1
|
Hosseini L, Soltani-Zangbar MS, Abolhasanpour N, Hosseini M, Delkhosh A, Dolati S, Mehdizadeh A, Athari SZ, Rikhtegar R, Alikhaniha H, Babaei F, Pirouzpanah MB, Yousefi M. The effect of anti-CD20 on inflammation and histopathological alternations in rat photothrombotic ischemic stroke model. Immunol Res 2025; 73:75. [PMID: 40266449 DOI: 10.1007/s12026-025-09630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Ischemic stroke (IS) has remained the main cause of mortality and neurological disabilities worldwide. Anti-CD20 treatments have a potent anti-inflammatory effect. Here, we investigated the effect of anti-CD20 on IS-induced inflammation and histopathologic changes in the rat model. Male Sprague-Dawley rats were divided into three groups: control, sham, and stroke. Rats in the stroke groups underwent photothrombosis-induced IS in the sensorimotor cortex area. They were divided into the following subgroups: treated with anti-CD20 after ischemia and killed after 5 and/or 10 days of IS. Histological changes were assessed by hematoxylin and eosin staining. mRNA levels of inflammation markers (VIM, ANXA3, SLC22 A4, and ADM), and also levels of transcription factors for Th1, Th2, and Th17 subsets (Tbet, GATA3, and ROR-γ, respectively), and also Foxp3 were detected in the peripheral blood mononuclear cells by quantitative real-time PCR. The levels of ADM and SLC22 A4 increased following IS on the 5th and 10th days, while treatment with anti-CD20 reversed their levels. Anti-CD20 therapy attenuated inflammation through down-regulation of VIM and ANXA3 after 10 days. This therapeutic effect was mainly mediated by the downregulation of Th1-Th17-driven inflammatory responses (Tbet and RORγt) and the upregulation of Th2 activities (GATA- 3). In addition, anti-CD20 increased the expression of Foxp3. Anti-CD20 treatment can also reduce brain tissue damage after 10 days. Our data showed that inflammation and histopathological alterations are associated with the photothrombotic model of IS, while treatment with anti-CD20 could reduce inflammation and alleviate histopathological changes.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aref Delkhosh
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rikhtegar
- Institute for Diagnostic and Interventional Radiology, University Hospital Essen, Essen, Germany
| | - Hossein Alikhaniha
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Babaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Zuo L, Geng L, Cao Y, Zhou XY, Di W, Liu Y, Zhong Z, Liu D, Zhang Z, Yan F. Circulating Neutrophil-to-Lymphocyte Ratio Predicts Stroke-Associated Infection and Poststroke Fatigue Affecting Long-Term Neurological Outcomes in Stroke Patients. Mediators Inflamm 2025; 2025:5202480. [PMID: 40308934 PMCID: PMC12041617 DOI: 10.1155/mi/5202480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/22/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Since peripheral leukocytes may contribute to the pathophysiology of stroke, the aim of this study was to elucidate the relationship between leukocytes and stroke outcomes and identify which leukocyte subtypes most accurately predict functional outcomes and poststroke fatigue (PSF) in stroke patients. Methods: A total of 788 ischemic stroke patients within 72 h of onset of disease were admitted in our study. Stroke-associated infection (SAI) and PSF were evaluated according to diagnosis standards by a special neurologist. Analyses were performed using SPSS 23.0 and GraphPad Prism 10.0. Results: Neutrophil-to-lymphocyte ratio (NLR) has discriminative power in predicting stroke outcome, and the area under the curve (AUC) of NLR to distinguish stroke outcomes was 0.689 (95% confidence interval, 0.646-0.732). Positive correlation was found between NLR levels and NIHSS score on admission (r = 0.2786, p < 0.001). Risk model for predicting stroke outcome was constructed using age, NIHSS, previous stroke history, triglycerides, glucose and hemoglobin levels, thrombolysis treatment, and NLR, with an AUC of 0.865. Patients who developed SAI and PSF both had significantly higher NLR levels at admission than those patients not diagnosed with SAI and PSF (p < 0.0001). A risk model was constructed to predict PSF based on parameters including age, NIHSS score, lipoprotein(a) and NLR, and an AUC of 0.751. Conclusions: Higher NLR levels in the acute phase of stroke might indicate a higher incidence of SAI and PSF. Therefore, higher NLR is associated with a poor stroke prognosis.
