1
|
Su B, Zhang Q, Hu X, Xie B, Chen C, Zhao Y, Liu Z, Ma L, Chen J. Role of basophils and type 2 inflammation in bullous pemphigoid pathophysiology: a comparative study of blood and blister fluid. Immunol Res 2025; 73:68. [PMID: 40198413 DOI: 10.1007/s12026-025-09617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by blister formation and inflammatory cell infiltration. In addition to eosinophil and neutrophil infiltration, there are many other inflammatory cells and factors involved in the pathophysiology of BP. Elucidating the inflammation environment will help to the diagnosis and treatment of BP. We used flow cytometry and wright-stained smears to analyze immune cells, and cytometric bead array methods were used to analyze immune factors in matched blood and blister fluid. Besides abundant eosinophil and neutrophil accumulation, distinct basophil infiltration was detected in blister fluid of patients with BP. We also found significant CD4+ T lymphocyte activation and increased type 2 cytokine secretion in BP blister fluid. Under no stimulation, basophils produce more IL-4 compared to CD4+ T lymphocytes in BP blister fluid. Basophils might play a more important role in BP than we early thought. Along with other inflammatory cells and factors, basophils, demonstrated as one of the main producers of IL-4, orchestrate the type 2 inflammation environment in BP.
Collapse
Affiliation(s)
- Bintao Su
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Quanhong Zhang
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, China
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyong Hu
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Bo Xie
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Chao Chen
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Yan Zhao
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, China
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Ma
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, China.
| | - Jinbo Chen
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, China.
| |
Collapse
|
2
|
Li B, Dong B, Xie L, Li Y. Exploring Advances in Natural Plant Molecules for Allergic Rhinitis Immunomodulation in Vivo and in Vitro. Int J Gen Med 2025; 18:529-565. [PMID: 39911299 PMCID: PMC11796455 DOI: 10.2147/ijgm.s493021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
Allergic rhinitis (AR) is a prevalent allergic disease that imposes significant economic burdens and life pressures on individuals, families, and society, particularly in the context of accelerating globalization and increasing pathogenic factors. Current clinical therapies for AR include antihistamines, glucocorticoids administered via various routes, leukotriene receptor antagonists, immunotherapy, and several decongestants. These treatments have demonstrated efficacy in alleviating clinical symptoms and pathological states. However, with the growing awareness of AR and rising expectations for improvements in quality of life, these treatments have become associated with a higher incidence of side effects and an elevated risk of drug resistance. Furthermore, the development of AR is intricately associated with dysregulation of the immune system, yet the underlying pathogenetic mechanisms remain incompletely understood. In contrast, widely available natural plant molecules offer multiple targeting pathways that uniquely modify the typical pathophysiology of AR through immunomodulatory processes. This review presents a comprehensive analysis of both in vivo and in vitro studies on natural plant molecules that modulate immunity for treating AR. Additionally, we examine their specific mechanisms of action in animal models to provide new insights for developing safe and effective targeted therapies while guiding experimental and clinical applications against AR.
Collapse
Affiliation(s)
- Bingquan Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Boyang Dong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Liangzhen Xie
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yan Li
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Tajima A, Yamazaki F, Kishimoto I, Ma N, Kume N, Walls AF, Kambe N, Tanizaki H. Basophil-Derived IL-4 Production and Its Potential Pro-Tumoural Role in Th2-Polarisation Within Sentinel Lymph Nodes of Primary Cutaneous Melanoma. Exp Dermatol 2025; 34:e70028. [PMID: 39865442 DOI: 10.1111/exd.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/01/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
Chronic inflammation in the tumour microenvironment (TME) via Th2-polarisation promotes melanoma progression and metastasis, making it a target for immunotherapy. Interleukin (IL)-4 is considered essential for Th2-polarisation in the TME; however, its source remains unknown. Basophils have been postulated as one of its sources. Basophil-derived IL-4 contributes to Th2-polarisation in parasitic infections and allergic diseases and has been implicated in tumour immunity. To identify basophil infiltration into the TME of human melanoma skin lesions and sentinel lymph nodes (SLNs) and demonstrate that basophils produce IL-4. Immunohistochemistry (IHC) with a basophil-specific BB1 antibody and in situ hybridisation. Basophils tended to infiltrate skin lesions at Stage II or later. Higher numbers of infiltrating basophils correlated with the Breslow depth and a shorter progression-free survival, indicating an association with poor prognosis. In SLNs, basophils infiltrated at early stages without metastasis (Stages I and II), with the number of infiltrating basophils being significantly higher in Stage II than in Stage I. IHC revealed that IL-4 levels were also significantly elevated in Stage II SLNs compared to Stage I SLNs. Furthermore, a positive correlation was observed between the number of basophils infiltrating SLNs and IL-4 expression. In situ hybridisation confirmed that basophils expressed IL4. These findings are consistent with previous reports of early-stage melanoma SLNs having a Th2-environment and suggest that basophil-derived IL-4 may contribute to a metastasis-promoting environment in SLNs through Th2-polarisation. Basophils may represent potential immunotherapeutic targets for pro-tumour changes that occur in SLNs in early-stage melanoma.
Collapse
Affiliation(s)
- Aki Tajima
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Fumikazu Yamazaki
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
- Department of Dermatology, Tokai University, Isehara, Kanagawa, Japan
| | - Izumi Kishimoto
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Ni Ma
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Noriko Kume
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Andrew F Walls
- Immunopharmacology Group, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Naotomo Kambe
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Tanizaki
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
4
|
Nasser M, Abd El-Latif MB, Mahmoud A, Diaa D, Kamal G, Mahmoud H, Emad M, Hany M, Hany R, Mohamed S, Farid A. Utilization of Ziziphus spina-christi leaf extract-loaded chitosan nanoparticles in wastewater treatment and their impact on animal health. Int J Biol Macromol 2024; 282:137441. [PMID: 39522915 DOI: 10.1016/j.ijbiomac.2024.137441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Ziziphus leaf extract (ZEX), chitosan nanoparticles (CS NPs) and Ziziphus leaf extract loaded chitosan nanoparticles (ZEX-CS NPs) were prepared in this study and after chemical analysis and characterization, they were used in wastewater purification. The study also aimed to establish, using an animal model, the feasibility of employing treated water in drinking applications. ZEX-CS NPs were prepared by ionic gelation method. About 25 male Sprague Dawley rats (10 weeks and 170-200 g) were divided into five groups (5 rats/group): group I received tape water; group II received untreated wastewater, group III received ZEX treated wastewater, group IV received CS NPs treated wastewater and group V received ZEX-CS NPs treated wastewater. ZEX-CS NPs have a size of 73 nm, hydrodynamic size of 85.81 nm and zeta potential of -33.68 mV. In addition, ZEX-CS NPs have stronger antioxidant and anti-inflammatory activity with moderate anti-coagulant activity and weaker cytotoxicity than ZEX and CS NPs. Group II showed a significant elevation in the kidney function parameters, oxidative stress and cytokine levels when compared to the other groups, in addition; no significant differences were found in all measured parameters between the rats of group I and V. ZEX-CS NPs were effective in wastewater purification.
