1
|
Danish M, Shahid M, Shafi Z, Zeyad MT, Farah MA, Al-Anazi KM, Ahamad L. Boosting disease resistance in Solanum melongena L. (eggplant) against Alternaria solani: the synergistic effect of biocontrol Acinetobacter sp. and indole-3-acetic acid (IAA). World J Microbiol Biotechnol 2025; 41:85. [PMID: 40011313 DOI: 10.1007/s11274-025-04282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Alternaria solani causes early blight disease in eggplants, threatening production and leading to significant economic losses. Fungicides are used to control fungal diseases, but their overuse raises resistance concerns. Finding novel, eco-friendly biocontrol agents is therefore a solution for the future. The coordination between antagonistic bacterial agents and plant growth hormones in defense responses against fungal pathogens are crucial. This study assessed biocontrol potential of Acinetobacter sp. SCR-11 (Accession no. OR751536.1) and indole-3-acetic acid (IAA; 100 µM), singly and in combination, against A. solani in eggplants. Strain SCR-11 produced hydrogen cyanide (HCN; 5.7 µg mL⁻1), siderophore i.e. salicylic acid (14.7 µg mL⁻1), 2,3-dihydroxybenzoic acid (23.1 µg mL⁻1) and various extracellular lytic enzymes. Strain SCR-11 exhibited antagonistic activity by strongly inhibiting (82%) A. solani. Acinetobacter sp. inoculation and IAA treatment enhanced growth, biomass, and leaf pigments of A. solani-diseased eggplants, with effectiveness in order: SCR-11 + IAA > SCR-11 > IAA >. The combined treatments (SCR-11 + IAA) most effectively increased total soluble protein (62.5%), carbohydrate (60%), total soluble sugar (81%), and phenol (74%) in A. solani-infected eggplant. Biocontrol agent and IAA application significantly (p ≤ 0.05) reduced proline and malondialdehyde (MDA) levels, alleviating oxidative stress in A. solani-diseased eggplant. The SCR-11 + IAA treatment significantly reduced the percent disease index (71%) and increased protection (69%) in diseased eggplant. The Acinetobacter sp. and IAA coordination enhanced disease resistance in A. solani-infected eggplants by boosting defense enzyme activities (SOD, POD, PAL, and β-1, 3 glucanase), significantly protecting plants from pathogen attack. At harvest, soil populations of A. solani decreased, while SCR-11 populations increased significantly. Acinetobacter sp. and IAA work synergistically through pathogen suppression, plant growth promotion, and induction of plant defense responses. Thus, applying antagonistic PGPR strain with exogenous IAA enhances eggplant resistance to A. solani, providing an environmentally friendly agricultural solution.
Collapse
Affiliation(s)
- Mohammad Danish
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India.
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, A.M.U., Aligarh, Uttar Pradesh, 202002, India
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, A.M.U., Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Lukman Ahamad
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| |
Collapse
|
2
|
Rovida AFDS, Costa G, Santos MI, Silva CR, Freitas PNN, Oliveira EP, Pileggi SAV, Olchanheski RL, Pileggi M. Herbicides Tolerance in a Pseudomonas Strain Is Associated With Metabolic Plasticity of Antioxidative Enzymes Regardless of Selection. Front Microbiol 2021; 12:673211. [PMID: 34239509 PMCID: PMC8258386 DOI: 10.3389/fmicb.2021.673211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Agriculture uses many food production chains, and herbicides participate in this process by eliminating weeds through different biochemical strategies. However, herbicides can affect non-target organisms such as bacteria, which can suffer damage if there is no efficient control of reactive oxygen species. It is not clear, according to the literature, whether the efficiency of this control needs to be selected by the presence of xenobiotics. Thus, the Pseudomonas sp. CMA 6.9 strain, collected from biofilms in an herbicide packaging washing tank, was selected for its tolerance to pesticides and analyzed for activities of different antioxidative enzymes against the herbicides Boral®, absent at the isolation site, and Heat®, present at the site; both herbicides have the same mode of action, the inhibition of the enzyme protoporphyrinogen oxidase. The strain showed tolerance to both herbicides in doses up to 45 times than those applied in agriculture. The toxicity of these herbicides, which is greater for Boral®, was assessed by means of oxidative stress indicators, growth kinetics, viability, and amounts of peroxide and malondialdehyde. However, the studied strain showed two characteristic antioxidant response systems for each herbicide: glutathione-s-transferase acting to control malondialdehyde in treatments with Boral®; and catalase, ascorbate peroxidase, and guaiacol peroxidase in the control of peroxide induced by Heat®. It is possible that this modulation of the activity of different enzymes independent of previous selection characterizes a system of metabolic plasticity that may be more general in the adaptation of microorganisms in soil and water environments subjected to chemical contaminants. This is relevant to the impact of pesticides on the diversity and abundance of microbial species as well as a promising line of metabolic studies in microbial consortia for use in bioremediation.