Collapse
Affiliation(s)
- Lei Zuo
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| | - Leiyu Geng
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| | - Yujia Cao
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| | - Xin-yu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Wu Di
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| | - Yun Liu
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| | - Zhe Zhong
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| | - Dandan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| | - Zhengsheng Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| | - Fuling Yan
- Department of Neurology, Affiliated ZhongDa Hospital, Medical school of Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Xu Y, Peng J, Yan Y, Gao M, Zang H, Cheng L, Zhou Y. CD19 + B cell depletion: a novel strategy to alleviate ischemic stroke damage. Front Immunol 2025; 16:1528471. [PMID: 40313936 PMCID: PMC12043492 DOI: 10.3389/fimmu.2025.1528471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Background Ischemic stroke, accounting for approximately 80% of all stroke cases, is a major public health challenge and a leading cause of death and disability worldwide. Current treatments primarily involve thrombolytic therapy, limited to a 4.5-hour window due to the risk of complications, underscoring the need for new therapeutic targets. Systemic inflammation plays a critical role in stroke progression, with immune cells infiltrating the brain and exacerbating damage. B cells, in particular, have been implicated in stroke pathogenesis, although their exact role remains contentious. This study examines anti-CD19 antibody (aCD19 Ab) treatment in a stroke model to determine if CD19+ B cell depletion can reduce infarct size and alleviate inflammation. Results This study investigated whether temporary inhibition of B-cell activity using an aCD19 Ab could alleviate ischemic brain injury in a stroke mouse model by regulating cerebral and systemic immune reactions. Mice subjected to middle cerebral artery occlusion (MCAO) exhibited significant reductions in infarct size and brain edema, prolonged post-MCAO survival, and improved behavioral outcomes following aCD19 Ab treatment. Transmission electron microscopy (TEM) and Computed Tomography Angiography (CTA) results revealed a reduction in microvascular endothelial edema, decreased mitochondrial damage in neurons, reduced neuronal apoptosis, and a favorable reconstruction of the cerebral vascular network. Additionally, B cell inhibition reduced pro-inflammatory cytokines and immune cells in the brain and peripheral circulation. The immune response alterations observed in the MCAO/R group were consistent with the trends indicated by stroke patient data. Conclusions Temporary inhibition of B-cell activity via aCD19 antibody injection alleviated ischemic brain injury in a mouse model of stroke by suppressing systemic immune reactions. Changes in immune cells within the meninges may play a role, and further investigation is needed to understand the mechanisms involved. These findings suggest that cerebral and systemic immune responses contribute to the pathogenesis of ischemic stroke, and temporary B cell depletion may represent a potential therapeutic target for stroke therapy.
Collapse
Affiliation(s)
- Yu Xu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Peng
- National Engineering Research Center of Human Stem Cell, Changsha, China
| | - Yizhong Yan
- National Engineering Research Center of Human Stem Cell, Changsha, China
| | - Min Gao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - HongJing Zang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cell, Changsha, China
- Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China
| | - Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cell, Changsha, China
- Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China
| |
Collapse
|
4
|
Qin XD, Li YR, Cai Q, Liu JY, Dang ZH, Li LL, Min JW, Qi SH, Bu F. Profiling X chromosome genes expression relevant to sex dimorphism in stroke: insights from transcriptomics landscape analysis. Front Genet 2025; 16:1479270. [PMID: 40191607 PMCID: PMC11968720 DOI: 10.3389/fgene.2025.1479270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Although age is the most important non-modifiable risk factor for cerebral stroke, it is also apparent that females commonly exhibit longer lifespan and better outcome after stroke compared to the age-matched males. A critical event after stroke is the peripheral infiltration of immune cells across damaged blood-brain barrier, which induces inflammatory and immune responses within the brain parenchyma and consequently worsen brain injury. These events are also dependent on age and display a sex different pattern. Theoretically, X chromosome-encoded differential expression genes (DEGs) may explain differences between the sexes. However, the expression and regulation of these DEGs after stroke have not been studied in detail. Methods We conducted three datasets of human blood cells, mice brain, mice microglia and T cells that were previously published, and analyzed the contribution of gender, age and stroke insult on the X chromosome-encoded DEGs. Results The main findings were (i) compared to age, the stroke/hypoxia was a more potent factor in eliciting the DEGs. Particularly, older stroke patients exhibited more changes compared to young stroke group. (ii) After a stroke, the DEGs was diversely influenced by sex, age and cell types being studied. Particularly, either aging or gender led to more striking changes in brain-infiltrating T cells than in the resident immune cells. Discussion These findings highlight the complex interplay between sex, age, and immune responses in mediating stroke incidence and outcome. Investigation of the identified X chromosome-encoded genes in brain-infiltrating T cells deserves high priority, as they may play more important roles in explaining gender-related differences in stroke and brain injury.