Collapse
Affiliation(s)
- Mohamed Nasser
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Mona B Abd El-Latif
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Alaa Mahmoud
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Dai Diaa
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Germeen Kamal
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Hagar Mahmoud
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Merna Emad
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Merna Hany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Rawan Hany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Sohaila Mohamed
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Chowdhury S, Sadhukhan P, Mahata N. Immunoinformatics investigation on pathogenic Escherichia coli proteome to develop an epitope-based peptide vaccine candidate. Mol Divers 2024:10.1007/s11030-024-11034-0. [PMID: 39516450 DOI: 10.1007/s11030-024-11034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Escherichia coli (E. coli), a gram-negative bacterium, quickly colonizes in the human gastrointestinal tract after birth and typically sustains a long-term, symbiotic relationship with the host. However, certain virulent strains of E. coli can cause diseases such as urinary tract infections, meningitis, and enteric disorders. The rising antibiotic resistance among these strains has heightened the urgency for an effective vaccine. This study employs immunoinformatics and a reverse vaccinology technique to identify prospective antigens and create an efficient vaccine construct. In this study, we reported the "Attaching and Effacing Protein" a novel outer-membrane protein conserved in all pathogenic E. coli strains, based on proteome screening. We developed an in silico multi-epitope vaccine that includes helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), B cell lymphocyte (BCL), and pan HLA DR-binding reactive epitope (PADRE) sequences, along with appropriate linkers and adjuvants. Machine Learning algorithms were used to evaluate antigenicity, solubility, stability, and non-allergenicity of the vaccine construct. Additionally, molecular docking analysis revealed that vaccine construct has a strong predicted binding affinity for human toll-like receptors on the cell surface. In this context, laboratory validations are necessary to demonstrate the effectiveness of the possible vaccine design that showed encouraging findings through computational validation.
Collapse
Affiliation(s)
- Soham Chowdhury
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Pinkan Sadhukhan
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
6
|
Umehara T, Mimori M, Kokubu T, Ozawa M, Shiraishi T, Sato T, Onda A, Matsuno H, Omoto S, Sengoku R, Murakami H, Oka H, Iguchi Y. Peripheral immune profile in drug-naïve dementia with Lewy bodies. J Neurol 2024; 271:4146-4157. [PMID: 38581545 DOI: 10.1007/s00415-024-12336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Accumulating evidence suggests that peripheral inflammation is associated with the pathogenesis of Parkinson's disease (PD). We examined peripheral immune profiles and their association with clinical characteristics in patients with DLB and compared these with values in patients with PD. METHODS We analyzed peripheral blood from 93 participants (drug-naïve DLB, 31; drug-naïve PD, 31; controls, 31). Absolute leukocyte counts, absolute counts of leukocyte subpopulations, and peripheral blood inflammatory indices such as neutrophil-to-lymphocyte ratio were examined. Associations with clinical characteristics, cardiac sympathetic denervation, and striatal 123I-2-carbomethoxy-3-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (123I-FP-CIT) binding were also examined. RESULTS Patients with DLB had lower absolute lymphocyte and basophil counts than did age-matched controls (both; p < 0.005). Higher basophil counts were marginally associated with higher global cognition (p = 0.054) and were significantly associated with milder motor severity (p = 0.020) and higher striatal 123I-FP-CIT binding (p = 0.038). By contrast, higher basophil counts were associated with more advanced PD characterized by decreased global cognition and severe cardiac sympathetic denervation. Although lower lymphocyte counts had relevance to more advanced PD, they had little relevance to clinical characteristics in patients with DLB. Higher peripheral blood inflammatory indices were associated with lower body mass index in both DLB and PD. CONCLUSIONS As in patients with PD, the peripheral immune profile is altered in patients with DLB. Some peripheral immune cell counts and inflammatory indices reflect the degree of disease progression. These findings may deepen our knowledge on the role of peripheral inflammation in the pathogenesis of DLB.
Collapse
Affiliation(s)
- Tadashi Umehara
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan.
| | - Masahiro Mimori
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Tatsushi Kokubu
- Department of Neurology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Masakazu Ozawa
- Department of Neurology, Daisan Hospital, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomotaka Shiraishi
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Takeo Sato
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Asako Onda
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Hiromasa Matsuno
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Shusaku Omoto
- Department of Neurology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Renpei Sengoku
- Department of Neurology, Daisan Hospital, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidetomo Murakami
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Hisayoshi Oka
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| |
Collapse
|
7
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
8
|
Maddalon A, Pierzchalski A, Kretschmer T, Bauer M, Zenclussen AC, Marinovich M, Corsini E, Herberth G. Mixtures of per- and poly-fluoroalkyl substances (PFAS) reduce the in vitro activation of human T cells and basophils. CHEMOSPHERE 2023; 336:139204. [PMID: 37315852 DOI: 10.1016/j.chemosphere.2023.139204] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
In the last decades, per- and poly-fluoroalkyl substances (PFAS), widely used industrial chemicals, have been in the center of attention because of their omnipotent presence in water and soils worldwide. Although efforts have been made to substitute long-chain PFAS towards safer alternatives, their persistence in humans still leads to exposure to these compounds. PFAS immunotoxicity is poorly understood as no comprehensive analyses on certain immune cell subtypes exist. Furthermore, mainly single entities and not PFAS mixtures have been assessed. In the present study we aimed to investigate the effect of PFAS (short-chain, long-chain and a mixture of both) on the in vitro activation of primary human immune cells. Our results show the ability of PFAS to reduce T cells activation. In particular, exposure to PFAS affected T helper cells, cytotoxic T cells, Natural Killer T cells, and Mucosal associated invariant T (MAIT) cells, as assessed by multi-parameter flow cytometry. Furthermore, the exposure to PFAS reduced the expression of several genes involved in MAIT cells activation, including chemokine receptors, and typical proteins of MAIT cells, such as GZMB, IFNG and TNFSF15 and transcription factors. These changes were mainly induced by the mixture of both short- and long-chain PFAS. In addition, PFAS were able to reduce basophil activation induced by anti-FcεR1α, as assessed by the decreased expression of CD63. Our data clearly show that the exposure of immune cells to a mixture of PFAS at concentrations mimicking real-life human exposure resulted in reduced cell activation and functional changes of primary innate and adaptive human immune cells.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Tobias Kretschmer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany; Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany.
| |
Collapse
|
9
|
Zhou B, Li J, Liu R, Zhu L, Peng C. The Role of Crosstalk of Immune Cells in Pathogenesis of Chronic Spontaneous Urticaria. Front Immunol 2022; 13:879754. [PMID: 35711438 PMCID: PMC9193815 DOI: 10.3389/fimmu.2022.879754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is defined as recurrent episodes of spontaneous wheal development and/or angioedema for more than six weeks and at least twice a week. The core link in the pathogenesis of CSU is the activation of mast cells, T cells, eosinophils, and other immune cells infiltrating around the small venules of the lesion. Increased vascular permeability, vasodilatation, and recruitment of inflammatory cells directly depend on mast cell mediators’ release. Complex regulatory systems tightly influence the critical roles of mast cells in the local microenvironment. The bias toward Th2 inflammation and autoantibodies derived from B cells, histamine expressed by basophils, and initiation of the extrinsic coagulation pathway by eosinophils or monocytes exerts powerful modulatory influences on mast cells. Cell-to-cell interactions between mast cells and eosinophils/T cells also are regulators of their function and may involve CSU’s pathomechanism. This review summarizes up-to-date knowledge regarding the crosstalk between mast cells and other immune cells, providing the impetus to develop new research concepts and treatment strategies for CSU.
