Herrera MG, Amundarain MJ, Nicoletti F, Drechsler M, Costabel M, Gentili PL, Dodero VI. Thin-Plate Superstructures of the Immunogenic 33-mer Gliadin Peptide. Chembiochem 2022; 23:e202200552. [PMID: 36161684 PMCID: PMC9828358 DOI: 10.1002/cbic.202200552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/23/2022] [Indexed: 02/03/2023]
Abstract
Gluten related-disorders have a prevalence of 1-5 % worldwide triggered by the ingestion of gluten proteins in wheat, rye, barley, and some oats. In wheat gluten, the most studied protein is gliadin, whose immunodominant 33-mer amino acid fragment remains after digestive proteolysis and accumulates in the gut mucosa. Here, we report the formation of 33-mer thin-plate superstructures using intrinsic tyrosine (Tyr) steady-state fluorescence anisotropy and cryo-TEM in combination with water tension measurements. Furthermore, we showed that fluorescence decay measurements of 33-mer intrinsic fluorophore Tyr provided information on the early stages of the formation of the thin-plate structures. Finally, conformational analysis of Tyr residues using minimalist models by molecular dynamic simulations (MD) demonstrated that changes in Tyr rotamer states depend on the oligomerization stage. Our findings further advance the understanding of the formation of the 33-mer gliadin peptide superstructures and their relation to health and disease.
Collapse
Affiliation(s)
- Maria Georgina Herrera
- Faculty of ChemistryOCIIIBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany,Faculty of Exact and Natural SciencesInstitute of BiosciencesBiotechnology and Translational Biology (iB3)University of Buenos AiresIntendente Güiraldes 2160, Ciudad UniversitariaC1428EGABuenos AiresArgentina
| | - Maria Julia Amundarain
- Instituto de Física del Sur (IFISUR)Departamento de FísicaUniversidad Nacional del Sur (UNS)CONICET Av. L. N. Alem1253, B8000CPB -Bahía BlancaArgentina
| | - Franscesco Nicoletti
- Faculty of ChemistryOCIIIBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany,Department of Chemistry, Biology, and BiotechnologyUniversità degli Studi di PerugiaVia Elce di Sotto 806123PerugiaItaly
| | - Marcus Drechsler
- Bavarian Polymer InstituteUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Marcelo Costabel
- Instituto de Física del Sur (IFISUR)Departamento de FísicaUniversidad Nacional del Sur (UNS)CONICET Av. L. N. Alem1253, B8000CPB -Bahía BlancaArgentina
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and BiotechnologyUniversità degli Studi di PerugiaVia Elce di Sotto 806123PerugiaItaly
| | | |
Collapse
|
9
|
Abstract
The design and use of mouse models that reproduce key features of human diseases are critical to advance our understanding of the pathogenesis of autoimmune diseases and to test new therapeutic strategies. Celiac disease is a unique organ-specific autoimmune-like disorder occurring in genetically susceptible individuals carrying HLA-DQ2 or HLA-DQ8 molecules who consume gluten. The key histological characteristic of the disease in humans is the destruction of the lining of the small intestine, a feature that has been difficult to reproduce in immunocompetent animal models. This unit describes the DQ8-Dd -villin-IL-15 transgenic mouse model of CeD, which was engineered based on the knowledge acquired from studying CeD patients' intestinal samples, and which represents the first animal model that develops villous atrophy in an HLA- and gluten-dependent manner without administration of any adjuvant. We provide detailed protocols for inducing and monitoring intestinal tissue damage, evaluating the cytotoxic properties of intraepithelial lymphocytes that mediate enterocyte lysis, and assessing the activation of the enzyme transglutaminase 2, which contributes to the generation of highly immunogenic gluten peptides. Detailed protocols to prepare pepsin-trypsin digested gliadin (PT-gliadin) or chymotrypsin-digested gliadin (CT-gliadin), which allow antibody detection against native or deamidated gluten peptides, are also provided in this unit. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction of celiac-like disease in DQ8-Dd -villin-IL-15tg mice Basic Protocol 2: Histological assessment of villous atrophy Support Protocol 1: Morphometric assessment of villous/crypt ratio Support Protocol 2: Evaluation of epithelial cells renewal Support Protocol 3: Evaluation of the density of intraepithelial lymphocytes Basic Protocol 3: Analysis of cytotoxic intraepithelial lymphocytes Basic Protocol 4: Transglutaminase 2 activation and measurement of antibodies against native and deamidated gluten peptides Support Protocol 4: Preparation of CT-gliadin Support Protocol 5: Preparation of PT-gliadin.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of MedicineUniversity of ChicagoChicagoIllinois
- Celiac Disease CenterUniversity of ChicagoChicagoIllinois
- Section of Gastroenterology, Hepatology and NutritionUniversity of ChicagoChicagoIllinois
| | - Chaitan Khosla
- Department of ChemistryStanford UniversityStanfordCalifornia
- Department of Chemical EngineeringStanford UniversityStanfordCalifornia
- Stanford ChEM‐HStanford UniversityStanfordCalifornia
| | - Bana Jabri
- Department of MedicineUniversity of ChicagoChicagoIllinois
- Celiac Disease CenterUniversity of ChicagoChicagoIllinois
- Section of Gastroenterology, Hepatology and NutritionUniversity of ChicagoChicagoIllinois
- Committee on ImmunologyUniversity of ChicagoChicagoIllinois
- Department of PathologyUniversity of ChicagoChicagoIllinois
| |
Collapse
|
10
|
Voisine J, Abadie V. Interplay Between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Front Immunol 2021; 12:674313. [PMID: 34149709 PMCID: PMC8206552 DOI: 10.3389/fimmu.2021.674313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Several environmental, genetic, and immune factors create a "perfect storm" for the development of coeliac disease: the antigen gluten, the strong association of coeliac disease with HLA, the deamidation of gluten peptides by the enzyme transglutaminase 2 (TG2) generating peptides that bind strongly to the predisposing HLA-DQ2 or HLA-DQ8 molecules, and the ensuing unrestrained T cell response. T cell immunity is at the center of the disease contributing to the inflammatory process through the loss of tolerance to gluten and the differentiation of HLA-DQ2 or HLA-DQ8-restricted anti-gluten inflammatory CD4+ T cells secreting pro-inflammatory cytokines and to the killing of intestinal epithelial cells by cytotoxic intraepithelial CD8+ lymphocytes. However, recent studies emphasize that the individual contribution of each of these cell subsets is not sufficient and that interactions between these different populations of T cells and the simultaneous activation of innate and adaptive immune pathways in distinct gut compartments are required to promote disease immunopathology. In this review, we will discuss how tissue destruction in the context of coeliac disease results from the complex interactions between gluten, HLA molecules, TG2, and multiple innate and adaptive immune components.
Collapse
Affiliation(s)
- Jordan Voisine
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Valérie Abadie
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Section of Gastroenterology, Nutrition and Hepatology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Cao W, Baumert JL, Downs ML. Tracking Gluten throughout Brewing Using N-Terminal Labeling Mass Spectrometry. J Proteome Res 2021; 20:3230-3241. [PMID: 34029081 DOI: 10.1021/acs.jproteome.1c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gluten-containing grains cause adverse health effects in individuals with celiac disease. Fermentation of these grains results in gluten-derived polypeptides with largely uncharacterized sizes and sequences, which may still trigger an immune response. This research used N-terminal labeling mass spectrometry to characterize protein hydrolysates during each stage of bench-scale brewing, including malting, mashing, boiling, fermentation, and aging. Gluten hydrolysates from each brewing step were tracked, and the immunotoxic potential was evaluated by sequence comparison with peptides known to stimulate celiac immune responses. The results indicate that proteolysis and precipitation of gliadins occurring during brewing differ by protein region and brewing stage. The termini of gliadins were hydrolyzed throughout the entire brewing process, but the central regions remained relatively stable. Most hydrolysis occurred during malting, and most precipitation occurred during boiling. The addition of yeast yielded new cleavage sites but did not result in complete hydrolysis. Consistent detection of peptides within the clinically important regions of gliadin corroborated the hydrolytic resistance of this region. N-terminal labeling mass spectrometry served as a novel approach to track the fate of gliadin/gluten throughout bench-scale brewing. Consistently identified fragments could serve as improved targets for the detection of hydrolyzed gluten in fermented products.
