1
|
Santana DJ, Zhao G, O’Meara TR. The many faces of Candida auris: Phenotypic and strain variation in an emerging pathogen. PLoS Pathog 2024; 20:e1012011. [PMID: 38427609 PMCID: PMC10906884 DOI: 10.1371/journal.ppat.1012011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024] Open
Abstract
Candida auris is an emerging fungal pathogen with unusual evolutionary history-there are multiple distinct phylogeographic clades showing a near simultaneous transition from a currently unknown reservoir to nosocomial pathogen. Each of these clades has experienced different selective pressures over time, likely resulting in selection for genotypes with differential fitness or phenotypic consequences when introduced to new environments. We also observe diversification within clades, providing additional opportunities for phenotypic differences. These differences can have large impacts on pathogenic potential, drug resistance profile, evolutionary trajectory, and transmissibility. In recent years, there have been significant advances in our understanding of strain-specific behavior in other microbes, including bacterial and fungal pathogens, and we have an opportunity to take this strain variation into account when describing aspects of C. auris biology. Here, we critically review the literature to gain insight into differences at both the strain and clade levels in C. auris, focusing on phenotypes associated with clinical disease or transmission. Our goal is to integrate clinical and epidemiological perspectives with molecular perspectives in a way that would be valuable for both audiences. Identifying differences between strains and understanding which phenotypes are strain specific will be crucial for understanding this emerging pathogen, and an important caveat when describing the analysis of a singular isolate.
Collapse
Affiliation(s)
- Darian J. Santana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Guolei Zhao
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Ahmad S, Alfouzan W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021; 9:microorganisms9040807. [PMID: 33920482 PMCID: PMC8069182 DOI: 10.3390/microorganisms9040807] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Candida auris, a recently recognized, often multidrug-resistant yeast, has become a significant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently resulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of 'dry' biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new infections in healthcare facilities, including the screening of susceptible patients for colonization; the cleaning and decontamination of the environment, equipment, and colonized patients; and successful approaches to identify and treat infected patients, particularly during outbreaks.
Collapse
|
3
|
Singh S, Fatima Z, Ahmad K, Hameed S. Repurposing of respiratory drug theophylline against Candida albicans: mechanistic insights unveil alterations in membrane properties and metabolic fitness. J Appl Microbiol 2020; 129:860-875. [PMID: 32320111 DOI: 10.1111/jam.14669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Abstract
AIMS Drug repurposing is an attractive chemotherapeutic strategy that serves to make up for the inadequacy of current antifungal drugs. The present study aims to repurpose theophylline (THP) against Candida albicans. THP is a methylxanthine derived from cocoa beans and tea extracts, generally used as the first-line drug for asthma and other respiratory disorders. METHODS AND RESULTS We investigated the antifungal activity of THP against C. albicans and non-albicans species. Mechanistic insights revealed that THP induces membrane damage. Enhanced ionic disturbances and depleted ergosterol levels with the concomitant rise in membrane fluidity due to elevated flippase activity confirmed the membrane damaging effect. THP impeded the metabolic adaptability of C. albicans by inhibiting malate synthase and isocitrate lyase enzymes of the glyoxylate cycle. In vivo efficacy of THP was depicted by increased survival of C. albicans infected Caenorhabditis elegans model. CONCLUSIONS This study elucidates the antifungal potential of THP with mechanistic insights. SIGNIFICANCE AND IMPACT OF THE STUDY This study unveils the antifungal potential of THP, a known respiratory drug that can be further utilized for a wider range of applications such as combating fungal infections. The effect of THP with the known antifungal drugs can be exploited in the combinatorial drug approach for treating candidiasis.
Collapse
Affiliation(s)
- S Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Z Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - K Ahmad
- Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - S Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| |
Collapse
|
4
|
Tafer H, Poyntner C, Lopandic K, Sterflinger K, Piñar G. Back to the Salt Mines: Genome and Transcriptome Comparisons of the Halophilic Fungus Aspergillus salisburgensis and Its Halotolerant Relative Aspergillus sclerotialis. Genes (Basel) 2019; 10:E381. [PMID: 31137536 PMCID: PMC6563132 DOI: 10.3390/genes10050381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
Salt mines are among the most extreme environments as they combine darkness, low nutrient availability, and hypersaline conditions. Based on comparative genomics and transcriptomics, we describe in this work the adaptive strategies of the true halophilic fungus Aspergillus salisburgensis, found in a salt mine in Austria, and compare this strain to the ex-type halotolerant fungal strain Aspergillus sclerotialis. On a genomic level, A. salisburgensis exhibits a reduced genome size compared to A. sclerotialis, as well as a contraction of genes involved in transport processes. The proteome of A. sclerotialis exhibits an increased proportion of alanine, glycine, and proline compared to the proteome of non-halophilic species. Transcriptome analyses of both strains growing at 5% and 20% NaCl show that A. salisburgensis regulates three-times fewer genes than A. sclerotialis in order to adapt to the higher salt concentration. In A. sclerotialis, the increased osmotic stress impacted processes related to translation, transcription, transport, and energy. In contrast, membrane-related and lignolytic proteins were significantly affected in A. salisburgensis.
