1
|
Nishanth S, Kokila V, Prasanna R. Metabolite profiling of plant growth promoting cyanobacteria- Anabaena laxa and Calothrix elenkinii, using untargeted metabolomics. 3 Biotech 2024; 14:35. [PMID: 38213508 PMCID: PMC10776517 DOI: 10.1007/s13205-023-03902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024] Open
Abstract
The metabolite profiles of two plant growth promoting cyanobacteria-Anabaena laxa and Calothrix elenkinii, which serve as promising biofertilizers, and biocontrol agents were generated to investigate their agriculturally beneficial activities. Preliminary biochemical analyses, in terms of total chlorophyll, total proteins, and IAA were highest at 14 days after inoculation (DAI). In A. laxa 20-25% higher values of reducing sugars, than C. elenkinii at both 14 and 21 DAI were recorded. Carbon and nitrogen assimilating enzyme activities-phosphoenol pyruvate carboxylase (PEPC), carbonic anhydrase (CA), and glutamine synthetase (GS) were highest at 14 DAI, albeit, nitrate reductase (NR) activity was higher by 0.73-0.84-fold at 21 DAI. Untargeted GC-MS (Gas chromatography-Mass spectrometric) analysis of metabolite profiles of 21d-old cyanobacterial cultures and characterization using NIST mass spectral library illustrated that A. laxa recorded highest number of metabolite hits in three chemical classes namely amino acid and peptides, nucleotides, nucleosides and analogues, besides other organic compounds. Based on the pathway analysis of identified metabolites, both A. laxa, and C. elenkinii were enriched in metabolites involved in aminoacyl-tRNA biosynthesis, and amino acid metabolism pathways, particularly lactose and glutamic acid, which are important players in plant-microbe interactions. Correlation-based metabolite network illustrated distinct and significant differences in the metabolic machinery of A. laxa and C. elenkinii, highlighting their novel identity and enrichment in C-N rich metabolites, as factors underlying their plant growth and soil fertility enhancing attributes, which make them valuable as inoculants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03902-7.
Collapse
Affiliation(s)
- Sekar Nishanth
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Venkatesh Kokila
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| |
Collapse
|
2
|
Álvarez C, Jiménez-Ríos L, Iniesta-Pallarés M, Jurado-Flores A, Molina-Heredia FP, Ng CKY, Mariscal V. Symbiosis between cyanobacteria and plants: from molecular studies to agronomic applications. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6145-6157. [PMID: 37422707 PMCID: PMC10575698 DOI: 10.1093/jxb/erad261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Nitrogen-fixing cyanobacteria from the order Nostocales are able to establish symbiotic relationships with diverse plant species. They are promiscuous symbionts, as the same strain of cyanobacterium is able to form symbiotic biological nitrogen-fixing relationships with different plants species. This review will focus on the different types of cyanobacterial-plant associations, both endophytic and epiphytic, and provide insights from a structural viewpoint, as well as our current understanding of the mechanisms involved in the symbiotic crosstalk. In all these symbioses, the benefit for the plant is clear; it obtains from the cyanobacterium fixed nitrogen and other bioactive compounds, such as phytohormones, polysaccharides, siderophores, or vitamins, leading to enhanced plant growth and productivity. Additionally, there is increasing use of different cyanobacterial species as bio-inoculants for biological nitrogen fixation to improve soil fertility and crop production, thus providing an eco-friendly, alternative, and sustainable approach to reduce the over-reliance on synthetic chemical fertilizers.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Lucía Jiménez-Ríos
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Macarena Iniesta-Pallarés
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Carl K Y Ng
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
3
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
5
|
Kollmen J, Strieth D. The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth. Life (Basel) 2022; 12:life12020223. [PMID: 35207509 PMCID: PMC8879750 DOI: 10.3390/life12020223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of applications in industry due to their broad product spectrum. In this context, the application of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged in recent decades. The benefit is mostly based on the ability of cyanobacteria to fix elemental nitrogen and make it available to the plants in a usable form. However, the positive effects of co-cultivating plants with cyanobacteria are not limited to the provision of nitrogen. Cyanobacteria produce numerous secondary metabolites that can be useful for plants, for example, they can have growth-promoting effects or increase resistance to plant diseases. The effects of biotic and abiotic stress can as well be reduced by many secondary metabolites. Furthermore, the biofilms formed by the cyanobacteria can lead to improved soil conditions, such as increased water retention capacity. To exchange the substances mentioned, cyanobacteria form symbioses with plants, whereby the strength of the symbiosis depends on both partners, and not every plant can form symbiosis with every cyanobacterium. Not only the plants in symbiosis benefit from the cyanobacteria, but also vice versa. This review summarizes the beneficial effects of cyanobacterial co-cultivation on plants, highlighting the substances exchanged and the strength of cyanobacterial symbioses with plants. A detailed explanation of the mechanism of nitrogen fixation in cyanobacterial heterocysts is given. Finally, a summary of possible applications of co-cultivation in the (agrar-)industry is given.