Collapse
Affiliation(s)
- Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cong Peng,
| |
Collapse
|
10
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
11
|
Leyva-Castillo JM, Das M, Kane J, Strakosha M, Singh S, Wong DSH, Horswill AR, Karasuyama H, Brombacher F, Miller LS, Geha RS. Basophil-derived IL-4 promotes cutaneous Staphylococcus aureus infection. JCI Insight 2021; 6:149953. [PMID: 34747366 PMCID: PMC8663570 DOI: 10.1172/jci.insight.149953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Superficial cutaneous Staphylococcus aureus (S. aureus) infection in humans can lead to soft tissue infection, an important cause of morbidity and mortality. IL-17A production by skin TCRγδ+ cells in response to IL-1 and IL-23 produced by epithelial and immune cells is important for restraining S. aureus skin infection. How S. aureus evades this cutaneous innate immune response to establish infection is not clear. Here we show that mechanical injury of mouse skin by tape stripping predisposed mice to superficial skin infection with S. aureus. Topical application of S. aureus to tape-stripped skin caused cutaneous influx of basophils and increased Il4 expression. This basophil-derived IL-4 inhibited cutaneous IL-17A production by TCRγδ+ cells and promoted S. aureus infection of tape-stripped skin. We demonstrate that IL-4 acted on multiple checkpoints that suppress the cutaneous IL-17A response. It reduced Il1 and Il23 expression by keratinocytes, inhibited IL-1+IL-23-driven IL-17A production by TCRγδ+ cells, and impaired IL-17A-driven induction of neutrophil-attracting chemokines by keratinocytes. IL-4 receptor blockade is shown to promote Il17a expression and enhance bacterial clearance in tape-stripped mouse skin exposed to S. aureus, suggesting that it could serve as a therapeutic approach to prevent skin and soft tissue infection.
Collapse
Affiliation(s)
- Juan-Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Kane
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Strakosha
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sonal Singh
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Sen Hoi Wong
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology Cape Town Component and Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
13
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
14
|
[The basophil: From control of immunity to control of leukemias]. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:9-25. [PMID: 34051212 DOI: 10.1016/j.pharma.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
The basophils, first described by Paul Ehlrich in 1879, are rare circulating cells, representing approximately 0.01 to 0.3% of the blood leukocytes. Until recently, these cells have been neglected because of their minority status among immune cells and because they show some similarities to mast cells residing in tissues. However, basophils and mast cells are now recognized as distinct cell lines and it appears that basophils have important and non-redundant functions, distinct from those of mast cells. On the one hand, basophils have beneficial contribution to protective immunity, in particular against parasitic infections. On the other hand, basophils are involved in the development of various benign and malignant pathologies, ranging from allergy to certain leukemias. Basophils interact with other immune cells or neoplastic cells through direct contacts or soluble mediators, such as cytokines and proteases, thus contributing to the regulation of the immune system but also to allergic responses, and probably to the process of neoplastic transformation. In this review, we will develop recent knowledge on the involvement of basophils in the modulation of innate and adaptive immunity. We will then describe the benign or malignant circumstances in which an elevation of circulating basophils can be observed. Finally, we will discuss the role played by these cells in the pathophysiology of certain leukemias, particularly during chronic myeloid leukemia.
Collapse
|
15
|
Raza F, Babasyan S, Larson EM, Freer HS, Schnabel CL, Wagner B. Peripheral blood basophils are the main source for early interleukin-4 secretion upon in vitro stimulation with Culicoides allergen in allergic horses. PLoS One 2021; 16:e0252243. [PMID: 34038479 PMCID: PMC8153460 DOI: 10.1371/journal.pone.0252243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
Interleukin-4 (IL-4) is a key cytokine secreted by type 2 T helper (Th2) cells that orchestrates immune responses during allergic reactions. Human and mouse studies additionally suggest that basophils have a unique role in the regulation of allergic diseases by providing initial IL-4 to drive T cell development towards the Th2 phenotype. Equine Culicoides hypersensitivity (CH) is a seasonal immunoglobulin E (IgE)-mediated allergic dermatitis in horses in response to salivary allergens from Culicoides (Cul) midges. Here, we analyzed IL-4 production in peripheral blood mononuclear cells (PBMC) of CH affected (n = 8) and healthy horses (n = 8) living together in an environment with natural Cul exposure. During Cul exposure when allergic horses had clinical allergy, IL-4 secretion from PBMC after stimulation with Cul extract was similar between healthy and CH affected horses. In contrast, allergic horses had higher IL-4 secretion from PBMC than healthy horses during months without allergen exposure. In addition, allergic horses had increased percentages of IL-4+ cells after Cul stimulation compared to healthy horses, while both groups had similar percentages of IL-4+ cells following IgE crosslinking. The IL-4+ cells were subsequently characterized using different cell surface markers as basophils, while very few allergen-specific CD4+ cells were detected in PBMC after Cul extract stimulation. Similarly, IgE crosslinking by anti-IgE triggered basophils to produce IL-4 in all horses. PMA/ionomycin consistently induced high percentages of IL-4+ Th2 cells in both groups confirming that T cells of all horses studied were capable of IL-4 production. In conclusion, peripheral blood basophils produced high amounts of IL-4 in allergic horses after stimulation with Cul allergens, and allergic horses also maintained higher basophil percentages throughout the year than healthy horses. These new findings suggest that peripheral blood basophils may play a yet underestimated role in innate IL-4 production upon allergen activation in horses with CH. Basophil-derived IL-4 might be a crucial early signal for immune induction, modulating of immune responses towards Th2 immunity and IgE production.