Collapse
Affiliation(s)
- Wanying Cao
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| | - Joseph L Baumert
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| | - Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
12
|
Abstract
Wheat-based foods have been staple foods since about 10,000 years and constitute a major source of energy, dietary fiber, and micronutrients for the world population. The role of wheat in our diet, however, has recently been scrutinized by pseudoscientific books and media reports promoting the overall impression that wheat consumption makes people sick, stupid, fat, and addicted. Consequently, numerous consumers in Western countries have started to question their dietary habits related to wheat consumption and voluntarily decided to adopt a wheat-free diet without a medical diagnosis of any wheat-related disorder (WRD), such as celiac disease, wheat allergy, or non-celiac gluten sensitivity. The aim of this review is to achieve an objective judgment of the positive aspects of wheat consumption as well as adverse effects for individuals suffering from WRDs. The first part presents wheat constituents and their positive nutritional value, in particular, the consumption of products from whole-grain flours. The second part is focused on WRDs that affect predisposed individuals and can be treated with a gluten-free or -reduced diet. Based on all available scientific knowledge, wheat consumption is safe and healthy for the vast majority of people. There is no scientific evidence to support that the general population would benefit from a wheat-free diet.
Collapse
Affiliation(s)
| | | | - Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
13
|
Jouanin A, Gilissen LJWJ, Schaart JG, Leigh FJ, Cockram J, Wallington EJ, Boyd LA, van den Broeck HC, van der Meer IM, America AHP, Visser RGF, Smulders MJM. CRISPR/Cas9 Gene Editing of Gluten in Wheat to Reduce Gluten Content and Exposure-Reviewing Methods to Screen for Coeliac Safety. Front Nutr 2020; 7:51. [PMID: 32391373 PMCID: PMC7193451 DOI: 10.3389/fnut.2020.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Ingestion of gluten proteins (gliadins and glutenins) from wheat, barley and rye can cause coeliac disease (CD) in genetically predisposed individuals. The only remedy is a strict and lifelong gluten-free diet. There is a growing desire for coeliac-safe, whole-grain wheat-based products, as consumption of whole-grain foods reduces the risk of chronic diseases. However, due to the large number of gluten genes and the complexity of the wheat genome, wheat that is coeliac-safe but retains baking quality cannot be produced by conventional breeding alone. CD is triggered by immunogenic epitopes, notably those present in α-, γ-, and ω-gliadins. RNA interference (RNAi) silencing has been used to down-regulate gliadin families. Recently, targeted gene editing using CRISPR/Cas9 has been applied to gliadins. These methods produce offspring with silenced, deleted, and/or edited gliadins, that overall may reduce the exposure of patients to CD epitopes. Here we review methods to efficiently screen and select the lines from gliadin gene editing programs for CD epitopes at the DNA and protein level, for baking quality, and ultimately in clinical trials. The application of gene editing for the production of coeliac-safe wheat is further considered within the context of food production and in view of current national and international regulatory frameworks.
Collapse
Affiliation(s)
- Aurelie Jouanin
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | - Luud J. W. J. Gilissen
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | - Jan G. Schaart
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Fiona J. Leigh
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | - James Cockram
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | | | - Lesley A. Boyd
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | | | | | - A. H. P. America
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | | | | |
Collapse
|
14
|
Jouanin A, Tenorio-Berrio R, Schaart JG, Leigh F, Visser RG, Smulders MJ. Optimisation of droplet digital PCR for determining copy number variation of α-gliadin genes in mutant and gene-edited polyploid bread wheat. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Rustgi S, Shewry P, Brouns F. Health Hazards Associated with Wheat and Gluten Consumption in Susceptible Individuals and Status of Research on Dietary Therapies. WHEAT QUALITY FOR IMPROVING PROCESSING AND HUMAN HEALTH 2020:471-515. [DOI: 10.1007/978-3-030-34163-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Altenbach SB, Chang HC, Rowe MH, Yu XB, Simon-Buss A, Seabourn BW, Green PH, Alaedini A. Reducing the Immunogenic Potential of Wheat Flour: Silencing of Alpha Gliadin Genes in a U.S. Wheat Cultivar. FRONTIERS IN PLANT SCIENCE 2020; 11:20. [PMID: 32161604 PMCID: PMC7052357 DOI: 10.3389/fpls.2020.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 05/03/2023]
Abstract
The alpha gliadins are a group of more than 20 proteins with very similar sequences that comprise about 15%-20% of the total flour protein and contribute to the functional properties of wheat flour dough. Some alpha gliadins also contain immunodominant epitopes that trigger celiac disease, a chronic autoimmune disease that affects approximately 1% of the worldwide population. In an attempt to reduce the immunogenic potential of wheat flour from the U.S. spring wheat cultivar Butte 86, RNA interference was used to silence a subset of alpha gliadin genes encoding proteins containing celiac disease epitopes. Two of the resulting transgenic lines were analyzed in detail by quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry. Although the RNA interference construct was designed to target only some alpha gliadin genes, all alpha gliadins were effectively silenced in the transgenic plants. In addition, some off-target silencing of high molecular weight glutenin subunits was detected in both transgenic lines. Compensatory effects were not observed within other gluten protein classes. Reactivities of IgG and IgA antibodies from a cohort of patients with celiac disease toward proteins from the transgenic lines were reduced significantly relative to the nontransgenic line. Both mixing properties and SDS sedimentation volumes suggested a decrease in dough strength in the transgenic lines when compared to the control. The data suggest that it will be difficult to selectively silence specific genes within families as complex as the wheat alpha gliadins. Nonetheless, it may be possible to reduce the immunogenic potential of the flour and still retain many of the functional properties essential for the utilization of wheat.
Collapse
Affiliation(s)
- Susan B. Altenbach
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- *Correspondence: Susan B. Altenbach, ; Armin Alaedini,
| | - Han-Chang Chang
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Matthew H. Rowe
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- Takara Bio USA, Inc., Mountain View, CA, United States
| | - Xuechen B. Yu
- Department of Medicine, Columbia University, New York, NY, United States
- Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Annamaria Simon-Buss
- Western Regional Research Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Bradford W. Seabourn
- Hard Winter Wheat Quality Laboratory, Center for Grain and Animal Health Research, United States Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Peter H. Green
- Department of Medicine, Columbia University, New York, NY, United States
- Celiac Disease Center, Columbia University, New York, NY, United States
| | - Armin Alaedini
- Department of Medicine, Columbia University, New York, NY, United States
- Institute of Human Nutrition, Columbia University, New York, NY, United States
- Celiac Disease Center, Columbia University, New York, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- *Correspondence: Susan B. Altenbach, ; Armin Alaedini,
| |
Collapse
|
17
|
Lexhaller B, Ludwig C, Scherf KA. Comprehensive Detection of Isopeptides between Human Tissue Transglutaminase and Gluten Peptides. Nutrients 2019; 11:nu11102263. [PMID: 31547042 PMCID: PMC6835481 DOI: 10.3390/nu11102263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023] Open
Abstract
Celiac disease (CD) is a chronic inflammation of the small intestine triggered by the ingestion of gluten in genetically predisposed individuals. Tissue transglutaminase (TG2) is a key factor in CD pathogenesis, because it catalyzes both the deamidation of specific glutamine residues and the formation of covalent Nε-(γ-glutamyl)-lysine isopeptide crosslinks resulting in TG2–gluten peptide complexes. These complexes are thought to activate B cells causing the secretion of anti-TG2 autoantibodies that serve as diagnostic markers for CD, although their pathogenic role remains unclear. To gain more insight into the molecular structures of TG2-gluten peptide complexes, we used different proteomics software tools that enable the comprehensive identification of isopeptides. Thus, 34 different isopeptides involving 20 TG2 lysine residues were identified in a model system, only six of which were previously known. Additionally, 36 isopeptides of TG2-TG2 multimers were detected. Experiments with different TG2-gluten peptide molar ratios revealed the most preferred lysine residues involved in isopeptide crosslinking. Expanding the model system to three gluten peptides with more glutamine residues allowed the localization of the preferred glutamine crosslinking sites. These new insights into the structure of TG2-gluten peptide complexes may help clarify the role of extracellular TG2 in CD autoimmunity and in other inflammatory diseases.
