1
|
Borriello G, Valentini F, Ferrini S, Di Muro G, Cagnotti G, Grego E, Catania AM, Stella MC, Ala U, Nebbia P, D’Angelo A, Bellino C. Characterization of blood microbial population in beef calves with clinical signs of sepsis using 16S rRNA gene sequencing. PLoS One 2025; 20:e0324469. [PMID: 40408396 PMCID: PMC12101658 DOI: 10.1371/journal.pone.0324469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/24/2025] [Indexed: 05/25/2025] Open
Abstract
Sepsis, a dysregulated host response to infection, severely affects calf health. To date, sepsis diagnosis relies on clinical examination and positive blood culture. Differently, in humans 16S rRNA gene analysis is a valuable adjunct to blood culture as it allows for broader assessment of bacterial DNA in whole blood and its fractions. However, its efficacy in cattle remains unknown. Therefore, this study characterized and compared the bacterial DNA detected in whole blood and its fractions between healthy calves and those showing clinical signs of sepsis. The study sample was 18 Piedmontese calves classified according to their clinical status as suspected septic (S, 8/18) or healthy (H, 10/18). Aseptic blood samples were collected into EDTA tubes for 16S rRNA gene analysis of whole blood (WB), plasma (PL), buffy coat (BC), and red blood cells (RBC). Aseptic samples were additionally taken only from the S calves for blood culture. Clinical and microbiological parameters were compared between the two groups and between the blood fractions within each group. The S calves were diagnosed with pneumonia (3/8, 37.5%), enteritis (3/8, 37.5%), and omphalitis (2/8, 25%). Microbiome analysis revealed significant intra-group differences in α and β diversity indices between PL and the other blood fractions for both groups. Comparison between the S and the H calves showed differences in β diversity indices for PL and WB. DNA of known pathogens (e.g., Escherichia coli) and species not commonly associated with sepsis (e.g., Cutibacterium acnes) were more abundant in the S calves. Moreover, in S calves, 16S rRNA gene sequencing detected E. coli DNA more often (8/8, 100%) than blood culture (2/8, 25%). While the DNA of several bacteria can be detected in calves showing clinical signs of sepsis, further studies are needed to clarify its origin, role, and distribution in blood fractions.
Collapse
Affiliation(s)
| | | | - Sara Ferrini
- Department of Veterinary Sciences, University of Turin, Italy
| | - Giorgia Di Muro
- Department of Veterinary Sciences, University of Turin, Italy
| | - Giulia Cagnotti
- Department of Veterinary Sciences, University of Turin, Italy
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Italy
| | | | | | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Italy
| | | | - Claudio Bellino
- Department of Veterinary Sciences, University of Turin, Italy
| |
Collapse
|
2
|
Lourenço CF, Almeida AR, Soares AM, Marques CR. Efficiency comparison of DNA extraction kits for analysing the cockle gut bacteriome. Heliyon 2024; 10:e38846. [PMID: 39640665 PMCID: PMC11620152 DOI: 10.1016/j.heliyon.2024.e38846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
Cockles play a vital ecological role and provide valuable ecosystem services globally. However, the performance, production, and safe consumption of cockles are significantly influenced by their gut-associated bacteriome. Accurate understanding of gut-bacteriome interactions, and surveillance of pathogenic bacteria loads in cockles, rely on efficient DNA extraction methods that yield high-quality and representative bacterial DNA. Despite this importance, reliable extraction methods for cockles are currently overlooked. Therefore, we evaluated the performance of five DNA extraction kits (E.Z.N.A.® Soil DNA; FastDNA® Spin; DNeasy PowerSoil Pro; QIAamp PowerFecal DNA; ZymoBIOMICS™DNA Miniprep) in terms of DNA quality, yield, bacterial community structure (analysed by using denaturating gradient gel electrophoresis; DGGE), and bacteriome composition (analysed by 16S rRNA gene sequencing) in Cerastoderma edule gut. The DNeasy kit provided the highest purity and quantity of bacterial DNA, while the PowerFecal and Zymo kits exhibited reduced extraction efficiency. DGGE profiles revealed significant variability between the tested kits (R = 0.512; mean P = 0.011), but the FastDNA kit under-represented the bacterial community in cockles' gut. Based on alpha diversity, the DNeasy kit outperformed the others and successfully detected all abundant genera found with the alternative kits. Our findings indicate that the DNeasy kit is an efficient DNA extraction method, enabling a molecular representation of the gut-associated bacteriome in C. edule. These results contribute to the development of effective techniques for studying the cockle gut bacteriome and its ecological implications.