Collapse
Affiliation(s)
- Fahad Raza
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susanna Babasyan
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Elisabeth M. Larson
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Heather S. Freer
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christiane L. Schnabel
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Bettina Wagner
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
17
|
Dawicki W, Huang H, Ma Y, Town J, Zhang X, Rudulier CD, Gordon JR. CD40 signaling augments IL-10 expression and the tolerogenicity of IL-10-induced regulatory dendritic cells. PLoS One 2021; 16:e0248290. [PMID: 33793599 PMCID: PMC8016274 DOI: 10.1371/journal.pone.0248290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
CD40 expressed on stimulatory dendritic cells (DC) provides an important accessory signal for induction of effector T cell responses. It is also expressed at lower levels on regulatory DC (DCreg), but there is little evidence that CD40 signaling contributes to the tolerogenic activity of these cells. Indeed, CD40 silencing within DCreg has been reported to induce T cell tolerance in multiple disease models, suggesting that CD40 is superfluous to DC-induced tolerance. We critically assessed whether CD40 does have a role in tolerance induced by IL-10-differentiated DC (DC10) by using DC10 generating from the bone marrow of wild-type (w.t.) or CD40-/- donor mice, or IL-10-complemented CD40-/- DC10 to treat asthmatic mice. Wild-type DC10 ablated the OVA-asthma phenotype via induction of Foxp3+ Treg responses, but CD40-/- DC10 had no discernible effects on primary facets of the phenotype (e.g., IL-5, IL-9, IL-13 levels, IgE & IgG1 antibodies; p>0.05) and were ≤40% effective in reversal of others. Foxp3+ T cells from the lungs of CD40-/- DC10-treated mice expressed reduced levels of a panel of six Treg-specific activation markers relative to Treg from w.t. DC10-treated mice. Coculture with effector T cells from asthmatic mice induced a marked upregulation of cell surface CD40 on w.t. DC10. While untreated CD40-/- and w.t. DC10 secreted equally low levels of IL-10, stimulation of w.t. DC10 with anti-CD40 for 72 h increased their expression of IL-10 by ≈250%, with no parallel induction of IL-12. Complementing IL-10 expression in CD40-/- DC10 by IL-10 mRNA transfection fully restored the cells’ abilities to suppress the asthma phenotype. In summary, CD40 signaling in DC10 contributes importantly to their expression of IL-10 and to a robust induction of tolerance, including activation of induced Treg.
Collapse
Affiliation(s)
- Wojciech Dawicki
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Hui Huang
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Yanna Ma
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Jennifer Town
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Xiaobei Zhang
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - Chris D. Rudulier
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
| | - John R. Gordon
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
18
|
Kleiner S, Rüdrich U, Gehring M, Loser K, Eiz-Vesper B, Noubissi Nzeteu GA, Patsinakidis N, Meyer NH, Gibbs BF, Raap U. Human basophils release the anti-inflammatory cytokine IL-10 following stimulation with α-melanocyte-stimulating hormone. J Allergy Clin Immunol 2021; 147:1521-1523.e3. [PMID: 33460671 DOI: 10.1016/j.jaci.2020.12.645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Svea Kleiner
- Department of Pediatric Cardiology and Pediatric Intensive Care, Hannover Medical School, Hannover, Germany
| | - Urda Rüdrich
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Manuela Gehring
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Karin Loser
- Division of Immunology, University of Oldenburg, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Gaetan A Noubissi Nzeteu
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Nikolaos Patsinakidis
- University Clinic of Dermatology and Allergy, University of Oldenburg, Oldenburg, Germany
| | - N Helge Meyer
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Bernhard F Gibbs
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany; University Clinic of Dermatology and Allergy, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
19
|
Lamri Y, Vibhushan S, Pacreau E, Boedec E, Saidoune F, Mailleux A, Crestani B, Blank U, Benhamou M, Papo T, Daugas E, Sacré K, Charles N. Basophils and IgE contribute to mixed connective tissue disease development. J Allergy Clin Immunol 2020; 147:1478-1489.e11. [PMID: 33338538 DOI: 10.1016/j.jaci.2020.12.622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mixed connective tissue disease (MCTD) is a rare and complex autoimmune disease that presents mixed features with other connective tissue diseases, such as systemic lupus erythematosus, systemic sclerosis, and myositis. It is characterized by high levels of anti-U1 small nuclear ribonucleoprotein 70k autoantibodies and a high incidence of life-threatening pulmonary involvement. The pathophysiology of MCTD is not well understood, and no specific treatment is yet available for the patients. Basophils and IgE play a role in the development of systemic lupus erythematosus and thus represent new therapeutic targets for systemic lupus erythematosus and other diseases involving basophils and IgE in their pathogenesis. OBJECTIVE We sought to investigate the role of basophils and IgE in the pathophysiology of MCTD. METHODS Basophil activation status and the presence of autoreactive IgE were assessed in peripheral blood of a cohort of patients with MCTD and in an MCTD-like mouse model. Basophil depletion and IgE-deficient animals were used to investigate the contribution of basophils and IgE in the lung pathology development of this mouse model. RESULTS Patients with MCTD have a peripheral basopenia and activated blood basophils overexpressing C-C chemokine receptor 3. Autoreactive IgE raised against the main MCTD autoantigen U1 small nuclear ribonucleoprotein 70k were found in nearly 80% of the patients from the cohort. Basophil activation and IgE anti-U1 small nuclear ribonucleoprotein 70k were also observed in the MCTD-like mouse model along with basophil accumulation in lymph nodes and lungs. Basophil depletion dampened lung pathology, and IgE deficiency prevented its development. CONCLUSIONS Basophils and IgE contribute to MCTD pathophysiology and represent new candidate therapeutic targets for patients with MCTD.
Collapse
Affiliation(s)
- Yasmine Lamri
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Shamila Vibhushan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Emeline Pacreau
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Erwan Boedec
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Fanny Saidoune
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Arnaud Mailleux
- Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Université de Paris, INSERM UMR1152, Faculté de Médecine site Bichat, Paris, France
| | - Bruno Crestani
- Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Université de Paris, INSERM UMR1152, Faculté de Médecine site Bichat, Paris, France; Department of Pulmonology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Marc Benhamou
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Thomas Papo
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Eric Daugas
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Karim Sacré
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Nicolas Charles
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France.
| |
Collapse
|
20
|
Brescia G, Contro G, Giacomelli L, Barion U, Frigo AC, Marioni G. Blood Eosinophilic and Basophilic Trends in Recurring and Non-Recurring Eosinophilic Rhinosinusitis With Nasal Polyps. Am J Rhinol Allergy 2020; 35:296-301. [PMID: 32854522 DOI: 10.1177/1945892420953960] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Very few studies have compared blood eosinophil and basophil levels before and after surgery in patients with eosinophilic CRSwNP (eCRSwNP). No investigations seem to have repeatedly measured them pre- and postoperatively in eCRSwNP patients with recurring versus non-recurring disease to examine how their levels evolved. OBJECTIVE Hence this study to analyze blood eosinophil and basophil levels in patients with eCRSwNP immediately before surgery and afterwards, at 4 months, 1 year, and then yearly up to 5 years. METHODS Fifty-one eCRSwNP patients were enrolled, who all had preoperative laboratory data and the results of at least 4 of the 6 scheduled postoperative follow-up tests. RESULTS Seventeen patients had recurrent disease. Blood eosinophil counts (p = 0.005) and percentages (p = 0.002) were both higher in these patients than in those whose eCRSwNPs did not recur after surgery. Blood basophil counts (p = 0.04) and percentages (p < 0.05) were also significantly higher in patients whose eCRSwNPs relapsed. The time by relapse interaction was not significant for either counts or percentages, though an effect of time was detected for basophil counts (p = 0.01). CONCLUSIONS In eCRSwNP, the statistical analysis of repeated quantitative laboratory data can shed light on the evolution of a patient's systemic inflammatory picture in response to previous treatments, and above all to long-term therapies. Long-term monitoring of blood eosinophil and basophil levels could be of significant value when monoclonal antibodies that inhibit IL signaling will widely enter in clinical practice for eCRSwNP treatment to follow the effectiveness of therapy over time.