Collapse
Affiliation(s)
- Barbara Lexhaller
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany.
| | - Katharina A Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany.
| |
Collapse
|
18
|
Bajor J, Szakács Z, Vincze Á. Response to Letter to the Editor: Relevance of HLA-DQB1*02 allele in predisposing to coeliac disease. Int J Immunogenet 2019; 46:276-277. [PMID: 31304681 DOI: 10.1111/iji.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Judit Bajor
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Áron Vincze
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
19
|
Rustgi S, Shewry P, Brouns F, Deleu LJ, Delcour JA. Wheat Seed Proteins: Factors Influencing Their Content, Composition, and Technological Properties, and Strategies to Reduce Adverse Reactions. Compr Rev Food Sci Food Saf 2019; 18:1751-1769. [PMID: 33336954 DOI: 10.1111/1541-4337.12493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Wheat is the primary source of nutrition for many, especially those living in developing countries, and wheat proteins are among the most widely consumed dietary proteins in the world. However, concerns about disorders related to the consumption of wheat and/or wheat gluten proteins have increased sharply in the last 20 years. This review focuses on wheat gluten proteins and amylase trypsin inhibitors, which are considered to be responsible for eliciting most of the intestinal and extraintestinal symptoms experienced by susceptible individuals. Although several approaches have been proposed to reduce the exposure to gluten or immunogenic peptides resulting from its digestion, none have proven sufficiently effective for general use in coeliac-safe diets. Potential approaches to manipulate the content, composition, and technological properties of wheat proteins are therefore discussed, as well as the effects of using gluten isolates in various food systems. Finally, some aspects of the use of gluten-free commodities are discussed.
Collapse
Affiliation(s)
- Sachin Rustgi
- Dept. of Plant and Environmental Sciences, School of Health Research, Clemson Univ. Pee Dee Research and Education Centre, Florence, SC, U.S.A.,Dept. of Crop and Soil Sciences, Washington State Univ., Pullman, WA, U.S.A
| | - Peter Shewry
- Rothamsted Research, Harpenden, Hertfordshire, U.K
| | - Fred Brouns
- Dept. of Human Biology, School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 50, 6200, MD, Maastricht, the Netherlands
| | - Lomme J Deleu
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
20
|
Brouns F, van Rooy G, Shewry P, Rustgi S, Jonkers D. Adverse Reactions to Wheat or Wheat Components. Compr Rev Food Sci Food Saf 2019; 18:1437-1452. [PMID: 33336916 DOI: 10.1111/1541-4337.12475] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Wheat is an important staple food globally, providing a significant contribution to daily energy, fiber, and micronutrient intake. Observational evidence for health impacts of consuming more whole grains, among which wheat is a major contributor, points to significant risk reduction for diabetes, cardiovascular disease, and colon cancer. However, specific wheat components may also elicit adverse physical reactions in susceptible individuals such as celiac disease (CD) and wheat allergy (WA). Recently, broad coverage in the popular and social media has suggested that wheat consumption leads to a wide range of adverse health effects. This has motivated many consumers to avoid or reduce their consumption of foods that contain wheat/gluten, despite the absence of diagnosed CD or WA, raising questions about underlying mechanisms and possible nocebo effects. However, recent studies did show that some individuals may suffer from adverse reactions in absence of CD and WA. This condition is called non-celiac gluten sensitivity (NCGS) or non-celiac wheat sensitivity (NCWS). In addition to gluten, wheat and derived products contain many other components which may trigger symptoms, including inhibitors of α-amylase and trypsin (ATIs), lectins, and rapidly fermentable carbohydrates (FODMAPs). Furthermore, the way in which foods are being processed, such as the use of yeast or sourdough fermentation, fermentation time and baking conditions, may also affect the presence and bioactivity of these components. The present review systematically describes the characteristics of wheat-related intolerances, including their etiology, prevalence, the components responsible, diagnosis, and strategies to reduce adverse reactions.
Collapse
Affiliation(s)
- Fred Brouns
- Dept. of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Gonny van Rooy
- Div. of Gastroenterology-Hepatology, Dept. of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht Univ. Medical Center, Maastricht, The Netherlands
| | - Peter Shewry
- Rothamsted Research, Harpenden, Hertfordshire, U.K
| | - Sachin Rustgi
- Dept. of Plant and Environmental Sciences, School of Health Research, Clemson Univ., Florence, SC, 29505, U.S.A.,Dept. of Crop & Soil Sciences, Washington State Univ., Pullman, WA, U.S.A
| | - Daisy Jonkers
- Div. of Gastroenterology-Hepatology, Dept. of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht Univ. Medical Center, Maastricht, The Netherlands
| |
Collapse
|
21
|
Panda R, Garber EAE. Detection and Quantitation of Gluten in Fermented-Hydrolyzed Foods by Antibody-Based Methods: Challenges, Progress, and a Potential Path Forward. Front Nutr 2019; 6:97. [PMID: 31316993 PMCID: PMC6611335 DOI: 10.3389/fnut.2019.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) affects ~1 in 141 individuals in the United States, requiring adherence to a strict gluten-free diet. The Codex Standard and the European Commission states that gluten level of gluten-free foods must not exceed 20 ppm. The FDA requires food bearing the labeling claim “gluten-free” to contain <20 ppm gluten. Accurate quantitation of gluten in fermented-hydrolyzed foods by antibody-based methods is a challenge due to the lack of appropriate reference materials and variable proteolysis. The recent uses of proteases (e.g., proline endopeptidases or PEP) to hydrolyze immunopathogenic sequences of gluten proteins further complicates the quantitation of immunopathogenic gluten. The commercially available antibody-based methods routinely used to detect and quantitate gluten are not able to distinguish between different hydrolytic patterns arising from differences in fermentation processes. This is a severe limitation that makes accurate quantitation and, ultimately, a detailed evaluation of any potential health risk associated with consuming the food difficult. Utilizing gluten-specific antibodies, a recently developed multiplex-competitive ELISA along with western blot analysis provides a potential path forward in this direction. These complimentary antibody-based technologies provide insight into the extent of proteolysis resulting from various fermentation processes and have the potential to aid in the selection of appropriate hydrolytic calibration standards, leading to accurate gluten quantitation in fermented-hydrolyzed foods.
Collapse
Affiliation(s)
- Rakhi Panda
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| | - Eric A E Garber
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
22
|
Bajor J, Szakács Z, Juhász M, Papp M, Kocsis D, Szegedi É, Földi I, Farkas N, Hegyi P, Vincze Á. HLA-DQ2 homozygosis increases tTGA levels at diagnosis but does not influence the clinical phenotype of coeliac disease: A multicentre study. Int J Immunogenet 2019; 46:74-81. [PMID: 30779476 DOI: 10.1111/iji.12415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Magnitude of gluten-specific T-cell responses in coeliac disease (CD) might be dependent on HLA-DQ2 gene dose. We aimed to investigate the effects of HLA-DQB1*02 allele dose on clinical outcomes. METHODS We reviewed the charts of all coeliac patients attending to three Hungarian university clinics after 1997 and included those patients, who (a) were diagnosed with CD, (b) underwent high-resolution HLA typing and (c) were ≥18 years at the time of data collection. HLA typing was performed to determine DQB1*02 allele dose. Patients were divided into risk groups by DQB1*02 allele dose, as follows: high-, intermediate- and low-risk groups corresponded to a double, single and zero doses, respectively. We used ANOVA and Pearson's chi-squared test to explore association between HLA risk and clinical variables. RESULTS A total of 727 coeliac patients attended the clinics but only 105 (14.4%) patients were eligible for inclusion. High, intermediate and low HLA risk patients comprised 35.3%, 52.3% and 12.3% of the study population, respectively. Double dose of HLA-DQB1*02 was more frequent in patient with high tTGA level (>10 times the upper limit of normal; p = 0.045). Gene dose was not associated with younger age at diagnosis (p = 0.549), gender (p = 0.739), more severe diagnostic histology (p = 0.318), more frequent classical presentation (p = 0.846), anaemia (p = 0.611), metabolic bone disease (p = 0.374), dermatitis herpetiformis (p = 0.381) and autoimmune diseases (p = 0.837). CONCLUSIONS Our study shows a significant gene dose effect in terms of tTGA level at diagnosis, but no significant association between HLA-DQB1*02 allele dose and the clinical outcomes in CD.