Collapse
Affiliation(s)
- Catarina F. Lourenço
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana R. Almeida
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M.V.M. Soares
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina R. Marques
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Moragues-Solanas L, Le-Viet T, McSorley E, Halford C, Lockhart DS, Aydin A, Kay GL, Elumogo N, Mullen W, O'Grady J, Gilmour MW. Development and proof-of-concept demonstration of a clinical metagenomics method for the rapid detection of bloodstream infection. BMC Med Genomics 2024; 17:71. [PMID: 38443925 PMCID: PMC10916079 DOI: 10.1186/s12920-024-01835-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The timely and accurate diagnosis of bloodstream infection (BSI) is critical for patient management. With longstanding challenges for routine blood culture, metagenomics is a promising approach to rapidly provide sequence-based detection and characterisation of bloodborne bacteria. Long-read sequencing technologies have successfully supported the use of clinical metagenomics for syndromes such as respiratory illness, and modified approaches may address two requisite factors for metagenomics to be used as a BSI diagnostic: depletion of the high level of host DNA to then detect the low abundance of microbes in blood. METHODS Blood samples from healthy donors were spiked with different concentrations of four prevalent causative species of BSI. All samples were then subjected to a modified saponin-based host DNA depletion protocol and optimised DNA extraction, whole genome amplification and debranching steps in preparation for sequencing, followed by bioinformatical analyses. Two related variants of the protocol are presented: 1mL of blood processed without bacterial enrichment, and 5mL of blood processed following a rapid bacterial enrichment protocol-SepsiPURE. RESULTS After first identifying that a large proportion of host mitochondrial DNA remained, the host depletion process was optimised by increasing saponin concentration to 3% and scaling the reaction to allow more sample volume. Compared to non-depleted controls, the 3% saponin-based depletion protocol reduced the presence of host chromosomal and mitochondrial DNA < 106 and < 103 fold respectively. When the modified depletion method was further combined with a rapid bacterial enrichment method (SepsiPURE; with 5mL blood samples) the depletion of mitochondrial DNA improved by a further > 10X while also increasing detectable bacteria by > 10X. Parameters during DNA extraction, whole genome amplification and long-read sequencing were also adjusted, and subsequently amplicons were detected for each input bacterial species at each of the spiked concentrations, ranging from 50-100 colony forming units (CFU)/mL to 1-5 CFU/mL. CONCLUSION In this proof-of-concept study, four prevalent BSI causative species were detected in under 12 h to species level (with antimicrobial resistance determinants) at concentrations relevant to clinical blood samples. The use of a rapid and precise metagenomic protocols has the potential to advance the diagnosis of BSI.