Collapse
Affiliation(s)
| | - Gessica Costa
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Mariana Inglês Santos
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Caroline Rosa Silva
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Paloma Nathane Nunes Freitas
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Elizangela Paz Oliveira
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Luiz Olchanheski
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
3
|
Elsaeed E, Enany S, Hanora A, Fahmy N. Comparative Metagenomic Screening of Aromatic Hydrocarbon Degradation and Secondary Metabolite-Producing Genes in the Red Sea, the Suez Canal, and the Mediterranean Sea. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:541-550. [PMID: 32758003 DOI: 10.1089/omi.2020.0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Marine and ecosystem pollution due to oil spills can be addressed by identifying the aromatic hydrocarbon (HC)-degrading microorganisms and their responsible genes for biodegradation. Moreover, screening for genes coding for secondary metabolites is invaluable for drug discovery. We report here, the first metagenomic study investigating the shotgun metagenome of the Suez Canal water sampled at Ismailia city concerning its aromatic HC degradation potential in comparison to the seawater sampled at Halayeb city at the Red Sea and Sallum city at the Mediterranean Sea. Moreover, for an in-depth understanding of marine biotechnology applications, we screened for the polyketide synthases (PKSs) and nonribosomal peptide synthetase (NRPS) domains in those three metagenomes. By mapping against functional protein databases, we found that 13, 6, and 3 gene classes from the SEED database; 2, 1, and 3 gene classes from the EgGNOG; and 5, 4, and 2 genes from the InterPro2GO database were identified to be differentially abundant among Halayeb, Ismailia, and Sallum metagenomes, respectively. Also, Halayeb metagenome in the Red Sea reported the highest number of PKS domains showing higher potential in secondary metabolite production in addition to the oil degradation potential.
Collapse
Affiliation(s)
- Esraa Elsaeed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University, Gamsa, Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Nora Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Dobrzanski T, Gravina F, Steckling B, Olchanheski LR, Sprenger RF, Espírito Santo BC, Galvão CW, Reche PM, Prestes RA, Pileggi SAV, Campos FR, Azevedo RA, Sadowsky MJ, Beltrame FL, Pileggi M. Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione. PLoS One 2018; 13:e0196166. [PMID: 29694403 PMCID: PMC5918998 DOI: 10.1371/journal.pone.0196166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments.