Collapse
|
6
|
Bouaïcha N, Metcalf JS, Porzani SJ, Konur O. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. PHYTOCHEMISTRY 2021; 192:112959. [PMID: 34649057 DOI: 10.1016/j.phytochem.2021.112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Plant-cyanobacteria interactions occur in different ways and at many different levels, both beneficial and harmful. Plant-cyanobacteria interactions, as a beneficial symbiosis, have long been demonstrated in rice-growing areas (Poaceae) where the most efficient nitrogen-fixing cyanobacteria are present in paddies. Moreover, cyanobacteria may in turn produce and/or secrete numerous bioactive compounds that have plant growth-promoting abilities or that may make the plant more resistant to abiotic or biotic stress. In recent years, there has been a growing worldwide interest in the use of cyanobacterial biomass as biofertilizers to replace chemical fertilizers, in part to overcome increasing organic-farming demands. However, the potential presence of harmful cyanotoxins has delayed the use of such cyanobacterial biomass, which can be found in large quantities in freshwater ecosystems around the world. In this review, we describe the existing evidence for the positive benefit of plant-cyanobacteria interactions and discuss the use of cyanobacterial biomass as biofertilizers and its growing worldwide interest. Although mass cyanobacterial blooms and scums are a current and emerging threat to the degradation of ecosystems and to animal and human health, they may serve as a source of numerous bioactive compounds with multiple positive effects that could be of use as an alternative to chemical fertilizers in the context of sustainable development.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Laboratory Ecology, Systematic and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91405, Orsay, France
| | | | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ozcan Konur
- Formerly, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
7
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Lee SM, Ryu CM. Algae as New Kids in the Beneficial Plant Microbiome. FRONTIERS IN PLANT SCIENCE 2021; 12:599742. [PMID: 33613596 PMCID: PMC7889962 DOI: 10.3389/fpls.2021.599742] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Previously, algae were recognized as small prokaryotic and eukaryotic organisms found only in aquatic habitats. However, according to a recent paradigm shift, algae are considered ubiquitous organisms, occurring in plant tissues as well as in soil. Accumulating evidence suggests that algae represent a member of the plant microbiome. New results indicate that plants respond to algae and activate related downstream signaling pathways. Application of algae has beneficial effects on plant health, such as plant growth promotion and disease control. Although accumulating evidence suggests that secreted compounds and cell wall components of algae induce physiological and structural changes in plants that protect against biotic and abiotic stresses, knowledge of the underlying mechanisms and algal determinants is limited. In this review, we discuss recent studies on this topic, and highlight the bioprotectant and biostimulant roles of algae as a new member of the plant beneficial microbiome for crop improvement.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
9
|
Tiwari S, Prasad SM. Regulation of insecticide toxicity by kinetin in two paddy field cyanobacteria: Physiological and biochemical assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113806. [PMID: 31891913 DOI: 10.1016/j.envpol.2019.113806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The imprudent agricultural practices are leading to an increasing load of pesticides in agricultural fields. Thus, there is a need to minimize the harmful effect of pesticides by adopting sustainable strategies. In the recent past decade, kinetin, a plant synthetic hormone, has been reported as a pesticide toxicity alleviator in higher plants. But its role in mitigating pesticide toxicity in cyanobacteria is still limited. Thus, in current study an attempt has been made to investigate the potential of kinetin in regulating cypermethrin, an insecticide, induced toxicity in Anabaena PCC 7120 and Nostoc muscorum ATCC 27893. Cypermethrin (Cyp1; 2 μg ml-1 and Cyp2; 4 μg ml-1) showed negative impact on growth, photosynthetic pigments, photosynthetic O2-evolution and primary photochemistry of PS II (Phi_P0, Psi_0, Phi_E0) resulting in decrease in performance index (PIABS). However, under similar conditions, increases in energy flux parameters (ABS/RC, TR0/RC, ET0/RC and DI0/RC) were noticed. Cypermethrin at both the doses enhanced the level of oxidative stress biomarkers (SOR, H2O2, and MDA equivalent contents) despite of increased antioxidant enzymatic activity (SOD, POD, CAT and GST).Under similar condition, cypermethrin at tested doses caused substantial decrease in non-enzymatic antioxidant contents (proline, cysteine and NP-SH). Nevertheless, kinetin treatment attenuated cypermethrin induced oxidative stress by further up-regulating the activity of enzymatic antioxidants and by enhancing the contents of non-enzymatic antioxidants. Thus, with the application of kinetin improved photochemistry of PS II and growth yield of both the cyanobacteria were observed even in the presence of cypermethrin. Current results establish that cypermethrin induces toxicity on photosynthesis, photosynthetic pigments and growth, and this effect was more pronounced in Anabaena PCC 7120 than Nostoc muscorum ATCC 27893. Furthermore, the potential role of kinetin in mitigating the toxicity of cypermethrin in both the cyanobacteria provides an insight to be used in paddy fields for sustainable agricultural practices.