Collapse
Affiliation(s)
- Judit Bajor
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Márk Juhász
- Department of Internal Medicine, St. Margit Hospital, Budapest, Hungary
| | - Mária Papp
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dorottya Kocsis
- Second Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Szegedi
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - Ildikó Földi
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nelli Farkas
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Academy of Sciences, Momentum Gastroenterology Multidisciplinary Research Group, University of Szeged, Szeged, Hungary
| | - Áron Vincze
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
23
|
Bajor J, Szakács Z, Farkas N, Hegyi P, Illés A, Solymár M, Pétervári E, Balaskó M, Pár G, Sarlós P, Szűcs Á, Czimmer J, Szemes K, Huszár O, Varjú P, Vincze Á. Classical celiac disease is more frequent with a double dose of HLA-DQB1*02: A systematic review with meta-analysis. PLoS One 2019; 14:e0212329. [PMID: 30763397 PMCID: PMC6375622 DOI: 10.1371/journal.pone.0212329] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIMS Experimental data suggest that the HLA-DQ2 gene dose has a strong quantitative effect on clinical outcomes and severity of celiac disease (CD). We aimed to conduct a meta-analysis with systematic review to investigate the association between HLA-DQB1*02 gene doses and the characteristics of CD. METHODS We searched seven medical databases for studies discussing HLA-DQB1 gene dose in CD and various disease characteristics, such as clinical presentation, histology, age at diagnosis, and comorbidities. Odds ratios (OR, for categorical variables) and weighted mean differences (for age) were calculated to compare patients with a double dose of HLA-DQB1*02 versus those with single and zero doses. Heterogeneity was tested with I2-statistics and explored by study subgroups (children and adults). RESULTS Twenty-four publications were eligible for meta-analysis. Classical CD was more frequent with a double versus single dose of the HLA-DQB1*02 allele (OR = 1.758, 95%CI: 1.148-2.692, I2 = 0.0%). In pediatric studies, gene dose effect was more prominent (OR = 2.082, 95%CI: 1.189-3.646, I2 = 0.0% and OR = 3.139, 95%CI: 1.142-8.630, I2 = 0.0% for the comparisons of double versus single and double versus zero dose, respectively). Atrophic histology was more prevalent with a double versus zero dose (OR = 2.626, CI: 1.060-6.505, I2 = 21.3%). We observed no gene dose effect regarding diarrhea, age at diagnosis, the severity of villous atrophy, and the association with type 1 diabetes mellitus. CONCLUSION A double dose of HLA-DQB1*02 gene seems to predispose patients to developing classical CD and villous atrophy. Risk stratification by HLA-DQB1*02 gene dose requires further clarification due to the limited available evidence.
Collapse
Affiliation(s)
- Judit Bajor
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
- Clinical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zsolt Szakács
- Clinical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
- Institute of Bioanalysis, University of Pécs, Medical School, Pécs, Hungary
| | - Péter Hegyi
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
- Clinical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
- Hungarian Academy of Sciences-University of Szeged, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary
| | - Anita Illés
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Gabriella Pár
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Patrícia Sarlós
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Ákos Szűcs
- First Department of Surgery, Semmelweis University, Budapest, Hungary
| | - József Czimmer
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Kata Szemes
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Orsolya Huszár
- Hungarian Academy of Sciences-University of Szeged, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary
| | - Péter Varjú
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Áron Vincze
- Division of Gastroenterology, First Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
- Clinical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Wagh SK, Gadge PP, Padul MV. Significant Hydrolysis of Wheat Gliadin by Bacillus tequilensis (10bT/HQ223107): a Pilot Study. Probiotics Antimicrob Proteins 2019; 10:662-667. [PMID: 28948492 DOI: 10.1007/s12602-017-9331-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptidase therapy is suggested to be effective to minimize gliadin toxicity in celiac disease (CD). Hence, present study deals with gliadin-hydrolysing peptidases. The efficient peptidase from the Bacillus tequilensis was purified using ammonium sulfate fractionation and preparative electrophoresis. Analysis of in-solution and in-gel hydrolysis of gliadin using one and two-dimensional SDS-PAGE revealed nearly complete hydrolysis of gliadin peptides after 180 min of incubation with B. tequilensis protease. Purified peptidase was found to be stable at acidic (pH 3.5) to neutral (pH 7.2) pH range. The molecular mass and isoelectric point of the peptidase were observed around 29 kDa and 5.2, respectively. The internal protein sequence obtained through mass spectrometric analysis suggested that peptidase might belong to peptidase S9 family known for prolyl-specific peptidases. This study recommends the possible applicability of this peptidase for elimination of immunotoxic gliadin peptides and may prove useful in CD treatment.
Collapse
Affiliation(s)
- Sandip K Wagh
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Praful P Gadge
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Manohar V Padul
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India.
| |
Collapse
|
25
|
Cebolla Á, Moreno MDL, Coto L, Sousa C. Gluten Immunogenic Peptides as Standard for the Evaluation of Potential Harmful Prolamin Content in Food and Human Specimen. Nutrients 2018; 10:E1927. [PMID: 30563126 PMCID: PMC6316305 DOI: 10.3390/nu10121927] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Gluten is a complex mixture of storage proteins in cereals like wheat, barley, and rye. Prolamins are the main components of gluten. Their high content in proline and glutamine makes them water-insoluble and difficult to digest in the gastrointestinal tract. Partial digestion generates peptide sequences which trigger immune responses in celiac and gluten-sensitive patients. Gluten detection in food is challenging because of the diversity, in various food matrices, of protein proportions or modifications and the huge number of immunogenic sequences with differential potential immunoactivity. Attempts to develop standard reference materials have been unsuccessful. Recent studies have reported the detection of a limited number of dominant Gluten Immunogenic Peptides (GIP) that share similarities to epitopes presented in the α-gliadin 33-mer, which showed to be highly proteolytic resistant and is considered to be the most immunodominant peptide within gluten in celiac disease (CD). GIP were detectable and quantifiable in very different kind of difficult to analyze food, revealing the potential immunogenicity by detecting T-cell activity of celiac patients. But GIP were also found in stool and urine of celiac patients on a supposedly gluten-free diet (GFD), showing the capacity to resist and be absorbed and excreted from the body, providing the first simple and objective means to assess adherence to the GFD. Methods to specifically and sensitively detect the most active GIP in food and biological fluids are rational candidates may use similar analytical standard references for determination of the immunopathological risk of gluten exposure in gluten-related diseases.
Collapse
Affiliation(s)
| | - María de Lourdes Moreno
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | | - Carolina Sousa
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
26
|
Sundblad V, Quintar AA, Morosi LG, Niveloni SI, Cabanne A, Smecuol E, Mauriño E, Mariño KV, Bai JC, Maldonado CA, Rabinovich GA. Galectins in Intestinal Inflammation: Galectin-1 Expression Delineates Response to Treatment in Celiac Disease Patients. Front Immunol 2018; 9:379. [PMID: 29545799 PMCID: PMC5837985 DOI: 10.3389/fimmu.2018.00379] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
Galectins, a family of animal lectins characterized by their affinity for N-acetyllactosamine-enriched glycoconjugates, modulate several immune cell processes shaping the course of innate and adaptive immune responses. Through interaction with a wide range of glycosylated receptors bearing complex branched N-glycans and core 2-O-glycans, these endogenous lectins trigger distinct signaling programs thereby controling immune cell activation, differentiation, recruitment and survival. Given the unique features of mucosal inflammation and the differential expression of galectins throughout the gastrointestinal tract, we discuss here key findings on the role of galectins in intestinal inflammation, particularly Crohn’s disease, ulcerative colitis, and celiac disease (CeD) patients, as well as in murine models resembling these inflammatory conditions. In addition, we present new data highlighting the regulated expression of galectin-1 (Gal-1), a proto-type member of the galectin family, during intestinal inflammation in untreated and treated CeD patients. Our results unveil a substantial upregulation of Gal-1 accompanying the anti-inflammatory and tolerogenic response associated with gluten-free diet in CeD patients, suggesting a major role of this lectin in favoring resolution of inflammation and restoration of mucosal homeostasis. Thus, a coordinated network of galectins and their glycosylated ligands, exerting either anti-inflammatory or proinflammatory responses, may influence the interplay between intestinal epithelial cells and the highly specialized gut immune system in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Victoria Sundblad
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Amado A Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Luciano G Morosi
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sonia I Niveloni
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Ana Cabanne
- Unidad de Patología, Hospital de Gastroenterología, Bonorino Udaondo, Buenos Aires, Argentina
| | - Edgardo Smecuol
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Eduardo Mauriño
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julio C Bai
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina.,Instituto de Investigaciones, Universidad del Salvador, Buenos Aires, Argentina
| | - Cristina A Maldonado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Akeroyd M, van Zandycke S, den Hartog J, Mutsaers J, Edens L, van den Berg M, Christis C. AN-PEP, Proline-Specific Endopeptidase, Degrades All Known Immunostimulatory Gluten Peptides in Beer Made from Barley Malt. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2016-2300-01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Luppo Edens
- DSM Biotechnology Center, Delft, The Netherlands
| | | | | |
Collapse
|
28
|
Jouanin A, Boyd L, Visser RGF, Smulders MJM. Development of Wheat With Hypoimmunogenic Gluten Obstructed by the Gene Editing Policy in Europe. FRONTIERS IN PLANT SCIENCE 2018; 9:1523. [PMID: 30405661 PMCID: PMC6200864 DOI: 10.3389/fpls.2018.01523] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/27/2018] [Indexed: 05/05/2023]
Abstract
Coeliac Disease (CD) is an auto-immune reaction to gluten in 1-2% of the human population. A gluten-free (GF) diet, excluding wheat, barley, and rye, is the only remedy. This diet is difficult to adhere to, partly because wheat gluten is added to many processed products for their viscoelastic properties. In addition, GF products are less healthy and expensive. Wheat products containing only hypoimmunogenic gluten proteins would be a desirable option. Various gluten peptides that trigger CD have been characterized. A single wheat variety contains around hundred gluten genes, producing proteins with varying numbers of epitopes. Gene editing using CRISPR/Cas9 can precisely remove or modify the DNA sequences coding for immunogenic peptides. Wheat with hypoimmunogenic gluten thus exemplifies the potential of gene editing for improving crops for human consumption where conventional breeding cannot succeed. We describe here, in relation to breeding hypoimmunogenic wheat varieties, the inconsistencies of applying GM regulation in Europe for gene-edited plants while mutation breeding-derived plants are exempted. We explain that healthy products derived from this new technology may become available in the United States, Canada, Argentina and other countries but not in Europe, because of strict regulation of unintended GM risk at the expense of reduction the existing immunogenicity risks of patients. We argue that regulation of gene-edited plants should be based on scientific evidence. Therefore, we strongly recommend implementing the innovation principle. Responsible Research and Innovation, involving stakeholders including CD patient societies in the development of gene-editing products, will enable progress toward healthy products and encourage public acceptance.