Collapse
Affiliation(s)
- Tatiane Dobrzanski
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Fernanda Gravina
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Bruna Steckling
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Luiz R. Olchanheski
- Laboratório de Biologia Molecular e Ecologia Microbiana, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ricardo F. Sprenger
- Separare - Núcleo de Cromatografia, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Bruno C. Espírito Santo
- Laboratório de Biotecnologia Microbiana, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Carolina W. Galvão
- Laboratório de Biologia Molecular Microbiana, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Péricles M. Reche
- Laboratório de Pesquisa em Recursos Hídricos, Setor de Ciências Biológicas e da Saúde, Departamento de Enfermagem e Saúde Pública, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Rosilene A. Prestes
- Departamento Acadêmico, Campus Ponta Grossa, Universidade Tecnológica Federal do Paraná, UTFPR, Campus Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Sônia A. V. Pileggi
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Francinete R. Campos
- Laboratório de Biociências e Espectrometria de Massas, Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Ricardo A. Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Flávio L. Beltrame
- Laboratório de Fitoterapia, Tecnologia e Química de Produtos Naturais, Departamento de Ciências Farmacêuticas, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Marcos Pileggi
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
- * E-mail:
| |
Collapse
|
5
|
Furlan JPR, Stehling EG. High-level of resistance to β-lactam and presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from soil. J Glob Antimicrob Resist 2017; 11:133-137. [PMID: 29111479 DOI: 10.1016/j.jgar.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/04/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Bacteria belonging to the genera Ochrobactrum and Achromobacter are bacteria considered opportunistic, causing infections mainly in immunocompromised patients. β-lactamases are the main cause of resistance to β-lactam antibiotics. This study aimed to investigate the antimicrobial resistance profile and the presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from Brazilian soils. METHODS Soil samples from the five regions of Brazil were collected for the isolation of bacteria, which were identified molecularly and then, the minimum inhibitory concentration and detection of β-lactamases encoding genes were performed. RESULTS High-level of resistance to β-lactam antibiotics and different β-lactamases encoding genes were found (blaCTX-M-Gp1, blaSHV, blaOXA-1-like and blaKPC), including the first report of the presence of blaKPC in bacteria belonging to the genera Ochrobactrum and Achromobacter. CONCLUSION The results showed that the bacteria from this study, belonging to genera Ochrobactrum and Achromobacter isolated from soil, harbor different β-lactamases encoding genes and can act as a reservoir of these genes.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
6
|
Kauldhar BS, Sooch BS. Tailoring nutritional and process variables for hyperproduction of catalase from a novel isolated bacterium Geobacillus sp. BSS-7. Microb Cell Fact 2016; 15:7. [PMID: 26762530 PMCID: PMC5377025 DOI: 10.1186/s12934-016-0410-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
Background Catalase (EC 1.11.1.6) is one of the important industrial enzyme employed in diagnostic and analytical methods in the form of biomarkers and biosensors in addition to their enormous applications in textile, paper, food and pharmaceutical sectors. The present study demonstrates the utility of a newly isolated and adapted strain of genus Geobacillus possessing unique combination of several industrially important extremophilic properties for the hyper production of catalase. The bacterium can grow over a wide range of pH (3–12) and temperature (10–90 °C) with extraordinary capability to produce catalase. Results A novel extremophilic strain belonging to genus Geobacillus was exploited for the production of catalase by tailoring its nutritional requirements and process variables. One variable at a time traditional approach followed by computational designing was applied to customize the fermentation process. A simple fermentation media containing only three components namely sucrose (0.55 %, w/v), yeast extract (1.0 %, w/v) and BaCl2 (0.08 %, w/v) was designed for the hyperproduction of catalase. A controlled and optimum air supply caused a tremendous increase in the enzyme production on moving the bioprocess from the flask to bioreactor level. The present paper reports high quantum of catalase production (105,000 IU/mg of cells) in a short fermentation time of 12 h. To the best of our knowledge, there is no report in the literature that matches the performance of the developed protocol for the catalase production. This is the first serious study covering intracellular catalase production from thermophilic genus Geobacillus. Conclusions An increase in intracellular catalase production by 214.72 % was achieved in the optimized medium when transferred from the shake flask to the fermenter level. The extraordinary high production of catalase from Geobacillus sp. BSS-7 makes the isolated strain a prospective candidate for bulk catalase production on an industrial scale.