Collapse
Affiliation(s)
- Lluis Moragues-Solanas
- Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Road, Norwich, Norfolk, NR4 7UQ, UK
- University of East Anglia, Norwich, Norfolk, UK
| | - Thanh Le-Viet
- Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Road, Norwich, Norfolk, NR4 7UQ, UK
| | - Elinor McSorley
- Momentum Bioscience Ltd, Blenheim Office Park, Witney, Oxfordshire, UK
| | - Carl Halford
- University of East Anglia, Norwich, Norfolk, UK
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, UK
| | - Daniel S Lockhart
- Momentum Bioscience Ltd, Blenheim Office Park, Witney, Oxfordshire, UK
| | - Alp Aydin
- Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Road, Norwich, Norfolk, NR4 7UQ, UK
- Oxford Nanopore Technologies Plc, Quadram Institute Bioscience, Norwich, UK
| | - Gemma L Kay
- Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Road, Norwich, Norfolk, NR4 7UQ, UK
- Oxford Nanopore Technologies Plc, Quadram Institute Bioscience, Norwich, UK
| | - Ngozi Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Road, Norwich, Norfolk, NR4 7UQ, UK
- Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK
| | - William Mullen
- Momentum Bioscience Ltd, Blenheim Office Park, Witney, Oxfordshire, UK
| | - Justin O'Grady
- University of East Anglia, Norwich, Norfolk, UK
- Oxford Nanopore Technologies Plc, Quadram Institute Bioscience, Norwich, UK
| | - Matthew W Gilmour
- Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Road, Norwich, Norfolk, NR4 7UQ, UK.
- University of East Anglia, Norwich, Norfolk, UK.
| |
Collapse
|
4
|
Majka Z, Zapala B, Krawczyk A, Czamara K, Mazurkiewicz J, Stanek E, Czyzynska-Cichon I, Kepczynski M, Salamon D, Gosiewski T, Kaczor A. Direct oral and fiber-derived butyrate supplementation as an anti-obesity treatment via different targets. Clin Nutr 2024; 43:869-880. [PMID: 38367596 DOI: 10.1016/j.clnu.2024.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND & AIMS Butyric (one of the short-chain fatty acids), a major byproduct of the fermentation of non-digestible carbohydrates (e.g. fiber), is supposed to have anti-obesity and anti-inflammatory properties. However, butyrate's potential and mechanism in preventing obesity and the efficient form of administration remain to be clarified. METHODS Hence, we studied the effect of oral supplementation with 5% (w/w) sodium butyrate and 4% (w/w) β-glucan (fiber) on young male mice (C57BL/6J) with high-fat diet-induced obesity (HFD: 60 kcal% of fat + 1% of cholesterol). Six weeks old mice were fed diets based on HFD or control (AIN-93G) diet with/without supplements for 4 weeks. The unique, interdisciplinary approach combining several Raman-based techniques (including Raman microscopy and fiber optic Raman spectroscopy) and next-generation sequencing was used to ex vivo analyze various depots of the adipose tissue (white, brown, perivascular) and gut microbiome, respectively. RESULTS The findings demonstrate that sodium butyrate more effectively prevent the pathological increase in body weight caused by elevated saturated fatty acids influx linked to a HFD in comparison to β-glucan, thereby entirely inhibiting diet-induced obesity. Moreover, butyrate significantly affects the white adipose tissue (WAT) reducing the epididymal WAT mass in comparison to HFD without supplements, and decreasing lipid saturation in the epididymal WAT and perivascular adipose tissue of the thoracic aorta. Contrarily, β-glucan significantly changes the composition and diversity of the gut microbiome, reversing the HFD effect, but shows no effect on the epididymal WAT mass and therefore the weight gain inhibition is not as effective as with sodium butyrate. CONCLUSIONS Here, oral supplementation with sodium butyrate and β-glucan (fiber) has been proven to have an anti-obesity effect through two different targets. Administration-dependent effects that butyrate imposes on the adipose tissue (oral administration) and microbiome (fiber-derived) make it a promising candidate for the personalized treatment of obesity.
Collapse
Affiliation(s)
- Zuzanna Majka
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland
| | - Barbara Zapala
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 8 Skawinska Str., Krakow 31-066, Poland
| | - Agnieszka Krawczyk
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., Krakow 31-121, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland
| | - Joanna Mazurkiewicz
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland
| | - Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland
| | - Dominika Salamon
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., Krakow 31-121, Poland
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., Krakow 31-121, Poland.