Collapse
Affiliation(s)
- Aurélie Jouanin
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Genetics & Breeding Research, National Institute of Agricultural Botany, Cambridge, United Kingdom
- *Correspondence: Aurélie Jouanin, Marinus J. M. Smulders,
| | - Lesley Boyd
- Genetics & Breeding Research, National Institute of Agricultural Botany, Cambridge, United Kingdom
| | | | - Marinus J. M. Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Aurélie Jouanin, Marinus J. M. Smulders,
| |
Collapse
|
29
|
Cukrowska B, Sowińska A, Bierła JB, Czarnowska E, Rybak A, Grzybowska-Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota - Key players in the pathogenesis of celiac disease. World J Gastroenterol 2017; 23:7505-7518. [PMID: 29204051 PMCID: PMC5698244 DOI: 10.3748/wjg.v23.i42.7505] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is a chronic immune-mediated disorder triggered by the ingestion of gluten in genetically predisposed individuals. Before activating the immune system, gluten peptides are transferred by the epithelial barrier to the mucosal lamina propria, where they are deamidated by intestinal tissue transglutaminase 2. As a result, they strongly bind to human leucocyte antigens (HLAs), especially HLA-DQ2 and HLA-DQ8, expressed on antigen-presenting cells. This induces an inflammatory response, which results in small bowel enteropathy. Although gluten is the main external trigger activating both innate and adaptive (specific) immunity, its presence in the intestinal lumen does not fully explain CD pathogenesis. It has been hypothesized that an early disruption of the gut barrier in genetically susceptible individuals, which would result in an increased intestinal permeability, could precede the onset of gluten-induced immune events. The intestinal barrier is a complex functional structure, whose functioning is dependent on intestinal microbiota homeostasis, epithelial layer integrity, and the gut-associated lymphoid tissue with its intraepithelial lymphocytes (IELs). The aim of this paper was to review the current literature and summarize the role of the gut microbiota, epithelial cells and their intercellular junctions, and IELs in CD development.
Collapse
Affiliation(s)
- Bożena Cukrowska
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Agnieszka Sowińska
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Joanna Beata Bierła
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Elżbieta Czarnowska
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Anna Rybak
- Department of Gastroenterology, Division of Neurogastroenterology and Motility, Great Ormond Street Hospital, London WC1N 3JH, United Kingdom
| | | |
Collapse
|
30
|
Boukid F, Mejri M, Pellegrini N, Sforza S, Prandi B. How Looking for Celiac‐Safe Wheat Can Influence Its Technological Properties. Compr Rev Food Sci Food Saf 2017; 16:797-807. [DOI: 10.1111/1541-4337.12288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/24/2022]
Abstract
AbstractBecause of the continuous increase in the prevalence of gluten‐related disorders, selection of wheat with a low content of immunogenic gluten epitopes could be an innovative alternative for prevention. In this review, the focus is on literature data concerning the deallergenization tools of wheat, which are mainly related to breeding approaches (classic and advanced) and processing operations (germination and fermentation). Until now, no safe wheat genotype has been identified, whereas decreasing wheat allergenicity is possible. On the other hand, the decrease of gluten or some of its epitopes can strongly affect technological properties. Thus, obtaining celiac‐safe gluten without affecting the technological properties of wheat could be considered as a new challenge that scientists will be facing. Celiac‐safe wheat‐based product development could be a great revolution in the market of foods for special medical purposes. The present paper is aiming to: (a) review the strategies and the approaches used, or that can be used, for developing low allergenic wheat: their utilities and limits were also discussed and (b) screen the impact of gluten reduction or removal on the quality of wheat end‐use products.
Collapse
Affiliation(s)
- Fatma Boukid
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax Univ. of Sfax Tunisia
- Food and Drug Dept. Univ. di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Mondher Mejri
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax Univ. of Sfax Tunisia
| | - Nicoletta Pellegrini
- Food and Drug Dept. Univ. di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
- Food Quality Design Group Wageningen Univ. PO Box 8129 Wageningen The Netherlands
| | - Stefano Sforza
- Food and Drug Dept. Univ. di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Barbara Prandi
- Food and Drug Dept. Univ. di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| |
Collapse
|
31
|
Li YG, Liang HH, Bai SL, Zhou Y, Sun G, Su YR, Gao AL, Zhang DL, Li SP. Molecular Characterization and Variation of the Celiac Disease Epitope Domains among α-Gliadin Genes in Aegilops tauschii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3422-3429. [PMID: 28391694 DOI: 10.1021/acs.jafc.7b00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To explore the distribution and quantity of toxic epitopes in α-gliadins from Aegilops tauschii, a total of 133 complete α-gliadin coding sequences were obtained, including 69 pseudogenes with at least one premature stop codon and 64 genes with complete open reading frames (ORFs). Plenty of deletions and single amino acid substitutions were found in the 4 celiac disease (CD) toxic epitope domains through multiple alignments, in which the sequence of DQ2.5-glia-α2 demonstrated the most significant changes. Interestingly, 7 of the 59 α-gliadins were free of any kind of intact CD toxic epitopes, providing potential gene resources for low CD toxicity breeding of common wheat. Analysis of the neighbor-joining tree demonstrates that 2 of the totally 7 α-gliadins cluster within the homologues of Triticum (A genome), and the other 5 group with those of Aegilops Sitopsis (B genome). This result implies that the 7 α-gliadin genes may be originated from the ancestor species of Ae. tauschii, evolved by the homoploid hybrid of Triticum and Aegilops Sitopsis. The remaining 52 α-gliadins form a separate clade from other homologues of A and B genomes, suggesting a recent rapid gene expansion by gene duplication associated with the species adaptation.