Collapse
Affiliation(s)
- Giuseppe Brescia
- Department of Neuroscience, Otolaryngology Section, Padova University, Padova, Italy
| | - Giacomo Contro
- Department of Neuroscience, Otolaryngology Section, Padova University, Padova, Italy
| | - Luciano Giacomelli
- Department of Neuroscience, Otolaryngology Section, Padova University, Padova, Italy
| | - Umberto Barion
- Department of Neuroscience, Otolaryngology Section, Padova University, Padova, Italy
| | - Anna Chiara Frigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, Padova University, Padova, Italy
| | - Gino Marioni
- Department of Neuroscience, Otolaryngology Section, Padova University, Padova, Italy
| |
Collapse
|
21
|
Ishiguro N, Moriyama M, Furusho K, Furukawa S, Shibata T, Murakami Y, Chinju A, Haque ASMR, Gion Y, Ohta M, Maehara T, Tanaka A, Yamauchi M, Sakamoto M, Mochizuki K, Ono Y, Hayashida JN, Sato Y, Kiyoshima T, Yamamoto H, Miyake K, Nakamura S. Activated M2 Macrophages Contribute to the Pathogenesis of IgG4-Related Disease via Toll-like Receptor 7/Interleukin-33 Signaling. Arthritis Rheumatol 2019; 72:166-178. [PMID: 31339007 PMCID: PMC6972995 DOI: 10.1002/art.41052] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
Objective IgG4‐related disease (IgG4‐RD) is a unique inflammatory disorder in which Th2 cytokines promote IgG4 production. In addition, recent studies have implicated the Toll‐like receptor (TLR) pathway. This study was undertaken to examine the expression of TLRs in salivary glands (SGs) from patients with IgG4‐RD. Methods SGs from 15 patients with IgG4‐RD, 15 patients with Sjögren's syndrome (SS), 10 patients with chronic sialadenitis, and 10 healthy controls were examined histologically. TLR family gene expression (TLR‐1 through TLR‐10) was analyzed by DNA microarray in the submandibular glands (SMGs). Up‐regulation of TLRs was confirmed in SGs from patients with IgG4‐RD. Finally, the phenotype of human TLR‐7 (huTLR‐7)–transgenic C57BL/6 mice was assessed before and after stimulation with TLR agonist. Results In patients with IgG4‐RD, TLR‐4, TLR‐7, TLR‐8, and TLR‐9 were overexpressed. Polymerase chain reaction validated the up‐regulation of TLR‐7 in IgG4‐RD compared with the other groups. Immunohistochemical analysis confirmed strong infiltration of TLR‐7–positive cells in the SGs of patients with IgG4‐RD. Double immunohistochemical staining showed that TLR‐7 expression colocalized with CD163+ M2 macrophages. After in vitro stimulation with a TLR‐7 agonist, CD163+ M2 macrophages produced higher levels of interleukin‐33 (IL‐33), which is a Th2‐activating cytokine. In huTLR‐7–transgenic mice, the focus and fibrosis scores in SMGs, pancreas, and lungs were significantly higher than those in wild‐type mice (P < 0.05). Moreover, the concentration of serum IgG, IgG1, and IL‐33 in huTLR‐7–transgenic mice was distinctly increased upon stimulation with a TLR‐7 agonist (P < 0.05). Conclusion TLR‐7–expressing M2 macrophages may promote the activation of Th2 immune responses via IL‐33 secretion in IgG4‐RD.
Collapse
Affiliation(s)
| | | | - Katsuhiro Furusho
- Kyushu University, Fukuoka, Japan, and University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | - Yuka Gion
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | - Yuko Ono
- Kyushu University, Fukuoka, Japan
| | | | - Yasuharu Sato
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | |
Collapse
|
22
|
Boia-Ferreira M, Moreno KG, Basílio ABC, da Silva LP, Vuitika L, Soley B, Wille ACM, Donatti L, Barbaro KC, Chaim OM, Gremski LH, Veiga SS, Senff-Ribeiro A. TCTP from Loxosceles Intermedia (Brown Spider) Venom Contributes to the Allergic and Inflammatory Response of Cutaneous Loxoscelism. Cells 2019; 8:E1489. [PMID: 31766608 PMCID: PMC6953063 DOI: 10.3390/cells8121489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/24/2022] Open
Abstract
LiTCTP is a toxin from the Translationally Controlled Tumor Protein (TCTP) family identified in Loxosceles brown spider venoms. These proteins are known as histamine-releasing factors (HRF). TCTPs participate in allergic and anaphylactic reactions, which suggest their potential role as therapeutic targets. The histaminergic effect of TCTP is related to its pro-inflammatory functions. An initial characterization of LiTCTP in animal models showed that this toxin can increase the microvascular permeability of skin vessels and induce paw edema in a dose-dependent manner. We evaluated the role of LiTCTP in vitro and in vivo in the inflammatory and allergic aspects that undergo the biological responses observed in Loxoscelism, the clinical condition after an accident with Loxosceles spiders. Our results showed LiTCTP recombinant toxin (LiRecTCTP) as an essential synergistic factor for the dermonecrotic toxin actions (LiRecDT1, known as the main toxin in the pathophysiology of Loxoscelism), revealing its contribution to the exacerbated inflammatory response clinically observed in envenomated patients.