Collapse
Affiliation(s)
- Hakim Tafer
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Caroline Poyntner
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Ksenija Lopandic
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Katja Sterflinger
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Guadalupe Piñar
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
5
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
6
|
Bruno DDCF, Bartelli TF, Rodrigues CR, Briones MR. Prolonged growth of Candida albicans reveals co-isolated bacteria from single yeast colonies. INFECTION GENETICS AND EVOLUTION 2018; 65:117-126. [DOI: 10.1016/j.meegid.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/09/2018] [Accepted: 07/18/2018] [Indexed: 01/14/2023]
|
7
|
Gostinčar C, Gunde-Cimerman N. Overview of Oxidative Stress Response Genes in Selected Halophilic Fungi. Genes (Basel) 2018; 9:E143. [PMID: 29509668 PMCID: PMC5867864 DOI: 10.3390/genes9030143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022] Open
Abstract
Exposure of microorganisms to stress, including to high concentrations of salt, can lead to increased production of reactive oxygen species in the cell. To limit the resulting damage, cells have evolved a variety of antioxidant defenses. The role of these defenses in halotolerance has been proposed before. Whole genome sequencing for some of the most halotolerant and halophilic fungal species has enabled us to investigate the possible links between oxidative and salt stress tolerance on the genomic level. We identified genes involved in oxidative stress response in the halophilic basidiomycete Wallemia ichthyophaga, and halotolerant ascomycetous black yeasts Hortaea werneckii and Aureobasidium pullulans, and compared them to genes from 16 other fungi, both asco- and basidiomycetes. According to our results, W. ichthyophaga can survive salinities detrimental to most other organisms with only a moderate number of oxidative stress response genes. In other investigated species, however, the maximum tolerated salinity correlated with the number of genes encoding three major enzymes of the cellular oxidative stress response: superoxide dismutases, catalases, and peroxiredoxins. This observation supports the hypothetical link between the antioxidant capacity of cells and their halotolerance.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Hušeková B, Elicharová H, Sychrová H. Pathogenic Candida species differ in the ability to grow at limiting potassium concentrations. Can J Microbiol 2016; 62:394-401. [DOI: 10.1139/cjm-2015-0766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A high intracellular concentration of potassium (200–300 mmol/L) is essential for many yeast cell functions, such as the regulation of cell volume and pH, maintenance of membrane potential, and enzyme activation. Thus, cells use high-affinity specific transporters and expend a lot of energy to acquire the necessary amount of potassium from their environment. In Candida genomes, genes encoding 3 types of putative potassium uptake systems were identified: Trk uniporters, Hak symporters, and Acu ATPases. Tests of the tolerance and sensitivity of C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis to various concentrations of potassium showed significant differences among the species, and these differences were partly dependent on external pH. The species most tolerant to potassium-limiting conditions were C. albicans and C. krusei, while C. parapsilosis tolerated the highest KCl concentrations. Also, the morphology of cells changed with the amount of potassium available, with C. krusei and C. tropicalis being the most influenced. Taken together, our results confirm potassium uptake and accumulation as important factors for Candida cell growth and suggest that the sole (and thus probably indispensable) Trk1 potassium uptake system in C. krusei and C. glabrata may serve as a target for the development of new antifungal drugs.
Collapse
Affiliation(s)
- B. Hušeková
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - H. Elicharová
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - H. Sychrová
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
9
|
Elicharová H, Hušeková B, Sychrová H. ThreeCandida albicanspotassium uptake systems differ in their ability to provideSaccharomyces cerevisiae trk1trk2mutants with necessary potassium. FEMS Yeast Res 2016; 16:fow039. [DOI: 10.1093/femsyr/fow039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 12/31/2022] Open
|
10
|
Culakova H, Dzugasova V, Valencikova R, Gbelska Y, Subik J. Stress response and expression of fluconazole resistance associated genes in the pathogenic yeast Candida glabrata deleted in the CgPDR16 gene. Microbiol Res 2015; 174:17-23. [PMID: 25946325 DOI: 10.1016/j.micres.2015.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022]
Abstract
In yeasts, the PDR16 gene encodes a phosphatidylinositol transfer protein which belongs to the Sec14 homologue (SFH) family and localizes to lipid droplets, microsomes and at the cell periphery. The loss of its function alters the lipid droplet metabolism and plasma membrane properties, and renders yeast cells more sensitive to azole antimycotics. In this study, the entire chromosomal CgPDR16 ORF was replaced by the ScURA3 gene both in azole sensitive and azole resistant strains of Candida glabrata bearing a gain-of-function mutation in the CgPDR1 gene, and their responses to different stresses were assessed. The CgPDR16 deletion was found to sensitize the mutant strains to azole antifungals without changes in their osmo- and halotolerance. Fluconazole treated pdr16Δ mutant strains displayed a reduced expression of several genes involved in azole tolerance. The gain-of-function CgPDR1 allele as well as the cycloheximide and hydrogen peroxide treatments of cells enhanced the expression of the CgPDR16 gene. The results indicate that CgPDR16 belongs to genes whose expression is induced by chemical and oxidative stresses. The loss of its function can attenuate the expression of drug efflux pump encoding genes that might also contribute to the decreased azole tolerance in pdr16Δ mutant cells.