Collapse
Affiliation(s)
- Baljinder Singh Kauldhar
- Enzyme Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147002, Punjab, India.
| | - Balwinder Singh Sooch
- Enzyme Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
7
|
Pseudomonas aeruginosa and Achromobacter sp. clonal selection leads to successive waves of contamination of water in dental care units. Appl Environ Microbiol 2015; 81:7509-24. [PMID: 26296724 DOI: 10.1128/aem.01279-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023] Open
Abstract
Dental care unit waterlines (DCUWs) consist of complex networks of thin tubes that facilitate the formation of microbial biofilms. Due to the predilection toward a wet environment, strong adhesion, biofilm formation, and resistance to biocides, Pseudomonas aeruginosa, a major human opportunistic pathogen, is adapted to DCUW colonization. Other nonfermentative Gram-negative bacilli, such as members of the genus Achromobacter, are emerging pathogens found in water networks. We reported the 6.5-year dynamics of bacterial contamination of waterlines in a dental health care center with 61 dental care units (DCUs) connected to the same water supply system. The conditions allowed the selection and the emergence of clones of Achromobacter sp. and P. aeruginosa characterized by multilocus sequence typing, multiplex repetitive elements-based PCR, and restriction fragment length polymorphism in pulsed-field gel electrophoresis, biofilm formation, and antimicrobial susceptibility. One clone of P. aeruginosa and 2 clones of Achromobacter sp. colonized successively all of the DCUWs: the last colonization by P. aeruginosa ST309 led to the closing of the dental care center. Successive dominance of species and clones was linked to biocide treatments. Achromobacter strains were weak biofilm producers compared to P. aeruginosa ST309, but the coculture of P. aeruginosa and Achromobacter enhanced P. aeruginosa ST309 biofilm formation. Intraclonal genomic microevolution was observed in the isolates of P. aeruginosa ST309 collected chronologically and in Achromobacter sp. clone A. The contamination control was achieved by a complete reorganization of the dental health care center by removing the connecting tubes between DCUs.
Collapse
|
8
|
Derecho I, McCoy KB, Vaishampayan P, Venkateswaran K, Mogul R. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly. ASTROBIOLOGY 2014; 14:837-847. [PMID: 25243569 DOI: 10.1089/ast.2014.1193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions.
Collapse
Affiliation(s)
- I Derecho
- 1 California State Polytechnic University , Pomona, California
| | | | | | | | | |
Collapse
|
9
|
Fuentes S, Méndez V, Aguila P, Seeger M. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 2014; 98:4781-94. [PMID: 24691868 DOI: 10.1007/s00253-014-5684-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/22/2023]
Abstract
Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Sebastián Fuentes
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología & Center of Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | | | | |
Collapse
|
10
|
Detection of Achromobacter xylosoxidans in hospital, domestic, and outdoor environmental samples and comparison with human clinical isolates. Appl Environ Microbiol 2013; 79:7142-9. [PMID: 24038696 DOI: 10.1128/aem.02293-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achromobacter xylosoxidans is an aerobic nonfermentative Gram-negative rod considered an important emerging pathogen among cystic fibrosis (CF) patients worldwide and among immunocompromised patients. This increased prevalence remains unexplained, and to date no environmental reservoir has been identified. The aim of this study was to identify potential reservoirs of A. xylosoxidans in hospital, domestic, and outdoor environments and to compare the isolates with clinical ones. From 2011 to 2012, 339 samples were collected in Dijon's university hospital, in healthy volunteers' homes in the Dijon area, and in the outdoor environment in Burgundy (soil, water, mud, and plants). We designed a protocol to detect A. xylosoxidans in environmental samples based on a selective medium: MCXVAA (MacConkey agar supplemented with xylose, vancomycin, aztreonam, and amphotericin B). Susceptibility testing, genotypic analysis by pulsed-field gel electrophoresis, and blaOXA-114 sequencing were performed on the isolates. A total of 50 strains of A. xylosoxidans were detected in hospital (33 isolates), domestic (9 isolates), and outdoor (8 isolates) samples, mainly in hand washing sinks, showers, and water. Most of them were resistant to ciprofloxacin (49 strains). Genotypic analysis and blaOXA-114 sequencing revealed a wide diversity among the isolates, with 35 pulsotypes and 18 variants of oxacillinases. Interestingly, 10 isolates from hospital environment were clonally related to clinical isolates previously recovered from hospitalized patients, and one domestic isolate was identical to one recovered from a CF patient. These results indicate that A. xylosoxidans is commonly distributed in various environments and therefore that CF patients or immunocompromised patients are surrounded by these reservoirs.