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., Krakow 30-348, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., Krakow 30-387, Poland.
| |
Collapse
|
5
|
Stefura T, Rusinek J, Zając M, Zapała B, Gosiewski T, Sroka-Oleksiak A, Salamon D, Pędziwiatr M, Major P. Duodenal microbiota and weight-loss following sleeve gastrectomy and Roux-en-Y gastric bypass - a pilot study. BMC Surg 2023; 23:173. [PMID: 37365522 PMCID: PMC10291748 DOI: 10.1186/s12893-023-02076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Bariatric surgery is the most effective method of morbid obesity treatment. Microbiota has many functions in human body and many of them remain to be unknown. The aim of this study was to establish if the composition of duodenal microbiota influences success rate of bariatric surgery. METHODS It was a prospective cohort study. The data concerning demographics and comorbidities was collected perioperatively. The duodenal biopsies were collected prior to surgery with the gastroscope. Then DNA analysis was conducted. The data connected to the operation outcomes was gathered after 6 and 12 months after surgery. RESULTS Overall, 32 patients were included and divided into two groups (successful - group 1 and unsuccessful - group 0) based on percentage excess weight loss after 6 months were created. The Total Actual Abundance was higher in group 0. In group 0 there was a significantly higher amount of Roseburia and Arthrobacter (p = 0.024, p = 0.027, respectively). Genus LDA effect size analysis showed Prevotella, Megasphaera and Pseudorhodobacter in group 1 to be significant. Whereas abundance of Roseburia and Arthrobacter were significant in group 0. CONCLUSIONS Duodenal microbiota composition may be a prognostic factor for the success of the bariatric surgery but further research on the larger group is needed.
Collapse
Affiliation(s)
- Tomasz Stefura
- Department of Medical Education, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Rusinek
- Students' Scientific Group at 2nd Department of General Surgery, Jagiellonian University, Medical College, Krakow, Poland
| | - Maciej Zając
- Students' Scientific Group at 2nd Department of General Surgery, Jagiellonian University, Medical College, Krakow, Poland
| | - Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Gosiewski
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Dominika Salamon
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21 St, 31-501, Kraków, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21 St, 31-501, Kraków, Poland.
| |
Collapse
|
6
|
Marutescu LG. Current and Future Flow Cytometry Applications Contributing to Antimicrobial Resistance Control. Microorganisms 2023; 11:1300. [PMID: 37317273 DOI: 10.3390/microorganisms11051300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial resistance is a global threat to human health and welfare, food safety, and environmental health. The rapid detection and quantification of antimicrobial resistance are important for both infectious disease control and public health threat assessment. Technologies such as flow cytometry can provide clinicians with the early information, they need for appropriate antibiotic treatment. At the same time, cytometry platforms facilitate the measurement of antibiotic-resistant bacteria in environments impacted by human activities, enabling assessment of their impact on watersheds and soils. This review focuses on the latest applications of flow cytometry for the detection of pathogens and antibiotic-resistant bacteria in both clinical and environmental samples. Novel antimicrobial susceptibility testing frameworks embedding flow cytometry assays can contribute to the implementation of global antimicrobial resistance surveillance systems that are needed for science-based decisions and actions.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
7
|
Salamon D, Zapała B, Krawczyk A, Potasiewicz A, Nikiforuk A, Stój A, Gosiewski T. Comparison of iSeq and MiSeq as the two platforms for 16S rRNA sequencing in the study of the gut of rat microbiome. Appl Microbiol Biotechnol 2022; 106:7671-7681. [PMID: 36322250 PMCID: PMC9628524 DOI: 10.1007/s00253-022-12251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022]
Abstract
Abstract Amplicon-based next-generation sequencing (NGS) of the 16S ribosomal RNA (16S) regions is a culture-free method used to identify and analyze Procaryota occurring within a given sample. The prokaryotic 16S rRNA gene contains conserved regions and nine variable regions (V1-V9) frequently used for phylogenetic classification of genus or species in diverse microbial populations. This work compares the accuracy and efficacy of two platforms, iSeq and MiSeq from Illumina, used in sequencing 16S rRNA. The most important similarities and differences of 16S microbiome sequencing in 20 fecal rat samples were described. Genetic libraries were prepared according to 16S Metagenomic Sequencing Library Preparation (Illumina) for the V3 and V4 regions of the 16S. The species richness obtained using iSeq technology was lower compared to MiSeq. At the second taxonomy level (L2), the abundance of taxa was comparable for both platforms. At the L7, the taxa abundance was significantly different, and the number of taxa was higher for the MiSeq. The alpha diversity was lower for iSeq than for MiSeq, starting from the order to the species level. The beta diversity estimation revealed statistically significant differences in microbiota diversity starting from the class level to the species level in samples sequenced on two investigated platforms. This work disclosed that the iSeq platform could be used to evaluate the bacterial profile of the samples to characterize the overall profile. The MiSeq System seems to be better for a detailed analysis of the differences in the microbiota composition. Key points • iSeq platform allows to shorten the sequencing time three times compared to the MiSeq. • iSeq can only be used for an initial and quick microbiome assessment. • MiSeq is better for a detailed analysis of the differences in the microbiota composition. Supplementary information The online version contains supplementary material available at 10.1007/s00253-022-12251-z.