Collapse
Affiliation(s)
- Marianna Boia-Ferreira
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Kamila G. Moreno
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Alana B. C. Basílio
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Lucas P. da Silva
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Larissa Vuitika
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Bruna Soley
- Department of Pharmacology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
| | - Ana Carolina M. Wille
- Department of Structural and Molecular Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | - Lucélia Donatti
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Katia C. Barbaro
- Laboratory of Immunopathology, Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Olga M. Chaim
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Silvio S. Veiga
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| |
Collapse
|
23
|
Karasuyama H, Miyake K, Yoshikawa S, Kawano Y, Yamanishi Y. How do basophils contribute to Th2 cell differentiation and allergic responses? Int Immunol 2019; 30:391-396. [PMID: 30169733 DOI: 10.1093/intimm/dxy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Basophils and mast cells share some features, including basophilic granules in the cytoplasm, cell surface expression of the high-affinity IgE receptor and release of chemical mediators such as histamine. Because of this similarity and their minority status, basophils had often been erroneously considered as minor relatives or blood-circulating precursors of tissue-resident mast cells, and therefore long been neglected or underestimated in immunological studies. Taking advantage of newly developed tools, such as basophil-depleting antibodies and engineered mice deficient for only basophils, recent studies have identified previously unappreciated roles for basophils, distinct from those played by mast cells, in allergic responses, protective immunity against parasitic infections and regulation of other immune cells. In this review, we focus on two topics that we presented and discussed in the 46th Annual Meeting of the Japanese Society for Immunology held in Sendai in December 2017. The first topic is the function of basophils as antigen-presenting cells for driving Th2 cell differentiation. We demonstrated that basophils produce few or no MHC class II (MHC-II) proteins by themselves although they can acquire peptide-MHC-II complexes from dendritic cells through trogocytosis, and present them and provide IL-4 to naive CD4 T cells, promoting Th2 cell differentiation. The second topic is the basophil-specific effector molecules involved in allergic responses. Among mouse mast cell proteases (mMCPs), mMCP-8 and mMCP-11 are expressed almost exclusively by basophils. Analyses in vitro and in vivo revealed that both proteases can induce leukocyte migration through distinct mechanisms, contributing to the development of basophil-dependent allergic inflammation.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kensuke Miyake
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yohei Kawano
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yoshinori Yamanishi
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
24
|
Snodgrass RG, Brüne B. Regulation and Functions of 15-Lipoxygenases in Human Macrophages. Front Pharmacol 2019; 10:719. [PMID: 31333453 PMCID: PMC6620526 DOI: 10.3389/fphar.2019.00719] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the stereo-specific peroxidation of polyunsaturated fatty acids (PUFAs) to their corresponding hydroperoxy derivatives. Human macrophages express two arachidonic acid (AA) 15-lipoxygenating enzymes classified as ALOX15 and ALOX15B. ALOX15, which was first described in 1975, has been extensively characterized and its biological functions have been investigated in a number of cellular systems and animal models. In macrophages, ALOX15 functions to generate specific phospholipid (PL) oxidation products crucial for orchestrating the nonimmunogenic removal of apoptotic cells (ACs) as well as synthesizing precursor lipids required for production of specialized pro-resolving mediators (SPMs) that facilitate inflammation resolution. The discovery of ALOX15B in 1997 was followed by comprehensive analyses of its structural properties and reaction specificities with PUFA substrates. Although its enzymatic properties are well described, the biological functions of ALOX15B are not fully understood. In contrast to ALOX15 whose expression in human monocyte-derived macrophages is strictly dependent on Th2 cytokines IL-4 and IL-13, ALOX15B is constitutively expressed. This review aims to summarize the current knowledge on the regulation and functions of ALOX15 and ALOX15B in human macrophages.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
25
|
Yoshikawa S, Oh-Hora M, Hashimoto R, Nagao T, Peters L, Egawa M, Ohta T, Miyake K, Adachi T, Kawano Y, Yamanishi Y, Karasuyama H. Pivotal role of STIM2, but not STIM1, in IL-4 production by IL-3-stimulated murine basophils. Sci Signal 2019; 12:12/576/eaav2060. [PMID: 30967512 DOI: 10.1126/scisignal.aav2060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Basophils have nonredundant roles in various immune responses that require Ca2+ influx. Here, we examined the role of two Ca2+ sensors, stromal interaction molecule 1 and 2 (STIM1 and STIM2), in basophil activation. We found that loss of STIM1, but not STIM2, impaired basophil IL-4 production after stimulation with immunoglobulin E (IgE)-containing immune complexes. In contrast, when basophils were stimulated with IL-3, loss of STIM2, but not STIM1, reduced basophil IL-4 production. This difference in STIM proteins was associated with distinct time courses of Ca2+ influx and transcription of the Il4 gene that were elicited by each stimulus. Similarly, basophil-specific STIM1 expression was required for IgE-driven chronic allergic inflammation in vivo, whereas STIM2 was required for IL-4 production after combined IL-3 and IL-33 treatment in mice. These data indicate that STIM1 and STIM2 have differential roles in the production of IL-4, which are stimulus dependent. Furthermore, these results illustrate the vital role of STIM2 in basophils, which is often considered to be less important than STIM1.
Collapse
Affiliation(s)
- Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Masatsugu Oh-Hora
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryota Hashimoto
- Department of Physiology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Toshihisa Nagao
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Louis Peters
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Mayumi Egawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takuya Ohta
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kensuke Miyake
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yohei Kawano
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshinori Yamanishi
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
26
|
Brescia G, Zanotti C, Parrino D, Barion U, Marioni G. Nasal polyposis pathophysiology: Endotype and phenotype open issues. Am J Otolaryngol 2018; 39:441-444. [PMID: 29550078 DOI: 10.1016/j.amjoto.2018.03.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Endotyping chronic rhinosinusitis with nasal polyps (CRSwNP) poses a challenge for rhinologists nowadays. Phenotyping CRSwNP proved inappropriate as an approach to their classification because of their common clinical features. Endotyping, being based on the pathogenic mechanism, provides a precise picture more appropriate for use in clinical practice. Patients' treatment and follow-up can thus be tailored to cope with the degree of aggressiveness of a specific CRSwNP endotype. The aim of this study was to analyze the available information about the main currently accepted endotypes of CRSwNP; furthermore, we reported and commented evidence regarding some clinical conditions associated with nasal polyposis which could be related with new endotypes. MATERIALS AND METHODS Pubmed and Scopus electronic database were searched. The main available studies about CRSwNP endotyping published predominantly in the last 5 years were critically analyzed. RESULTS The pathophysiological features of some asthma-related CRSwNP (allergic fungal rhinosinusitis, aspirin-exacerbated respiratory disease) are quite well understood, including them among known endotypes of CRSwNP. On the other hand, because of their known pathophysiological mechanisms, some well-known diseases associated with aggressive forms of CRSwNP, such as eosinophilic granulomatosis with polyangiitis, primary ciliary dyskinesia and cystic fibrosis, should be investigated as potentially related with CRSwNP endotypes. CONCLUSIONS CRSwNP comprises several inflammatory endotypes defined by different pathogenic mechanisms. These endotypes correlate with the disease's clinical manifestations and behavior. A thorough understanding of CRSwNP endotypes will enable targeted medical therapies and tailored follow-up protocols.
Collapse
Affiliation(s)
- Giuseppe Brescia
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy.
| | - Claudia Zanotti
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Daniela Parrino
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Umberto Barion
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| |
Collapse
|
27
|
Reinhart R, Kaufmann T. IL-4 enhances survival of in vitro-differentiated mouse basophils through transcription-independent signaling downstream of PI3K. Cell Death Dis 2018; 9:713. [PMID: 29915306 PMCID: PMC6006176 DOI: 10.1038/s41419-018-0754-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 4 (IL-4) is a critical cytokine implicated with TH2 immune reactions, which are linked to pathologic conditions of allergic diseases. In that context, the initiation of TH2 responses can critically depend on early basophil-derived IL-4 to activate T-cell responses, which then amplify IL-4 secretion. As a pleiotropic cytokine, IL-4 acts on a broad variety of hematopoietic and non-hematopoietic cells. However, the effect of IL-4 on basophils themselves, which are emerging as relevant players in allergic as well as autoimmune diseases, was only scarcely addressed so far. Here we used in vitro-differentiated mouse basophils to investigate the direct effects of IL-4 on cellular viability and surface expression of the high-affinity receptor for IgE, FcεRI. We observed that IL-4 elicits pronounced pro-survival signaling in basophils, delaying spontaneous apoptosis in vitro to a degree comparable to the known pro-survival effects of IL-3. Our data indicate that IL-4-mediated survival depends on PI3K/AKT signaling and—in contrast to IL-3—seems to be largely independent of transcriptional changes but effectuated by post-translational mechanisms affecting BCL-2 family members among others. Additionally, we found that IL-4 signaling has a stabilizing effect on the surface expression levels of the critical basophil activation receptor FcεRI. In summary, our findings indicate an important regulatory role of IL-4 on in vitro-differentiated mouse basophils enhancing their survival and stabilizing FcεRI receptor expression through PI3K-dependent signaling. A better understanding of the regulation of basophil survival will help to define promising targets and consequently treatment strategies in basophil-driven diseases.