Collapse
Affiliation(s)
- Xiu-De Qin
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue-Rong Li
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qian Cai
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Jia-Ye Liu
- School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhao-Hui Dang
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Li-Ling Li
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jia-Wei Min
- College of Biomedical Engineering, South-Central Minzu University, Wuhan, Hubei, China
| | - Shao-Hua Qi
- Systems Medicine and Bioengineering, Houston Methodist Hospital, Houston, TX, United States
| | - Fan Bu
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Nejad Shahrokh Abadi R, Seilanian Toosi F, Akhoondian J, Beiraghi Toosi M, Ashrafzadeh F, Nahayati M, Shekari S, Kamali S, Imannezhad S, Sohrab Niazi A, Hashemi N. Gender and Age Differences in Seronegative Pediatric Acute Disseminated Encephalomyelitis Profiles: Results and Insights from a Tertiary Center. IRANIAN JOURNAL OF CHILD NEUROLOGY 2025; 19:77-91. [PMID: 40231275 PMCID: PMC11994128 DOI: 10.22037/ijcn.v19i2.46613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/25/2025] [Indexed: 04/16/2025]
Abstract
Objectives Acute disseminated encephalomyelitis (ADEM) is a rapid-onset inflammatory central nervous system (CNS) disorder in children, causing demyelination, encephalopathy, and neurological deficits, often following infections. Materials & Methods This 10-year retrospective study evaluated pediatric patients with seronegative acute disseminated encephalomyelitis (ADEM), focusing on clinical, laboratory, and imaging profiles. The various profiles were assessed to determine age- and/or sex-based differences. Results The study reviewed 36 patients, with an average age of 6.08 years and predominantly male (61.1%). Clinical presentations included fever, nausea, vomiting, and seizures, with left facial hemiparesis being more common in girls (P-value = 0.023), while abnormal deep tendon reflexes (DTRs) and right-sided pathologies were more common in older patients (P-value < 0.05). Recent laboratory results have revealed differences between peripheral lymphocytes and polymorphonuclear (PMN) cells. Imaging revealed predominantly bilateral lesions, with older patients more likely to show lesions in the right parietal and occipital lobes (P-value = 0.01 and 0.04). Bilateral parietal lobe lesions were significantly correlated with several laboratory findings across the different subgroups. Multivariate logistic regression revealed that these findings were statistically significant in regards to peripheral PMN and lymphocytes in the age category and cerebrospinal fluid (CSF) protein in the gender category (P-value < 0.05). Additionally, girls, particularly those who were older, had significantly higher involvement of the cervical spine (P-value = 0.04 and 0.02). Conclusion This study reveals age and sex-related differences in the clinical presentation and imaging findings of seronegative pediatric ADEM, showcasing the various demographic factors in patient profiles.
Collapse
Affiliation(s)
- Reza Nejad Shahrokh Abadi
- Clinical Research Development Unit, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farrokh Seilanian Toosi
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Akhoondian
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Shima Shekari
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Kamali
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Sohrab Niazi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Bitar L, Puig B, Oertner TG, Dénes Á, Magnus T. Changes in Neuroimmunological Synapses During Cerebral Ischemia. Transl Stroke Res 2024:10.1007/s12975-024-01286-1. [PMID: 39103660 DOI: 10.1007/s12975-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The direct interplay between the immune and nervous systems is now well established. Within the brain, these interactions take place between neurons and resident glial cells, i.e., microglia and astrocytes, or infiltrating immune cells, influenced by systemic factors. A special form of physical cell-cell interactions is the so-called "neuroimmunological (NI) synapse." There is compelling evidence that the same signaling pathways that regulate inflammatory responses to injury or ischemia also play potent roles in brain development, plasticity, and function. Proper synaptic wiring is as important during development as it is during disease states, as it is necessary for activity-dependent refinement of neuronal circuits. Since the process of forming synaptic connections in the brain is highly dynamic, with constant changes in strength and connectivity, the immune component is perfectly suited for the regulatory task as it is in constant turnover. Many cellular and molecular players in this interaction remain to be uncovered, especially in pathological states. In this review, we discuss and propose possible communication hubs between components of the adaptive and innate immune systems and the synaptic element in ischemic stroke pathology.