Collapse
Affiliation(s)
- Yu-Ge Li
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Hui-Hui Liang
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Sheng-Long Bai
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Yun Zhou
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Guiling Sun
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Ya-Rui Su
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
| | - An-Li Gao
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
| | - Da-Le Zhang
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Suo-Ping Li
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| |
Collapse
|
32
|
Jouanin A, Gilissen LJWJ, Boyd LA, Cockram J, Leigh FJ, Wallington EJ, van den Broeck HC, van der Meer IM, Schaart JG, Visser RGF, Smulders MJM. Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Res Int 2017; 110:11-21. [PMID: 30029701 DOI: 10.1016/j.foodres.2017.04.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 01/01/2023]
Abstract
A strict gluten-free diet is currently the only treatment for the 1-2% of the world population who suffer from coeliac disease (CD). However, due to the presence of wheat and wheat derivatives in many food products, avoiding gluten consumption is difficult. Gluten-free products, made without wheat, barley or rye, typically require the inclusion of numerous additives, resulting in products that are often less healthy than gluten-based equivalents. Here, we present and discuss two broad approaches to decrease wheat gluten immunogenicity for CD patients. The first approach is based on food processing strategies, which aim to remove gliadins or all gluten from edible products. We find that several of the candidate food processing techniques to produce low gluten-immunogenic products from wheat already exist. The second approach focuses on wheat breeding strategies to remove immunogenic epitopes from the gluten proteins, while maintaining their food-processing properties. A combination of breeding strategies, including mutation breeding and possibly genome editing, will be necessary to produce coeliac-safe wheat. Individuals suffering from CD and people genetically susceptible who may develop CD after prolonged gluten consumption would benefit from reduced CD-immunogenic wheat. Although the production of healthy and less CD-toxic wheat varieties and food products will be challenging, increasing global demand may require these issues to be addressed in the near future by food processing and cereal breeding companies.
Collapse
Affiliation(s)
- Aurélie Jouanin
- Wageningen University & Research, Wageningen, The Netherlands; NIAB, Cambridge CB3 0LE, UK
| | | | | | | | | | | | | | | | - Jan G Schaart
- Wageningen University & Research, Wageningen, The Netherlands
| | | | | |
Collapse
|
33
|
Crespo-Escobar P, Mearin ML, Hervás D, Auricchio R, Castillejo G, Gyimesi J, Martinez-Ojinaga E, Werkstetter K, Vriezinga SL, Korponay-Szabo IR, Polanco I, Troncone R, Stoopman E, Kolaček S, Shamir R, Szajewska H, Koletzko S, Ribes-Koninckx C. The role of gluten consumption at an early age in celiac disease development: a further analysis of the prospective PreventCD cohort study. Am J Clin Nutr 2017; 105:890-896. [PMID: 28228423 DOI: 10.3945/ajcn.116.144352] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Background: We previously found that the introduction of small quantities of gluten at 4-6 mo of age did not reduce the risk of celiac disease (CD) in a group of high-risk children. However, the consumption of high amounts of gluten early in life has been suggested to increase CD risk.Objective: The aim of this study was to evaluate this hypothesis by using data from the previous study of the PreventCD trial (www.preventcd.com).Design: Gluten intake was prospectively quantified by using specific food records between 11 and 36 mo of age in 715 children positive for the human leukocyte antigen (HLA)-DQ2 and/or HLA-DQ8 from 5 European countries. According to the PreventCD protocol, infants received 100 mg immunologically active gluten/d or placebo from 4 to 6 mo of age, with a stepwise and fixed gluten increase until age 10 mo and unrestricted intake thereafter. The primary outcome of the present study was the impact of the amount of gluten consumed from age 10 mo onward on CD development.Results: Mean daily gluten intakes from 10 mo onward were significantly different between countries for children at all ages (P < 0.001) but not between children who developed CD and those who did not within the same country (P > 0.05). The variables country, sex, intervention group, and gluten consumption pattern did not show significant associations with CD development risk (HRs not significant). In addition, the interaction between HLA risk group and gluten consumption pattern showed no significant risk on CD development, except for the DQ2.2/DQ7 haplotype (HR: 5.81; 95% CI: 1.18, 28.74; P = 0.031).Conclusions: Gluten consumption patterns as well as the amount of gluten consumed at 11-36 mo of age do not influence CD development for most related HLA genotypes in children with a genetic risk. This study reports the gluten consumption pattern in children at risk of CD from different European countries. This trial was registered at www.controlled-trials.com as ISRCTN74582487.
Collapse
Affiliation(s)
| | | | - David Hervás
- Biostatistics, Medical Research Institute La Fe, Valencia, Spain
| | - Renata Auricchio
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Gemma Castillejo
- Department of Pediatrics, Hospital Universitari Sant Joan, Reus/Universitat Rovira i Virgili, Tarragona, Spain
| | - Judit Gyimesi
- Celiac Disease Center, Heim Pál Children's Hospital, Budapest, Hungary
| | - Eva Martinez-Ojinaga
- Department of Pediatric Gastroenterology and Nutrition, La Paz University Hospital, Madrid, Spain
| | - Katharina Werkstetter
- Department of Pediatric Gastroenterology and Hepatology, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | | | | | - Isabel Polanco
- Department of Pediatric Gastroenterology and Nutrition, La Paz University Hospital, Madrid, Spain
| | - Riccardo Troncone
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Els Stoopman
- Medical Statistics, Leiden University Medical Center, Leiden, Netherlands
| | - Sanja Kolaček
- Referral Center for Pediatric Gastroenterology and Nutrition, University Children's Hospital Zagreb, Zagreb, Croatia
| | - Raanan Shamir
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hania Szajewska
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland; and
| | - Sibylle Koletzko
- Department of Pediatric Gastroenterology and Hepatology, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | | |
Collapse
|
34
|
Sutton KH, Simmons LD, Cummack JB, Roberts SJ. Production of Flours with Reduced Epitope Content Using Milling Technology. Cereal Chem 2016. [DOI: 10.1094/cchem-10-15-0208-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kevin H. Sutton
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Lyall D. Simmons
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Jill B. Cummack
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Sarah J. Roberts
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| |
Collapse
|
35
|
Žilić S, Janković M, Barać M, Pešić M, Konić-Ristić A, Hadži-Tašković Šukalović V. Effects of enzyme activities during steeping and sprouting on the solubility and composition of proteins, their bioactivity and relationship with the bread making quality of wheat flour. Food Funct 2016; 7:4323-4331. [DOI: 10.1039/c6fo01095d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim was to determine the effect of steeping and sprouting on wheat grain proteins and the functional consequences in this regard.
Collapse
Affiliation(s)
- Slađana Žilić
- Maize Research Institute
- Department of Food Technology and Biochemistry
- 11085 Belgrade
- Serbia
| | - Marijana Janković
- Maize Research Institute
- Department of Food Technology and Biochemistry
- 11085 Belgrade
- Serbia
| | - Miroljub Barać
- Faculty of Agriculture
- Department of Food Technology and Biochemistry
- University of Belgrade
- 11080 Belgrade-Zemun
- Serbia
| | - Mirjana Pešić
- Faculty of Agriculture
- Department of Food Technology and Biochemistry
- University of Belgrade
- 11080 Belgrade-Zemun
- Serbia
| | - Aleksandra Konić-Ristić
- Centre of Research Excellence in Nutrition and Metabolism
- Institute for Medical Research
- University of Belgrade
- 11158 Belgrade
- Serbia
| | | |
Collapse
|
36
|
Sams A, Hawks J. Celiac disease as a model for the evolution of multifactorial disease in humans. Hum Biol 2015; 86:19-36. [PMID: 25401984 DOI: 10.3378/027.086.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/05/2022]
Abstract
Celiac disease (CD) is a multifactorial chronic inflammatory condition that results in injury of the mucosal lining of the small intestine upon ingestion of wheat gluten and related proteins from barley and rye. Although the exact mechanisms leading to CD are not fully understood, the genetic basis of CD has been relatively well characterized. In this review we briefly review the history of discovery, clinical presentation, pathophysiology, and current understanding of the genetics underlying CD risk. Then, we discuss what is known about the current distribution and evolutionary history of genes underlying CD risk in light of other evolutionary models of disease. Specifically, we conclude that the set of loci underlying CD risk did not cohesively evolve as a response to a single past selection event such as the development of agriculture. Rather, deterministic and stochastic evolutionary processes have both contributed to the present distribution of variation in CD risk loci. Selection has shaped some components of this network, but this selection appears to have occurred at different points in the past. Other parts of the CD risk network have likely arisen due to stochastic processes such as genetic drift.