Collapse
|
11
|
Weber SS, Parente AFA, Borges CL, Parente JA, Bailão AM, de Almeida Soares CM. Analysis of the secretomes of Paracoccidioides mycelia and yeast cells. PLoS One 2012; 7:e52470. [PMID: 23272246 PMCID: PMC3525554 DOI: 10.1371/journal.pone.0052470] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
Paracoccidioides, a complex of several phylogenetic species, is the causative agent of paracoccidioidomycosis. The ability of pathogenic fungi to develop a multifaceted response to the wide variety of stressors found in the host environment is important for virulence and pathogenesis. Extracellular proteins represent key mediators of the host-parasite interaction. To analyze the expression profile of the proteins secreted by Paracoccidioides, Pb01 mycelia and yeast cells, we used a proteomics approach combining two-dimensional electrophoresis with matrix-assisted laser desorption ionization quadrupole time-of-flight mass spectrometry (MALDI-Q-TOF MS/MS). From three biological replicates, 356 and 388 spots were detected, in mycelium and yeast cell secretomes, respectively. In this study, 160 non-redundant proteins/isoforms were indentified, including 30 and 24 proteins preferentially secreted in mycelia and yeast cells, respectively. In silico analyses revealed that 65% of the identified proteins/isoforms were secreted primarily via non-conventional pathways. We also investigated the influence of protein export inhibition in the phagocytosis of Paracoccidioides by macrophages. The addition of Brefeldin A to the culture medium significantly decreased the production of secreted proteins by both Paracoccidioides and internalized yeast cells by macrophages. In contrast, the addition of concentrated culture supernatant to the co-cultivation significantly increased the number of internalized yeast cells by macrophages. Importantly, the proteins detected in the fungal secretome were also identified within macrophages. These results indicate that Paracoccidioides extracellular proteins are important for the fungal interaction with the host.
Collapse
Affiliation(s)
- Simone Schneider Weber
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Flávia Alves Parente
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana Alves Parente
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
12
|
McCoy KB, Derecho I, Wong T, Tran HM, Huynh TD, La Duc MT, Venkateswaran K, Mogul R. Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft. ASTROBIOLOGY 2012; 12:854-862. [PMID: 22917036 DOI: 10.1089/ast.2012.0835] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The microbiology of the spacecraft assembly process is of paramount importance to planetary exploration, as the biological contamination that can result from remote-enabled spacecraft carries the potential to impact both life-detection experiments and extraterrestrial evolution. Accordingly, insights into the mechanisms and range of extremotolerance of Acinetobacter radioresistens 50v1, a Gram-negative bacterium isolated from the surface of the preflight Mars Odyssey orbiter, were gained by using a combination of microbiological, enzymatic, and proteomic methods. In summary, A. radioresistens 50v1 displayed a remarkable range of survival against hydrogen peroxide and the sequential exposures of desiccation, vapor and plasma phase hydrogen peroxide, and ultraviolet irradiation. The survival is among the highest reported for non-spore-forming and Gram-negative bacteria and is based upon contributions from the enzyme-based degradation of H(2)O(2) (catalase and alkyl hydroperoxide reductase), energy management (ATP synthase and alcohol dehydrogenase), and modulation of the membrane composition. Together, the biochemical and survival features of A. radioresistens 50v1 support a potential persistence on Mars (given an unintended or planned surface landing of the Mars Odyssey orbiter), which in turn may compromise the scientific integrity of future life-detection missions.