Collapse
Affiliation(s)
- Lynn Bitar
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany.
| |
Collapse
|
8
|
Zhao P, Zhang G, Wang Y, Wei C, Wang Z, Zhai W, Shen Y, Shi L, Sun L. Peripheral immunity is associated with cognitive impairment after acute minor ischemic stroke and transient ischemic attack. Sci Rep 2024; 14:16201. [PMID: 39003356 PMCID: PMC11246473 DOI: 10.1038/s41598-024-67172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Immunoinflammation is associated with the development of post-stroke cognitive impairment (PSCI), however, peripheral immunity has not been fully explored. We aimed to investigate the association between PSCI and peripheral immune indicators, including neutrophil, lymphocyte, and mononuclear percentages and counts; the systemic immune inflammation index; platelet-to-lymphocyte ratio; neutrophil-to-lymphocyte ratio (NLR); and lymphocyte-to-monocyte ratio. A total of 224 patients with acute minor ischemic stroke or transient ischemic attack with 6-12 months of follow-up were included. PSCI was defined as a Montreal Cognitive Assessment score < 22 during the follow-up period. We performed logistic regression, subgroup analyses based on age and sex, and further established predictive models. We found that increased innate immunity indicators (neutrophils, neutrophil percentage) increased the risk of PSCI, whereas increased adaptive immunity indicator (lymphocytes) were protective against PSCI, especially in patients aged 50-65 years. Neutrophil percentage and NLR improved the predictive efficacy of the models that included demographic, clinical, and imaging information, with the area under the curve increased from 0.765 to 0.804 and 0.803 (P = 0.042 and 0.049, respectively). We conducted a comprehensive analysis of peripheral immunity in PSCI, providing a novel perspective on the early detection, etiology, and treatment of PSCI.
Collapse
Affiliation(s)
- PanPan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - GuiMei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - YongChun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - ChunXiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - ZiCheng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - WeiJie Zhai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - YanXin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Lin Shi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
9
|
Yao Y, Ni W, Feng L, Meng J, Tan X, Chen H, Shen J, Zhao H. Comprehensive immune modulation mechanisms of Angong Niuhuang Wan in ischemic stroke: Insights from mass cytometry analysis. CNS Neurosci Ther 2024; 30:e14849. [PMID: 39075660 PMCID: PMC11286541 DOI: 10.1111/cns.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Angong Niuhuang Wan (AGNHW, ), is a classical medicinal formula in Traditional Chinese Medicine (TCM) that has been appreciated for its neuroprotective properties in ischemic cerebral injuries, yet its intricate mechanisms remain only partially elucidated. AIMS This study leverages advanced Mass cytometry (CyTOF) to analyze AGNHW's multifaceted immunomodulation effects in-depth, emphasizing previously underexplored areas. RESULTS AGNHW mitigated monocyte-derived macrophages (MoDM) infiltration in the brain, distinguishing its effects on those from microglia. While the vehicle group exhibited elevated inflammatory markers like CD4, CD8a, and CD44 in ischemic brains, the AGNHW-treated group attenuated their expressions, indicating AGNHW's potential to temper the post-ischemic inflammatory response. Systemically, AGNHW modulated fundamental immune cell dynamics, notably augmenting CD8+ T cells, B cells, monocytes, and neutrophil counts in the peripheral blood under post-stroke conditions. Intracellularly, AGNHW exhibited its targeted modulation of the signaling pathways, revealing a remarked inhibition of key markers like IκBα, indicating potential suppression of inflammatory responses in ischemic brain injuries. CONCLUSION This study offers a comprehensive portrait of AGNHW's immunomodulation effects on ischemic stroke, illuminating its dual sites of action-both cerebral and systemic-and its nuanced modulation of cellular and molecular dynamics.