Collapse
Affiliation(s)
- Aaron Sams
- Cornell University, Ithaca, New York, USA
| | - John Hawks
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Incidence of IBD Among Immigrants to Canada and Their Children: Could Gluten Consumption and Celiac Disease Partly Explain the Variation? Am J Gastroenterol 2015; 110:1370-1. [PMID: 26348309 DOI: 10.1038/ajg.2015.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Setty M, Discepolo V, Abadie V, Kamhawi S, Mayassi T, Kent A, Ciszewski C, Maglio M, Kistner E, Bhagat G, Semrad C, Kupfer SS, Green PH, Guandalini S, Troncone R, Murray JA, Turner JR, Jabri B. Distinct and Synergistic Contributions of Epithelial Stress and Adaptive Immunity to Functions of Intraepithelial Killer Cells and Active Celiac Disease. Gastroenterology 2015; 149:681-91.e10. [PMID: 26001928 PMCID: PMC4550536 DOI: 10.1053/j.gastro.2015.05.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The mechanisms of tissue destruction during progression of celiac disease are poorly defined. It is not clear how tissue stress and adaptive immunity contribute to the activation of intraepithelial cytotoxic T cells and the development of villous atrophy. We analyzed epithelial cells and intraepithelial cytotoxic T cells in family members of patients with celiac disease, who were without any signs of adaptive antigluten immunity, and in potential celiac disease patients, who have antibodies against tissue transglutaminase 2 in the absence of villous atrophy. METHODS We collected blood and intestinal biopsy specimens from 268 patients at tertiary medical centers in the United States and Italy from 2004 to 2012. All subjects had normal small intestinal histology. Study groups included healthy individuals with no family history of celiac disease or antibodies against tissue transglutaminase 2 (controls), healthy family members of patients with celiac disease, and potential celiac disease patients. Intraepithelial cytotoxic T cells were isolated and levels of inhibitory and activating natural killer (NK) cells were measured by flow cytometry. Levels of heat shock protein (HSP) and interleukin 15 were measured by immunohistochemistry, and ultrastructural alterations in intestinal epithelial cells (IECs) were assessed by electron microscopy. RESULTS IECs from subjects with a family history of celiac disease, but not from subjects who already had immunity to gluten, expressed higher levels of HS27, HSP70, and interleukin-15 than controls; their IECs also had ultrastructural alterations. Intraepithelial cytotoxic T cells from relatives of patients with celiac disease expressed higher levels of activating NK receptors than cells from controls, although at lower levels than patients with active celiac disease, and without loss of inhibitory receptors for NK cells. Intraepithelial cytotoxic T cells from potential celiac disease patients failed to up-regulate activating NK receptors. CONCLUSIONS A significant subset of healthy family members of patients with celiac disease with normal intestinal architecture had epithelial alterations, detectable by immunohistochemistry and electron microscopy. The adaptive immune response to gluten appears to act in synergy with epithelial stress to allow intraepithelial cytotoxic T cells to kill epithelial cells and induce villous atrophy in patients with active celiac disease.
Collapse
Affiliation(s)
- Mala Setty
- Section of Gastroenterology, Department of Pediatrics and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Valentina Discepolo
- Section of Gastroenterology, Department of Pediatrics and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA,European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II. Naples, Italy,Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA,CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Sarah Kamhawi
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Toufic Mayassi
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Andrew Kent
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Cezary Ciszewski
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Maria Maglio
- European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II. Naples, Italy
| | - Emily Kistner
- Department of Health Studies, University of Chicago, Chicago (IL), USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Carol Semrad
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Sonia S Kupfer
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Peter H Green
- Department of Medicine, Celiac Disease Center, Columbia University Medical Center, New York, New York, USA
| | - Stefano Guandalini
- Section of Gastroenterology, Department of Pediatrics and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II. Naples, Italy
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jerrold R Turner
- Department of Medicine, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois.
| | - Bana Jabri
- Department of Pediatrics, University of Chicago, Chicago, Illinois; Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
39
|
Sarno M, Discepolo V, Troncone R, Auricchio R. Risk factors for celiac disease. Ital J Pediatr 2015; 41:57. [PMID: 26268374 PMCID: PMC4535670 DOI: 10.1186/s13052-015-0166-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Celiac Disease (CD) is an immune-mediated systemic disorder elicited by gluten and related prolamines in genetically susceptible individuals and it is the result of the interaction between genetic and environmental factors. Among genetic risk factors, the strongest association is with the HLA class II DQ region; nevertheless at least 39 non-HLA loci are associated with CD. Gluten is the main environmental trigger of the disease. In addition, infant feeding and weaning practices as well as timing of gluten introduction in the diet have been suggested to contribute to CD risk. Furthermore a role for infectious agents and microbiota composition in disease development has also been proposed. Aim of this short review is to discuss the current knowledge on both genetic and environmental risk factors for the development of CD; moreover we will provide a brief overview of the possible strategies that could be envisaged to prevent this condition, at least in the population at-risk.
Collapse
Affiliation(s)
- Marco Sarno
- Department of Translational Medical Science, Section of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Naples Federico II, via S Pansini 5, 80131, Naples, Italy.
| | - Valentina Discepolo
- Department of Translational Medical Science, Section of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Naples Federico II, via S Pansini 5, 80131, Naples, Italy.
| | - Riccardo Troncone
- Department of Translational Medical Science, Section of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Naples Federico II, via S Pansini 5, 80131, Naples, Italy.
| | - Renata Auricchio
- Department of Translational Medical Science, Section of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Naples Federico II, via S Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
40
|
Colgrave ML, Goswami H, Byrne K, Blundell M, Howitt CA, Tanner GJ. Proteomic Profiling of 16 Cereal Grains and the Application of Targeted Proteomics To Detect Wheat Contamination. J Proteome Res 2015; 14:2659-68. [DOI: 10.1021/acs.jproteome.5b00187] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michelle L. Colgrave
- CSIRO Agriculture Flagship, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Hareshwar Goswami
- CSIRO Agriculture Flagship, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture Flagship, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Malcolm Blundell
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Crispin A. Howitt
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Gregory J. Tanner
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
41
|
Rossi E, Basso D, Zambon CF, Navaglia F, Greco E, Pelloso M, Artuso S, Padoan A, Pescarin M, Aita A, Bozzato D, Moz S, Cananzi M, Guariso G, Plebani M. TNFA Haplotype Genetic Testing Improves HLA in Estimating the Risk of Celiac Disease in Children. PLoS One 2015; 10:e0123244. [PMID: 25915602 PMCID: PMC4411089 DOI: 10.1371/journal.pone.0123244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/28/2015] [Indexed: 12/13/2022] Open
Abstract
Background TNF-α and IFN-γ play a role in the development of mucosal damage in celiac disease (CD). Polymorphisms of TNFA and IFNG genes, as well as of the TNFRSF1A gene, encoding the TNF-α receptor 1, might underlie different inter-individual disease susceptibility over a common HLA risk background. The aims of this study were to ascertain whether five SNPs in the TNFA promoter (-1031T>C,-857C>T,-376G>A,-308G>A,-238G>A), sequence variants of the TNFRSF1A gene and IFNG +874A>T polymorphism are associated with CD in a HLA independent manner. Methods 511 children (244 CD, 267 controls) were genotyped for HLA, TNFA and INFG (Real Time PCR). TNFRSF1A variants were studied (DHPLC and sequence). Results Only the rare TNFA-1031C (OR=0.65, 95% CI:0.44-0.95), -857T (OR=0.42, 95% CI:0.27-0.65), -376A (OR=2.25, 95% CI:1.12-4.51) and -308A (OR=4.76, 95% CI:3.12-7.26) alleles were significantly associated with CD. One TNFRSF1A variant was identified (c.625+10A>G, rs1800693), but not associated with CD. The CD-correlated TNFA SNPs resulted in six haplotypes. Two haplotypes were control-associated (CCGG and TTGG) and three were CD-associated (CCAG, TCGA and CCGA). The seventeen inferred haplotype combinations were grouped (A to E) based on their frequencies among CD. Binary logistic regression analysis documented a strong association between CD and HLA (OR for intermediate risk haplotypes=178; 95% CI:24-1317; OR for high risk haplotypes=2752; 95% CI:287-26387), but also an HLA-independent correlation between CD and TNFA haplotype combination groups. The CD risk for patients carrying an intermediate risk HLA haplotype could be sub-stratified by TNFA haplotype combinations. Conclusion TNFA promoter haplotypes associate with CD independently from HLA. We suggest that their evaluation might enhance the accuracy in estimating the CD genetic risk.