Collapse
Affiliation(s)
- Hana Culakova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Vladimira Dzugasova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Romana Valencikova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Yvetta Gbelska
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Julius Subik
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata. Microbiology (Reading) 2014; 160:1705-1713. [DOI: 10.1099/mic.0.078600-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells.
Collapse
|
12
|
Lastauskienė E, Zinkevičienė A, Girkontaitė I, Kaunietis A, Kvedarienė V. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species. Curr Microbiol 2014; 69:303-10. [PMID: 24752490 DOI: 10.1007/s00284-014-0585-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/24/2014] [Indexed: 11/29/2022]
Abstract
Cutaneous fungal infections are common and widespread. Antifungal agents used for the treatment of these infections often have undesirable side effects. Furthermore, increased resistance of the microorganisms to the antifungal drugs becomes the growing problem. Accordingly, the search for natural antifungal compounds continues to receive attention. Apoptosis is highly regulated programmed cell death. During yeast cell apoptosis, amino acids and peptides are released and can stimulate regeneration of human epithelium cells. Thus, detection of chemical compounds inducing apoptosis in yeast and nontoxic for humans is of great medical relevance. The aim of this study was to detect chemical compound inducing apoptosis in pathogenic Candida species with the lowest toxicity to the mammalian cells. Five chemical compounds--acetic acid, sodium bicarbonate, potassium carbonate, lithium acetate, and formic acid--were tested for evaluation of antifungal activity on C. albicans, C. guilliermondii, and C. lusitaniae. The results showed that acetic acid and formic acid at the lowest concentrations induced yeast cells death. Apoptosis analysis revealed that cells death was accompanied by activation of caspase. Minimal inhibitory concentrations of potassium carbonate and sodium bicarbonate induced Candida cells necrosis. Toxicity test with mammalian cell cultures showed that formic acid has the lowest effect on the growth of Jurkat and NIH 3T3 cells. In conclusion, our results show that a low concentration of formic acid induces apoptosis-like programmed cell death in the Candida yeast and has a minimal effect on the survivability of mammalian cells, suggesting potential applications in the treatment of these infections.
Collapse
Affiliation(s)
- Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University, M.K. Čiurlionio str. 21/27, LT-03101, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
13
|
Elicharova H, Sychrova H. Fluconazole treatment hyperpolarizes the plasma membrane ofCandidacells. Med Mycol 2013; 51:785-94. [DOI: 10.3109/13693786.2013.779038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Letscher-Bru V, Obszynski CM, Samsoen M, Sabou M, Waller J, Candolfi E. Antifungal Activity of Sodium Bicarbonate Against Fungal Agents Causing Superficial Infections. Mycopathologia 2012; 175:153-8. [DOI: 10.1007/s11046-012-9583-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/07/2012] [Indexed: 11/24/2022]
|
15
|
Silveira-Gomes F, Sarmento DN, Espírito-Santo EPTD, Souza NDO, Pinto TM, Marques-da-Silva SH. Differentiation between Candida albicans and Candida dubliniensis using hypertonic Sabouraud broth and tobacco agar. Rev Soc Bras Med Trop 2011; 44:457-60. [PMID: 21860890 DOI: 10.1590/s0037-86822011000400011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/28/2011] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Opportunistic fungal infections in immunocompromised hosts are caused by Candida species, and the majority of such infections are due to Candida albicans. However, the emerging pathogen Candida dubliniensis demonstrates several phenotypic characteristics in common with C. albicans, such as production of germ tubes and chlamydospores, calling attention to the development of stable resistance to fluconazole in vitro. The aim of this study was to evaluate the performance of biochemistry identification in the differentiating between C. albicans and C. dubliniensis, by phenotyping of yeast identified as C. albicans. METHODS Seventy-nine isolates identified as C. albicans by the API system ID 32C were grown on Sabouraud dextrose agar at 30°C for 24-48h and then inoculated on hypertonic Sabouraud broth and tobacco agar. RESULTS Our results showed that 17 (21.5%) isolates were growth-inhibited on hypertonic Sabouraud broth, a phenotypic trait inconsistent with C. albicans in this medium. However, the results observed on tobacco agar showed that only 9 (11.4%) of the growth-inhibited isolates produced characteristic colonies of C. dubliniensis (rough colonies, yellowish-brown with abundant fragments of hyphae and chlamydospores). CONCLUSIONS The results suggest that this method is a simple tool for screening C. albicans and non-albicans yeast and for verification of automated identification.
Collapse
Affiliation(s)
- Fabíola Silveira-Gomes
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | | | | | | |
Collapse
|
16
|
Krauke Y, Sychrova H. Cnh1 Na+/H+ antiporter and Ena1 Na+-ATPase play different roles in cation homeostasis and cell physiology of Candida glabrata. FEMS Yeast Res 2010; 11:29-41. [DOI: 10.1111/j.1567-1364.2010.00686.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|