Collapse
Affiliation(s)
- Yang Yao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Weihua Ni
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Liangshu Feng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Jihong Meng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaomu Tan
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Hansen Chen
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Jiangang Shen
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Heng Zhao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Shuai H, Wang Z, Xiao Y, Ge Y, Mao H, Gao J. Genetically supported causality between gut microbiota, immune cells, and ischemic stroke: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1402718. [PMID: 38894965 PMCID: PMC11185428 DOI: 10.3389/fmicb.2024.1402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background Previous studies have highlighted a robust correlation between gut microbiota/immune cells and ischemic stroke (IS). However, the precise nature of their causal relationship remains uncertain. To address this gap, our study aims to meticulously investigate the causal association between gut microbiota/immune cells and the likelihood of developing IS, employing a two-sample Mendelian randomization (MR) analysis. Methods Our comprehensive analysis utilized summary statistics from genome-wide association studies (GWAS) on gut microbiota, immune cells, and IS. The primary MR method employed was the inverse variance-weighted (IVW) approach. To address potential pleiotropy and identify outlier genetic variants, we incorporated the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) technique, along with MR-Egger regression. Heterogeneity was assessed using Cochran's Q-test. Additionally, leave-one-out analysis was conducted to pinpoint any individual genetic variant influencing the observed causal associations. Finally, a reverse MR analysis was performed to explore the potential of reverse causation. Results Our investigation revealed four gut microbial taxa and 16 immune cells with a significant causal relationship with IS (p < 0.05). Notably, two bacterial features and five immunophenotypes were strongly associated with a lower IS risk: genus.Barnesiella.id.944 (OR: 0.907, 95% CI: 0.836-0.983, p = 0.018), genus.LachnospiraceaeNK4A136group.id.11319 (OR: 0.918, 95% CI: 0.853-0.983, p = 0.988), Activated & resting Treg % CD4++ (OR: 0.977, 95% CI: 0.956-0.998, p = 0.028). Additionally, significant associations between IS risk and two bacterial features along with eleven immunophenotypes were observed: genus.Paraprevotella.id.962 (OR: 1.106, 95% CI: 1.043-1.172, p < 0.001), genus.Streptococcus.id.1853 (OR: 1.119, 95% CI: 1.034-1.210, p = 0.005), CD127 on granulocyte (OR: 1.039, 95% CI: 1.009-1.070, p = 0.011). Our analyses did not reveal heterogeneity based on the Cochrane's Q-test (p > 0.05) nor indicate instances of horizontal pleiotropy according to MR-Egger and MR-PRESSO analyses (p > 0.05). Furthermore, the robustness of our MR results was confirmed through leave-one-out analysis. Conclusion Our study provides further evidence supporting the potential association between gut microbiota and immune cells in relation to IS, shedding light on the underlying mechanisms that may contribute to this condition. These findings lay a solid foundation for future investigations into targeted prevention strategies.
Collapse
Affiliation(s)
- Han Shuai
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Zi Wang
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yinggang Xiao
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yali Ge
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hua Mao
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Ju Gao
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Hu H, Zhou M, Zhao Y, Mao J, Yang X. Effects of immune cells on ischemic stroke and the mediating roles of metabolites. Front Neurol 2024; 15:1405108. [PMID: 38863512 PMCID: PMC11165215 DOI: 10.3389/fneur.2024.1405108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Objective Previous studies have not shown an association between IgD-CD24-B-cell absolute count (IgD-CD24-AC) and ischemic stroke (IS). Our study aimed to assess the causal effect of IgD-CD24-AC on IS and to explore the role of ascorbic acid 2-sulfate (AA2S) as a potential mediator. Methods Our study was based on the largest available genome-wide association study (GWAS). Inverse variance weighting (IVW), MR-Egger, weighted median (WMN), simple mode, and weighted mode methods were used to assess causal effects, with IVW as the primary outcome. Subsequently, we further performed a two-step MR analysis to evaluate whether AA2S mediated this causal effect. In addition, several sensitivity analyses were conducted to evaluate heterogeneity, including Cochran's Q test, the MR-Egger intercept test, the MR-PRESSO global test, and the leave-one-out analysis. Results Using the IVW approach, the risk ratio of IgD-CD24-AC to IS was estimated to be 1.216 (95% CI = 1.079-1.371, p = 0.001). This result was supported by the WMN method (OR = 1.204, 95% CI = 1.020-1.421, p = 0.028) and the MR-Egger method (OR = 1.177, 95% CI = 0.962-1.442, p = 0.133). We also observed the same trend with the simple model and weighted model. Furthermore, the proportion of genetically predicted IgD-CD24-AC mediated through AA2S levels was 3.73%. Conclusion Our study revealed a causal relationship between IgD-CD24-AC and IS, a small part of which was mediated by AA2S. These findings offer critical insights for developing immune-targeted therapies in the future and lay a strong foundation for advancements in precision medicine.