Collapse
Affiliation(s)
- Elisa Rossi
- Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Daniela Basso
- Department of Laboratory Medicine, University—Hospital of Padova, Padova, Italy
- * E-mail:
| | | | - Filippo Navaglia
- Department of Laboratory Medicine, University—Hospital of Padova, Padova, Italy
| | - Eliana Greco
- Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Michela Pelloso
- Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Serena Artuso
- Unit of Pediatric Gastroenterology, Department of Women and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Andrea Padoan
- Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Matilde Pescarin
- Unit of Pediatric Gastroenterology, Department of Women and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Ada Aita
- Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Dania Bozzato
- Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Stefania Moz
- Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Mara Cananzi
- Unit of Pediatric Gastroenterology, Department of Women and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Graziella Guariso
- Unit of Pediatric Gastroenterology, Department of Women and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Mario Plebani
- Department of Medicine—DIMED, University of Padova, Padova, Italy
| |
Collapse
|
42
|
Abadie V, Jabri B. Immunopathology of Celiac Disease. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Sjöberg V, Hollén E, Pietz G, Magnusson KE, Fälth-Magnusson K, Sundström M, Holmgren Peterson K, Sandström O, Hernell O, Hammarström S, Högberg L, Hammarström ML. Noncontaminated dietary oats may hamper normalization of the intestinal immune status in childhood celiac disease. Clin Transl Gastroenterol 2014; 5:e58. [PMID: 24964993 PMCID: PMC4077043 DOI: 10.1038/ctg.2014.9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES: Life-long, strict gluten-free diet (GFD) is the only treatment for celiac disease (CD). Because there is still uncertainty regarding the safety of oats for CD patients, the aim was to investigate whether dietary oats influence the immune status of their intestinal mucosa. METHODS: Paired small intestinal biopsies, before and after >11 months on a GFD, were collected from children with CD who were enrolled in a randomized, double-blind intervention trial to either of two diets: standard GFD (GFD-std; n=13) and noncontaminated oat-containing GFD (GFD-oats; n=15). Expression levels of mRNAs for 22 different immune effector molecules and tight junction proteins were determined by quantitative reverse transcriptase (RT)-PCR. RESULTS: The number of mRNAs that remained elevated was higher in the GFD-oats group (P=0.05). In particular, mRNAs for the regulatory T cell (Treg) signature molecules interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1), the cytotoxicity-activating natural killer (NK) receptors KLRC2/NKG2C and KLRC3/NKG2E, and the tight junction protein claudin-4 remained elevated. Between the two groups, most significant differences were seen for claudin-4 (P=0.003) and KLRC3/NKG2E (P=0.04). CONCLUSIONS: A substantial fraction of pediatric CD patients seem to not tolerate oats. In these patients, dietary oats influence the immune status of the intestinal mucosa with an mRNA profile suggesting presence of activated cytotoxic lymphocytes and Tregs and a stressed epithelium with affected tight junctions. Assessment of changes in levels of mRNA for claudin-4 and KLC3/NKG2E from onset to after a year on oats containing GFD shows promise to identify these CD patients.
Collapse
Affiliation(s)
- Veronika Sjöberg
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | - Elisabet Hollén
- Department of Clinical and Experimental Medicine, Medical Microbiology, Linköping University, Linköping, Sweden
| | - Grzegorz Pietz
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Medical Microbiology, Linköping University, Linköping, Sweden
| | - Karin Fälth-Magnusson
- 1] Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, Linköping, Sweden [2] Division of Pediatrics in Linköping, County Council of Östergötland, Linköping, Sweden
| | - Mia Sundström
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | - Kajsa Holmgren Peterson
- Department of Clinical and Experimental Medicine, Medical Microbiology, Linköping University, Linköping, Sweden
| | - Olof Sandström
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Sten Hammarström
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | - Lotta Högberg
- 1] Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, Linköping, Sweden [2] Division of Pediatrics in Norrköping, County Council of Östergötland, Norrköping, Sweden
| | | |
Collapse
|
44
|
The Clinical Significance of Posttranslational Modification of Autoantigens. Clin Rev Allergy Immunol 2014; 47:73-90. [DOI: 10.1007/s12016-014-8424-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Gilissen LJ, van der Meer IM, Smulders MJ. Reducing the incidence of allergy and intolerance to cereals. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Samaşca G, Sur G, Lupan I. Current trends and investigative developments in celiac disease. Immunol Invest 2014; 42:273-84. [PMID: 23883196 DOI: 10.3109/08820139.2013.777074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Celiac disease has become extensively studied. What could be the cause? Increasing the accuracy of diagnostic tests for celiac disease has led to more discovered cases. Serological diagnosis of celiac disease has undergone important changes in recent years. Application of serological tests has reflected the diagnostic performance of tissue transglutaminase antibody and endomysial antibody as screening tests for celiac disease but also the progress of new serological tests as the antibodies against synthetic deamidated gliadin peptides. Serological tests are largely responsible for the recognition that celiac disease is not a rare disease. The Consensus in celiac disease from 2008 conducted under the aegis of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition jointly with North American Society of Pediatric Gastroenterology, Hepatology and Nutrition which agreed that "Celiac disease is an immune-mediated enteropathy that can affect any system or organ and that can present itself with a wide range of clinical manifestations of variable severity" was confirmed. But increasing prevalence of this disease has led to the need for new methods of treatment among patients with celiac disease. Studies on quality of life of patients with celiac disease have questioned the gluten-free diet. As such new therapies, like TG2 inhibitors, the copolymer P (HEMA-co-SS) and other new experimental therapies, have emerged in celiac disease. The new therapies in celiac disease are based on new investigations in gluten toxicity screening, like K562(S)-cell agglutination, A1 and G12 monoclonal antibodies and proteomics. In this paper we want to present the investigative developments in celiac disease. We also want to find whether a new treatment in celiac disease is necessary.
Collapse
Affiliation(s)
- Gabriel Samaşca
- Department of Immunology, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | | | | |
Collapse
|
47
|
Li Y, Xin R, Zhang D, Li S. Molecular characterization of α-gliadin genes from common wheat cultivar Zhengmai 004 and their role in quality and celiac disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cj.2013.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Samasca G, Lupan I, Deleanu D, Cristea V, Makovicky P. Immunological approach of the challenges of the XXI century in celiac disease. Int Rev Immunol 2013; 33:3-8. [PMID: 23768156 DOI: 10.3109/08830185.2013.797414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gabriel Samasca
- 1Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | | | |
Collapse
|
49
|
Kasarda DD. Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1155-9. [PMID: 23311690 PMCID: PMC3573730 DOI: 10.1021/jf305122s] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/11/2013] [Indexed: 05/23/2023]
Abstract
In response to the suggestion that an increase in the incidence of celiac disease might be attributable to an increase in the gluten content of wheat resulting from wheat breeding, a survey of data from the 20th and 21st centuries for the United States was carried out. The results do not support the likelihood that wheat breeding has increased the protein content (proportional to gluten content) of wheat in the United States. Possible roles for changes in the per capita consumption of wheat flour and the use of vital gluten as a food additive are discussed.
Collapse
Affiliation(s)
- Donald D Kasarda
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|
50
|
Byrne G, Freeley M, Feighery C, Whelan A, Long A. Protein kinase C delta is a substrate of tissue transglutaminase and a novel autoantigen in coeliac disease. Clin Immunol 2013; 147:1-8. [PMID: 23454274 DOI: 10.1016/j.clim.2013.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/13/2012] [Accepted: 01/17/2013] [Indexed: 12/30/2022]
Abstract
Post-translational modification of proteins by deamidation or transamidation by tissue transglutaminase (tTG) has been suggested as a possible mechanism for the development of autoimmunity. Sequence analysis of protein kinase C delta (PKCδ) identified an amino acid motif that suggested the possibility that PKCδ was a glutamine substrate of tTG and MALDI-TOF analysis of synthesised peptides from PKCδ proved that this was the case. Polymerisation experiments using recombinant tTG and biotinylated hexapeptide substrate incorporation assays demonstrated that PKCδ is a substrate for tTG-mediated transamidation. Elevated levels of anti-PKCδ antibodies were detected in sera from patients with coeliac disease (p<0.0001) but not from patients with other autoimmune disorders. These data suggest that a subset of patients with coeliac disease produce autoantibodies against PKCδ and that this response may stem from a tTG-PKCδ substrate interaction.
Collapse
Affiliation(s)
- Greg Byrne
- School of Biological Sciences, Dublin Institute of Technology, Dublin 8, Ireland.
| | - Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Con Feighery
- Department of Immunology, St. James's Hospital & Trinity College Dublin, Dublin, Ireland
| | - Alex Whelan
- Department of Immunology, St. James's Hospital & Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|