Collapse
Affiliation(s)
- Dominika Salamon
- grid.5522.00000 0001 2162 9631Department of Molecular Medical Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Barbara Zapała
- grid.5522.00000 0001 2162 9631Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Krawczyk
- grid.5522.00000 0001 2162 9631Department of Molecular Medical Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Potasiewicz
- grid.418903.70000 0001 2227 8271Department of Behavioural Neuroscience and Drug Development, Polish Academy of Sciences, Maj Institute of Pharmacology, Krakow, Poland
| | - Agnieszka Nikiforuk
- grid.418903.70000 0001 2227 8271Department of Behavioural Neuroscience and Drug Development, Polish Academy of Sciences, Maj Institute of Pharmacology, Krakow, Poland
| | - Anastazja Stój
- grid.412700.00000 0001 1216 0093Department of Hematology Diagnostics and Genetics, University Hospital, Krakow, Poland
| | - Tomasz Gosiewski
- grid.5522.00000 0001 2162 9631Department of Molecular Medical Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
8
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
9
|
Browne DJ, Liang F, Gartlan KH, Harris PNA, Hill GR, Corrie SR, Markey KA. OUP accepted manuscript. Lab Med 2022; 53:459-464. [PMID: 35460243 PMCID: PMC9435484 DOI: 10.1093/labmed/lmac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective To show the high analytical specificity of our multiplex microsphere polymerase chain reaction (mmPCR) method, which offers the simultaneous detection of both general (eg, Gram type) and specific (eg, Pseudomonas species) clinically relevant genetic targets in a single modular multiplex reaction. Materials and Methods Isolated gDNA of 16S/rRNA Sanger-sequenced and Basic Local Alignment Tool–identified bacterial and fungal isolates were selectively amplified in a custom 10-plex Luminex MagPlex-TAG microsphere-based mmPCR assay. The signal/noise ratio for each reaction was calculated from flow cytometry standard data collected on a BD LSR Fortessa II flow cytometer. Data were normalized to the no-template negative control and the signal maximum. The analytical specificity of the assay was compared to single-plex SYBR chemistry quantitative PCR. Results Both general and specific primer sets were functional in the 10-plex mmPCR. The general Gram typing and pan-fungal primers correctly identified all bacterial and fungal isolates, respectively. The species-specific and antibiotic resistance–specific primers correctly identified the species- and resistance-carrying isolates, respectively. Low-level cross-reactive signals were present in some reactions with high signal/noise primer ratios. Conclusion We found that mmPCR can simultaneously detect specific and general clinically relevant genetic targets in multiplex. These results serve as a proof-of-concept advance that highlights the potential of high multiplex mmPCR diagnostics in clinical practice. Further development of specimen-specific DNA extraction techniques is required for sensitivity testing.