Collapse
Affiliation(s)
- Ramona Reinhart
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
| |
Collapse
|
28
|
Buzzi M, Versura P, Grigolo B, Cavallo C, Terzi A, Pellegrini M, Giannaccare G, Randi V, Campos EC. Comparison of growth factor and interleukin content of adult peripheral blood and cord blood serum eye drops for cornea and ocular surface diseases. Transfus Apher Sci 2018; 57:549-555. [PMID: 29929885 DOI: 10.1016/j.transci.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Various blood-derived products have been proposed for the topical treatment of ocular surface diseases. The aim of the study was to compare the different content of Growth Factors (GFs) and Interleukins (ILs) in peripheral blood (PB-S) and Cord Blood (CB-S) sera. MATERIALS AND METHODS Sera were obtained from 105 healthy adult donors (PB-S) and 107 umbilical/placental veins at the time of delivery (CB-S). The levels of epithelial-GF (EGF), fibroblast-GF (FGF), platelet-derived-GF (PDGF), insulin-GF (IGF), transforming-GF alpha (TGF-α,) and beta 1-2-3 (TGF-β1-β2-β3), vascular endothelial-GF (VEGF), nerve-GF (NGF), Interleukin (IL)-1β,IL-4,IL-6,IL-10, and IL-13 were assessed by Bio-Plex Protein Array System (Bio-Rad Laboratories, CA, USA). The Mann-Whitney test for unpaired data was applied to compare GFs and ILs levels in the two sources. The associations among each GF/IL level and the obstetric data for CB-S and hematological characteristics for PB-S were also investigated. RESULTS The levels of EGF, TGF-α, TGF-β2, FGF, PDGF, VEGF, NGF, IL-1B, IL-4, IL-6, IL-10, and IL-13 were significantly higher in CB-S compared to PB-S. Conversely, the levels of IGF-1, IGF-2, and TGF-β1 were significantly higher in PB-S. The female sex and the weight of the child showed a significant association in predicting EGF and PDGF levels. CONCLUSION A significantly different content in those GFs and ILs was demonstrated in the two blood sources. Since each GF/IL selectively regulates different cellular processes involved in corneal healing, the use of PB-S or CB-S should be chosen on the basis of the cellular mechanism to be promoted in each clinical case.
Collapse
Affiliation(s)
- M Buzzi
- Emilia Romagna Cord Blood Bank-Transfusion Service, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - P Versura
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna and S.Orsola-Malpighi Teaching Hospital, Bologna, Italy.
| | - B Grigolo
- RAMSES Laboratory, Department of Research & Innovation, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - C Cavallo
- RAMSES Laboratory, Department of Research & Innovation, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A Terzi
- Emilia Romagna Cord Blood Bank-Transfusion Service, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - M Pellegrini
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna and S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - G Giannaccare
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna and S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - V Randi
- Emilia Romagna Cord Blood Bank-Transfusion Service, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - E C Campos
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna and S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| |
Collapse
|
29
|
Yamanishi Y, Miyake K, Iki M, Tsutsui H, Karasuyama H. Recent advances in understanding basophil-mediated Th2 immune responses. Immunol Rev 2018; 278:237-245. [PMID: 28658549 DOI: 10.1111/imr.12548] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
Basophils, the least common granulocytes, represent only ~0.5% of peripheral blood leukocytes. Because of the small number and some similarity with mast cells, the functional significance of basophils remained questionable for a long time. Recent studies using newly-developed analytical tools have revealed crucial and non-redundant roles for basophils in various immune responses, particularly Th2 immunity including allergy and protective immunity against parasitic infections. In this review, we discuss the mechanisms how basophils mediate Th2 immune responses and the nature of basophil-derived factors involved in them. Activated basophils release serine proteases, mouse mast cell protease 8 (mMCP-8), and mMCP-11, that are preferentially expressed by basophils rather than mast cells in spite of their names. These proteases elicit microvascular hyperpermeability and leukocyte infiltration in affected tissues, leading to inflammation. Basophil-derived IL-4 also contributes to eosinophil infiltration while it acts on tissue-infiltrating inflammatory monocytes to promote their differentiation into M2 macrophages that in turn dampen inflammation. Although basophils produce little or no MHC class II (MHC-II) proteins, they can acquire peptide-MHC-II complexes from dendritic cells via trogocytosis and present them together with IL-4 to naive CD4 T cells, leading to Th2 cell differentiation. Thus, basophils contribute to Th2 immunity at various levels.
Collapse
Affiliation(s)
- Yoshinori Yamanishi
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Kensuke Miyake
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Misako Iki
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Hidemitsu Tsutsui
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| |
Collapse
|
30
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccin Immunother 2018; 14:815-831. [PMID: 29257936 DOI: 10.1080/21645515.2017.1417711] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Basophils are circulating cells that are associated quite exclusively with allergy response and hypersensitivity reactions but their role in the immune network might be much more intriguing and complex than previously expected. The feasibility of testing their biology in vitro for allergy research and diagnosis, due fundamentally to their quite easy availability in the peripheral blood, made them the major source for assessing allergy in the laboratory assay, when yet many further cells such as mast cells and eosinophils are much more involved as effector cells in allergy than circulating basophils. Interestingly, basophil numbers change rarely in peripheral blood during an atopic response, while we might yet observe an increase in eosinophils and modification in the biology of mast cells in the tissue during an hypersensitivity response. Furthermore, the fact that basophils are very scanty in numbers suggests that they should mainly serve as regulatory cells in immunity, rather than effector leukocytes, as still believed by the majority of physicians. In this review we will try to describe and elucidate the possible role of these cells, known as "innate IL4-producing cells" in the immune regulation of allergy and their function in allergen immunotherapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- a Department of Neurological and Movement Sciences , University of Verona , Verona , Italy
| | - Geir Bjørklund
- b Council for Nutritional and Environmental Medicine (CONEM) , Mo i Rana , Norway
| | - Andrea Sboarina
- c Department of Surgery , Dentistry, Paediatrics and Gynaecology-University of Verona , Verona , Italy
| | - Antonio Vella
- d Unit of Immunology-Azienda Ospedaliera Universitaria Integrata (AOUI) , Verona , Italy
| |
Collapse
|
31
|
Kimura R, Sugita K, Ito A, Goto H, Yamamoto O. Basophils are recruited and localized at the site of tick bites in humans. J Cutan Pathol 2017; 44:1091-1093. [DOI: 10.1111/cup.13045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Ryoko Kimura
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| | - Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| | - Ayako Ito
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| | - Hiroyuki Goto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| | - Osamu Yamamoto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| |
Collapse
|
32
|
Emerging roles of basophils in allergic inflammation. Allergol Int 2017; 66:382-391. [PMID: 28506528 DOI: 10.1016/j.alit.2017.04.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/24/2022] Open
Abstract
Basophils have long been neglected in immunological studies because they were regarded as only minor relatives of mast cells. However, recent advances in analytical tools for basophils have clarified the non-redundant roles of basophils in allergic inflammation. Basophils play crucial roles in both IgE-dependent and -independent allergic inflammation, through their migration to the site of inflammation and secretion of various mediators, including cytokines, chemokines, and proteases. Basophils are known to produce large amounts of IL-4 in response to various stimuli. Basophil-derived IL-4 has recently been shown to play versatile roles in allergic inflammation by acting on various cell types, including macrophages, innate lymphoid cells, fibroblasts, and endothelial cells. Basophil-derived serine proteases are also crucial for the aggravation of allergic inflammation. Moreover, recent reports suggest the roles of basophils in modulating adaptive immune responses, particularly in the induction of Th2 differentiation and enhancement of humoral memory responses. In this review, we will discuss recent advances in understanding the roles of basophils in allergic inflammation.