Collapse
Affiliation(s)
- K B McCoy
- California State Polytechnic University, Pomona, California 91768, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Polek B, Godočíková J. The Effect of Some Factors of Polluted Environment on Catalase Responses and Resistance of Microbial Isolates Against Toxic Oxidative Stress. Curr Microbiol 2012; 65:345-9. [DOI: 10.1007/s00284-012-0163-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022]
|
14
|
Dávila Costa JS, Albarracín VH, Abate CM. Responses of environmental Amycolatopsis strains to copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2020-2028. [PMID: 21764453 DOI: 10.1016/j.ecoenv.2011.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
Copper is a redox-active metal, which acts as a catalyst in the formation of Reactive Oxygen Species (ROS) encouraging oxidative stress. Protection against oxidants is intrinsic to every living cell; however, in stress conditions, cells are forced to increase and expand their antioxidative network. In this work, the novel copper-resistant strain Amycolatopsis tucumanensis and the copper-sensitive Amycolatopsis eurytherma were grown under copper increasing concentrations in order to elucidate the dissimilar effects of the metal on the strains viability, mainly on morphology and antioxidant capacity. Although biosorbed copper encouraged ROS production in a dose-dependent manner in both strains, the increase in ROS production from the basal level to the stress conditions in A. tucumanensis is lesser than in the copper-sensitive strain; likewise, in presence of copper A. eurytherma suffered inexorable morphological alteration while A. tucumanensis was not affected. The levels of antioxidant enzymes and metallothioneins (MT) were all greater in A. tucumanensis than in A. eurytherma; in addition MT levels as well as superoxide dismutase and thioredoxin reductase activities in A. tucumanensis, were higher as higher the concentration of copper in the culture medium. This work has given evidence that an efficient antioxidant defense system might aid microorganisms to survive in copper-stress conditions; besides it constitutes the first report of oxidative stress study in the genus Amycolatopsis and contributes to enlarge the knowledge on the copper-resistance mechanisms of A. tucumanensis.
Collapse
Affiliation(s)
- José Sebastián Dávila Costa
- Pilot Plant of Industrial and Microbiological Processes, CONICET. Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina.
| | | | | |
Collapse
|
15
|
Bianucci E, Fabra A, Castro S. Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts). Biometals 2011; 25:23-32. [PMID: 21766174 DOI: 10.1007/s10534-011-9480-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/03/2011] [Indexed: 11/26/2022]
Abstract
In this study, the effects of cadmium (Cd) on cell morphology and antioxidant enzyme activities as well as the distribution of the metal in different cell compartments in Bradyrhizobium sp. strains were investigated. These strains were previously classified as sensitive (Bradyrhizobium sp. SEMIA 6144) and tolerant (Bradyrhizobium sp. NLH25) to Cd. Transmission electron micrographs showed large electron-translucent inclusions in the sensitive strain and electron-dense bodies in the tolerant strain, when exposed to Cd. Analysis of Cd distribution revealed that it was mainly bounded to cell wall in both strains. Antioxidant enzyme activities were significantly different in each strain. Only the tolerant strain was able to maintain a glutathione/oxidized glutathione (GSH/GSSG) ratio by an increase of GSH reductase (GR) and GSH peroxidase (GPX) enzyme activities. GSH S-transferase (GST) and catalase (CAT) activities were drastically inhibited in both strains while superoxide dismutase (SOD) showed a significant decrease only in the sensitive strain. In conclusion, our findings suggest that GSH content and its related enzymes are involved in the Bradyrhizobium sp. tolerance to Cd contributing to the cellular redox balance.
Collapse
Affiliation(s)
- Eliana Bianucci
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800, Río Cuarto, Córdoba, Argentina
| | | | | |
Collapse
|