Collapse
Affiliation(s)
- Daniel J Browne
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns,Australia
| | - Fang Liang
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate H Gartlan
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Patrick N A Harris
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Geoffrey R Hill
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Division of Hematopoietic Transplantation, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Simon R Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash and QLD Nodes, Monash University, Clayton, Australia
| | | |
Collapse
|
10
|
Analysis of the Gut Mycobiome in Adult Patients with Type 1 and Type 2 Diabetes Using Next-Generation Sequencing (NGS) with Increased Sensitivity-Pilot Study. Nutrients 2021; 13:nu13041066. [PMID: 33806027 PMCID: PMC8064496 DOI: 10.3390/nu13041066] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/23/2023] Open
Abstract
The studies on microbiome in the human digestive tract indicate that fungi could also be one of the external factors affecting development of diabetes. The aim of this study was to evaluate the quantitative and qualitative mycobiome composition in the colon of the adults with type 1 (T1D), n = 26 and type 2 (T2D) diabetes, n = 24 compared to the control group, n = 26. The gut mycobiome was characterized in the stool samples using the analysis of the whole internal transcribed spacer (ITS) region of the fungal rDNA gene cluster by next-generation sequencing (NGS) with increased sensitivity. At the L2 (phylum) level, Basidiomycota fungi were predominant in all 3 study groups. Group T1D presented significantly lower number of Ascomycota compared to the T2D group, and at the L6 (genus) level, the T1D group presented significantly lower number of Saccharomyces genus compared to control and T2D groups. In the T1D group, a significant positive correlation between total cholesterol and low-density lipoprotein cholesterol (LDL-C) levels and fungi of the genus Saccharomyces, and in the T2D group, a negative correlation between the total cholesterol level and Malassezia genus was found. The obtained results seem to be a good foundation to extend the analysis of the relationship between individual genera and species of fungi and the parameters determining the metabolism of carbohydrates and lipids in the human body.
Collapse
|
11
|
Shan J, Jia Y, Teulières L, Patel F, Clokie MRJ. Targeting Multicopy Prophage Genes for the Increased Detection of Borrelia burgdorferi Sensu Lato (s.l.), the Causative Agents of Lyme Disease, in Blood. Front Microbiol 2021; 12:651217. [PMID: 33790883 PMCID: PMC8005754 DOI: 10.3389/fmicb.2021.651217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Because delayed diagnosis of LD incurs high healthcare costs and great suffering, new highly sensitive tests are in need. To overcome these challenges, we developed an internally controlled quantitative PCR (Ter-qPCR) that targets the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. The terL protein helps phages pack their DNA. Strikingly, the detection limit of the Ter-qPCR was analytically estimated to be 22 copies and one bacterial cell in bacteria spiked blood. Furthermore, significant quantitative differences was observed in terms of the amount of terL detected in healthy individuals and patients with either early or late disease. Together, the data suggests that the prophage-targeting PCR has significant power to improve success detection for LD. After rigorous clinical validation, this new test could deliver a step-change in the detection of LD. Prophage encoded markers are prevalent in many other pathogenic bacteria rendering this approach highly applicable to bacterial identification in general.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ying Jia
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Louis Teulières
- PhelixRD Charity 230 Rue du Faubourg St Honoré, Paris, France
| | - Faizal Patel
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
M Raj J, Kenjar A, Bhandary J, Girisha B, Chakraborty G, Karunasagar I. Development of a rapid and low-cost method for the extraction of dermatophyte DNA. Indian J Dermatol 2021; 66:668-673. [PMID: 35283499 PMCID: PMC8906329 DOI: 10.4103/ijd.ijd_19_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Polymerase chain reaction (PCR) is the most optimized method for the rapid detection and analysis of any environmental or clinically significant organism. While PCR amplification directly from samples has been shown effective for several bacteria and viruses, for filamentous fungus and yeast, extraction of genomic DNA is a must. The extraction of DNA from fungal cultures is often reported using user-friendly commercially available kits, which are designed to decrease the time, extensive manual work in extraction procedures but are often expensive. Dermatophytes pose an added drawback to efficient DNA extraction due to their poor recovery on culture media and slow growth rate. Aims and Objectives: In the present study, we developed and validated a method for effective genomic DNA extraction from dermatophytes. Materials and Methods: DNA yield from standard dermatophytes extracted from spore suspensions and mycelia mat by commercially available kits was compared. A modified method using lyticase buffer and phenol-chloroform extraction was developed. The yield obtained was compared with the existing methods (kit-based method and cetyl trimethyl ammonium bromide method). The yield and quality of the total genomic DNA were estimated spectrophotometrically and by successful PCR amplification of the ITS region. The results were validated using 21 clinical isolates from recalcitrant dermatophytosis. Results: Minimal fungal DNA was obtained from the spores compared to that obtained from mycelial mat. Commercially available kits yielded lower amounts of DNA compared to the CATB method. The modified method developed in this study yielded better quality and quantity of DNA. Conclusion: Of the three extraction methods evaluated, the developed method gave significantly higher total genomic DNA yield and better purity than the reference methods. In addition, the turnaround time for DNA extraction was reduced to half based on modifications in culture conditions.