Collapse
|
33
|
Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc Natl Acad Sci U S A 2017; 114:1111-1116. [PMID: 28096423 DOI: 10.1073/pnas.1615973114] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Th2 immunity plays important roles in both protective and allergic responses. Nevertheless, the nature of antigen-presenting cells responsible for Th2 cell differentiation remains ill-defined compared with the nature of the cells responsible for Th1 and Th17 cell differentiation. Basophils have attracted attention as a producer of Th2-inducing cytokine IL-4, whereas their MHC class II (MHC-II) expression and function as antigen-presenting cells are matters of considerable controversy. Here we revisited the MHC-II expression on basophils and explored its functional relevance in Th2 cell differentiation. Basophils generated in vitro from bone marrow cells in culture with IL-3 plus GM-CSF displayed MHC-II on the cell surface, whereas those generated in culture with IL-3 alone did not. Of note, these MHC-II-expressing basophils showed little or no transcription of the corresponding MHC-II gene. The GM-CSF addition to culture expanded dendritic cells (DCs) other than basophils. Coculture of basophils and DCs revealed that basophils acquired peptide-MHC-II complexes from DCs via cell contact-dependent trogocytosis. The acquired complexes, together with CD86, enabled basophils to stimulate peptide-specific T cells, leading to their proliferation and IL-4 production, indicating that basophils can function as antigen-presenting cells for Th2 cell differentiation. Transfer of MHC-II from DCs to basophils was also detected in draining lymph nodes of mice with atopic dermatitis-like skin inflammation. Thus, the present study defined the mechanism by which basophils display MHC-II on the cell surface and appears to reconcile some discrepancies observed in previous studies.
Collapse
|
34
|
Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, Turner RS. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease. J Neuroinflammation 2017; 14:1. [PMID: 28086917 PMCID: PMC5234138 DOI: 10.1186/s12974-016-0779-0] [Citation(s) in RCA: 489] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Background Treatment of mild-moderate Alzheimer’s disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF Aβ40 levels and activities of daily living (ADL) scores. Methods For this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF Aβ42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples. Results Compared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF Aβ42 levels during the 52-week trial, but did not alter tau levels. Conclusions Collectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders. Trial registration ClinicalTrials.gov NCT01504854
Collapse
Affiliation(s)
- Charbel Moussa
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, National Parkinson's Foundation Center of Excellence, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington DC, 20057, USA.
| | - Michaeline Hebron
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, National Parkinson's Foundation Center of Excellence, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington DC, 20057, USA
| | - Xu Huang
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, National Parkinson's Foundation Center of Excellence, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington DC, 20057, USA
| | - Jaeil Ahn
- Department of Neurology, Memory Disorders Program, Translational Neurotherapeutics Program, Georgetown University, Washington DC, USA
| | - Robert A Rissman
- Department of Biostatistics, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington DC, 20057, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute (ATRI), University of Southern California, San Diego, CA, USA
| | - R Scott Turner
- Alzheimer's Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| |
Collapse
|
35
|
Basophil tryptase mMCP-11 plays a crucial role in IgE-mediated, delayed-onset allergic inflammation in mice. Blood 2016; 128:2909-2918. [DOI: 10.1182/blood-2016-07-729392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Key Points
Mice deficient for basophil tryptase mMCP-11 showed ameliorated IgE-mediated allergic inflammation with reduced leukocyte infiltration. This is the first demonstration that the basophil-derived protease plays a crucial role in allergic inflammation.
Collapse
|
36
|
Brescia G, Barion U, Zanotti C, Giacomelli L, Martini A, Marioni G. The prognostic role of serum eosinophil and basophil levels in sinonasal polyposis. Int Forum Allergy Rhinol 2016; 7:261-267. [PMID: 27992119 DOI: 10.1002/alr.21885] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Predicting which patients are at a higher risk for recurrent chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most challenging problems in clinical rhinology. A direct association between CRSwNP recurrence rates and serum eosinophil and basophil counts was reported. This study aimed to identify best-fitting cutoffs for binarizing preoperative serum eosinophils and basophils (counts/percentages) for prognostic purposes in cases of CRSwNP recurrence after surgery. A secondary endpoint was to distinguish said cutoffs for prognosticating recurrence in subcohorts of patients with histologically diagnosed eosinophilic/non-eosinophilic CRSwNP. METHODS A retrospective study was performed on 280 patients (127 eosinophilic and 153 non-eosinophilic CRSwNP) examining the prognostic role of serum eosinophil and basophil levels. RESULTS For all patients examined, mean preoperative serum eosinophil and basophil levels were significantly higher in patients whose CRSwNP recurred. Patients with eosinophil counts ≥0.24 cells × 109 /L and percentages ≥3.7% had odds ratios (ORs) of 2.57 and 2.19 for recurrence; patients with basophil counts ≥0.03 cells × 109 /L and percentages ≥0.5% had ORs of 2.19 and 2.24, respectively. Among histologically eosinophilic CRSwNP patients, mean eosinophils and basophils (counts/percentages) were significantly higher in cases that recurred. Serum eosinophil and basophil values were directly correlated. The recurrence odds were OR 2.52 for high eosinophils (≥5.9%), and OR 2.52 and 2.69 for high basophils (≥0.04 cells × 109 /L and ≥0.5%, respectively). CONCLUSION High serum eosinophil and basophil values should be further investigated because they could pinpoint patients at higher risk of eosinophilic-type CRSwNP recurrence. These preliminary results support the increasing interest in the role of basophils in CRSwNP.
Collapse
Affiliation(s)
- Giuseppe Brescia
- Department of Neurosciences (DNS), Otolaryngology Section, Padova University, Padova, Italy
| | - Umberto Barion
- Department of Neurosciences (DNS), Otolaryngology Section, Padova University, Padova, Italy
| | - Claudia Zanotti
- Department of Neurosciences (DNS), Otolaryngology Section, Padova University, Padova, Italy
| | | | - Alessandro Martini
- Department of Neurosciences (DNS), Otolaryngology Section, Padova University, Padova, Italy
| | - Gino Marioni
- Department of Neurosciences (DNS), Otolaryngology Section, Padova University, Padova, Italy
| |
Collapse
|
37
|
Basophils and mast cells in immunity and inflammation. Semin Immunopathol 2016; 38:535-7. [PMID: 27405865 DOI: 10.1007/s00281-016-0582-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|