Collapse
Affiliation(s)
| | | | | | | | - Xiaokai Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University, Third Afffliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| |
Collapse
|
12
|
Deng X, Hou S, Wang Y, Yang H, Wang C. Genetic insights into the relationship between immune cell characteristics and ischemic stroke: A bidirectional Mendelian randomization study. Eur J Neurol 2024; 31:e16226. [PMID: 38323746 PMCID: PMC11236043 DOI: 10.1111/ene.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke, a major contributor to global disability and mortality, is underpinned by intricate pathophysiological mechanisms, notably neuroinflammation and immune cell dynamics. Prior research has identified a nuanced and often paradoxical link between immune cell phenotypes and ischemic stroke susceptibility. The aim of this study was to elucidate the potential causal links between the median fluorescence intensity (MFI) and morphological parameters (MP) of 731 immune cell types and ischemic stroke risk. METHODS By analyzing extensive genetic datasets, we conducted comprehensive Mendelian randomization (MR) analyses to discern the genetic correlations between diverse immune cell attributes (MFI and MP) and ischemic stroke risk. RESULTS Our study identified key immune cell signatures linked to ischemic stroke risk. Both B cells and T cells, among other immune cell types, have a bidirectional influence on stroke risk. Notably, the regulatory T-cell phenotype demonstrates significant neuroprotective properties, with all odds ratio (OR) values and confidence intervals (CIs) being less than 1. Furthermore, CD39 phenotype immune cells, particularly CD39+ CD8+ T cells (inverse variance weighting [IVW] OR 0.92, 95% CI 0.87-0.97; p = 0.002) and CD39+ activated CD4 regulatory T cells (IVW OR 0.93, 95% CI 0.90-0.97; p < 0.001), show notable neuroprotection against ischemic stroke. CONCLUSION This investigation provides new genetic insights into the interplay between various immune cells and ischemic stroke, underscoring the complex role of immune processes in stroke pathogenesis. These findings lay a foundation for future research, which may confirm and expand upon these links, potentially leading to innovative immune-targeted therapies for stroke prevention and management.
Collapse
Affiliation(s)
- Xia Deng
- Shandong Second Medical UniversityWeifangChina
| | - Shuai Hou
- Shandong Second Medical UniversityWeifangChina
| | - Yanqiang Wang
- Department II of NeurologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Haiyan Yang
- Emergency DepartmentYantaishan hospitalYantaiChina
| | | |
Collapse
|
13
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
14
|
Ge P, Tao C, Wang W, He Q, Liu C, Zheng Z, Mou S, Zhang B, Liu X, Zhang Q, Wang R, Li H, Zhang D, Zhao J. Circulating immune cell landscape and T-cell abnormalities in patients with moyamoya disease. Clin Transl Med 2024; 14:e1647. [PMID: 38566524 PMCID: PMC10988118 DOI: 10.1002/ctm2.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Moyamoya disease (MMD) stands as a prominent cause of stroke among children and adolescents in East Asian populations. Although a growing body of evidence suggests that dysregulated inflammation and autoimmune responses might contribute to the development of MMD, a comprehensive and detailed understanding of the alterations in circulating immune cells associated with MMD remains elusive. METHODS In this study, we employed a combination of single-cell RNA sequencing (scRNA-seq), mass cytometry and RNA-sequencing techniques to compare immune cell profiles in peripheral blood samples obtained from patients with MMD and age-matched healthy controls. RESULTS Our investigation unveiled immune dysfunction in MMD patients, primarily characterized by perturbations in T-cell (TC) subpopulations, including a reduction in effector TCs and an increase in regulatory TCs (Tregs). Additionally, we observed diminished natural killer cells and dendritic cells alongside heightened B cells and monocytes in MMD patients. Notably, within the MMD group, there was an augmented proportion of fragile Tregs, whereas the stable Treg fraction decreased. MMD was also linked to heightened immune activation, as evidenced by elevated expression levels of HLA-DR and p-STAT3. CONCLUSIONS Our findings offer a comprehensive view of the circulating immune cell landscape in MMD patients. Immune dysregulation in patients with MMD was characterized by alterations in T-cell populations, including a decrease in effector T-cells and an increase in regulatory T-cells (Tregs), suggest a potential role for disrupted circulating immunity in the aetiology of MMD.