Collapse
Affiliation(s)
- Santwana Tiwari
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
10
|
Kerry RG, Patra S, Gouda S, Patra JK, Das G. Microbes and Their Role in Drought Tolerance of Agricultural Food Crops. Microb Biotechnol 2018:253-273. [DOI: 10.1007/978-981-10-7140-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
11
|
Frébortová J, Plíhal O, Florová V, Kokáš F, Kubiasová K, Greplová M, Šimura J, Novák O, Frébort I. Light influences cytokinin biosynthesis and sensing in Nostoc (cyanobacteria). JOURNAL OF PHYCOLOGY 2017; 53:703-714. [PMID: 28378335 DOI: 10.1111/jpy.12538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 05/22/2023]
Abstract
Cytokinins are an important group of plant hormones that are also found in other organisms, including cyanobacteria. While various aspects of cytokinin function and metabolism are well understood in plants, the information is limited for cyanobacteria. In this study, we first experimentally confirmed a prenylation of tRNA by recombinant isopentenyl transferase NoIPT2 from Nostoc sp. PCC 7120, whose encoding gene we previously identified in Nostoc genome along with the gene for adenylate isopentenyl transferase NoIPT1. In contrast to NoIPT2, the transcription of NoIPT1 was strongly activated during the dark period and was followed by an increase in the cytokinin content several hours later in the light period. Dominant cytokinin metabolites detected at all time points were free bases and monophosphates of isopentenyladenine and cis-zeatin, while N-glucosides were not detected at all. Whole transcriptome differential expression analysis of cultures of the above Nostoc strain treated by cytokinin compared to untreated controls indicated that cytokinin together with light trigger expression of several genes related to signal transduction, including two-component sensor histidine kinases and two-component hybrid sensors and regulators. One of the affected histidine kinases with a cyclase/histidine kinase-associated sensory extracellular domain similar to the cytokinin-binding domain in plant cytokinin receptors was able to modestly bind isopentenyladenine. The data show that the genetic disposition allows Nostoc not only to produce free cytokinins and prenylate tRNA but also modulate the cytokinin biosynthesis in response to light, triggering complex changes in sensing and regulation.
Collapse
Affiliation(s)
- Jitka Frébortová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ondřej Plíhal
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Vendula Florová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Filip Kokáš
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Karolina Kubiasová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Marta Greplová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jan Šimura
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
12
|
Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front Microbiol 2017; 8:515. [PMID: 28487674 PMCID: PMC5403934 DOI: 10.3389/fmicb.2017.00515] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/13/2017] [Indexed: 12/05/2022] Open
Abstract
Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of "white biotechnology" for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc.), phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides) etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Andrzej Bajguz
- Faculty of Biology and Chemistry, Institute of Biology, University of BialystokBialystok, Poland
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Govt. Ramanuj Pratap Singhdev Post-Graduate CollegeBaikunthpur, Koriya, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
13
|
Genuário DB, Andreote APD, Vaz MGMV, Fiore MF. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol Phylogenet Evol 2017; 109:105-112. [DOI: 10.1016/j.ympev.2016.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
|
14
|
Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future. Mar Drugs 2016; 14:E97. [PMID: 27196915 PMCID: PMC4882571 DOI: 10.3390/md14050097] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023] Open
Abstract
Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.
Collapse
Affiliation(s)
- Sophie Mazard
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
15
|
Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. FRONTIERS IN PLANT SCIENCE 2015; 6:46. [PMID: 25699072 PMCID: PMC4318279 DOI: 10.3389/fpls.2015.00046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/16/2015] [Indexed: 05/18/2023]
Abstract
Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg(-1)ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity.
Collapse
Affiliation(s)
- Anwar Hussain
- Department of Botany, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| | - Syed T. Shah
- Nuclear Institute for Food and Agriculture, Tarnab PeshawarPakistan
| | - Hazir Rahman
- Department of Microbiology, Kohat University of Science and Technology, KohatPakistan
| | - Muhammad Irshad
- Department of Botany, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| | - Amjad Iqbal
- Department of Food Science, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| |
Collapse
|
16
|
Singh S. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 2014; 117:1221-44. [DOI: 10.1111/jam.12612] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- S. Singh
- Center for Biotechnology; Department of Biological Sciences; Birla Institute of Technology and Science; Pilani India
| |
Collapse
|