Collapse
|
15
|
Wu S, Tabassum S, Payne CT, Hu H, Gusdon AM, Choi HA, Ren XS. Updates of the role of B-cells in ischemic stroke. Front Cell Neurosci 2024; 18:1340756. [PMID: 38550918 PMCID: PMC10972894 DOI: 10.3389/fncel.2024.1340756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/27/2024] [Indexed: 10/11/2024] Open
Abstract
Ischemic stroke is a major disease causing death and disability in the elderly and is one of the major diseases that seriously threaten human health and cause a great economic burden. In the early stage of ischemic stroke, neuronal structure is destroyed, resulting in death or damage, and the release of a variety of damage-associated pattern molecules induces an increase in neuroglial activation, peripheral immune response, and secretion of inflammatory mediators, which further exacerbates the damage to the blood-brain barrier, exacerbates cerebral edema, and microcirculatory impairment, triggering secondary brain injuries. After the acute phase of stroke, various immune cells initiate a protective effect, which is released step by step and contributes to the repair of neuronal cells through phenotypic changes. In addition, ischemic stroke induces Central Nervous System (CNS) immunosuppression, and the interaction between the two influences the outcome of stroke. Therefore, modulating the immune response of the CNS to reduce the inflammatory response and immune damage during stroke is important for the protection of brain function and long-term recovery after stroke, and modulating the immune function of the CNS is expected to be a novel therapeutic strategy. However, there are fewer studies on B-cells in brain function protection, which may play a dual role in the stroke process, and the understanding of this cell is still incomplete. We review the existing studies on the mechanisms of the role of B-cells, inflammatory response, and immune response in the development of ischemic stroke and provide a reference for the development of adjuvant therapeutic drugs for ischemic stroke targeting inflammatory injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuefang S. Ren
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
16
|
Zhang Y, Jiang Y, Zou Y, Fan Y, Feng P, Fu X, Li K, Zhang J, Dong Y, Yan S, Zhang Y. Peripheral blood CD19 positive B lymphocytes increase after ischemic stroke and correlate with carotid atherosclerosis. Front Neurol 2023; 14:1308041. [PMID: 38221996 PMCID: PMC10784375 DOI: 10.3389/fneur.2023.1308041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Atherosclerosis is the primary pathological basis of ischemic stroke, and dyslipidemia is one of its major etiological factors. Acute ischemic stroke patients exhibit imbalances in lymphocyte subpopulations, yet the correlation between these dynamic changes in lymphocyte subpopulations and lipid metabolism disorders, as well as carotid atherosclerosis in stroke patients remains poorly understood. Methods We retrospectively analyzed the demographic data, risk factors of cerebrovascular disease, laboratory examination (lymphocyte subsets, lipid indexes, etc.), clinical features and c;/]-sity from December 2017 to September 2019 and non-stroke patients with dizziness/vertigo during the same period. Results The results showed that peripheral B lymphocyte proportions are elevated in acute ischemic stroke patients compared with those of the control group (13.6 ± 5.3 vs. 11.7 ± 4.4%, p = 0.006). Higher B lymphocyte proportions are associated with concurrent dyslipidemia, increased levels of vascular risk factors including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and very-low-density lipoprotein cholesterol (VLDL-C), as well as decreased levels of the protective factor high-density lipoprotein cholesterol (HDL-C). Elevated B lymphocyte proportions are independently correlated with carotid atherosclerosis in stroke patients. Discussion We found CD19 positive B Lymphocytes increase after ischemic stroke and correlate with Carotid Atherosclerosis. Lymphocyte subpopulations should be highlighted in stroke patients.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yutian Zou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Afflliated Changshu Hospital of Nantong University, Changshu, China
| | - Yinyin Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Keru Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunlei Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuying Yan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanlin Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Shi Y, Stowe AM, Hu X. The role of immune cells in brain injuries and diseases. Neurobiol Dis 2023; 188:106340. [PMID: 37913833 DOI: 10.1016/j.nbd.2023.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Affiliation(s)
- Yejie Shi
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Xiaoming Hu
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Magnus T, Liesz A. Unveiling the immunopathology of stroke: a comprehensive view on brain-immune interaction. Semin Immunopathol 2023; 45:279-280. [PMID: 37335353 DOI: 10.1007/s00281-023-00995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Affiliation(s)
- Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Medical Center Munich, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|