Collapse
|
13
|
Sroka-Oleksiak A, Gosiewski T, Pabian W, Gurgul A, Kapusta P, Ludwig-Słomczyńska AH, Wołkow PP, Brzychczy-Włoch M. Next-Generation Sequencing as a Tool to Detect Vaginal Microbiota Disturbances during Pregnancy. Microorganisms 2020; 8:microorganisms8111813. [PMID: 33217908 PMCID: PMC7698737 DOI: 10.3390/microorganisms8111813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
The physiological microbiota of the vagina is responsible for providing a protective barrier, but Some factors can disturb the balance in its composition. At that time, the amounts of the genus Lactobacillus decrease, which may lead to the development of infection and severe complications during pregnancy. The aim of the study was the analysis of the bacterial composition of the vagina in 32 Caucasian women at each trimester of pregnancy using the next-generation sequencing method and primers targeting V3-V4 regions. In the studied group, the dominant species were Lactobacillus iners, Lactobacillus gasseri, and Lactobacillusplantarum. Statistically significant differences in the quantitative composition between trimesters were observed in relation to Lactobacillus jensenii,Streptococcus agalactiae, Lactobacillus iners, Gardnerella spp. Out of the 32 patients, 20 demonstrated fluctuations within the genus Lactobacillus, and 9 of them, at different stages of pregnancy, exhibited the presence of potentially pathogenic microbiota, among others: Streptococcus agalactiae, Gardnerella spp., Atopobium vaginae, and Enterococcus faecalis. The composition of the vaginal microbiota during pregnancy was subject to partial changes over trimesters. Although in one-third of the studied patients, both the qualitative and quantitative composition of microbiota was relatively constant, in the remaining patients, physiological and potentially pathogenic fluctuations were distinguished.
Collapse
Affiliation(s)
- Agnieszka Sroka-Oleksiak
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-O.); (T.G.)
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-O.); (T.G.)
| | - Wojciech Pabian
- Clinical Department of Gynecological Endocrinology and Gynecology, Jagiellonian University Medical College, Kopernika 23, 31-501 Krakow, Poland;
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Kraków, Poland;
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kopernika 7c, 31-034 Krakow, Poland; (P.K.); (A.H.L.-S.); (P.P.W.)
| | - Agnieszka H. Ludwig-Słomczyńska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kopernika 7c, 31-034 Krakow, Poland; (P.K.); (A.H.L.-S.); (P.P.W.)
| | - Paweł P. Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kopernika 7c, 31-034 Krakow, Poland; (P.K.); (A.H.L.-S.); (P.P.W.)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-O.); (T.G.)
- Correspondence: ; Tel.: +48-1263-325-67
| |
Collapse
|
14
|
Korotky N, Peslyak M. Blood Metagenome in Health and Psoriasis. Front Med (Lausanne) 2020; 7:333. [PMID: 33043021 PMCID: PMC7524894 DOI: 10.3389/fmed.2020.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
A survey and analytical assessment of the results of fundamental works on studying blood metagenome (set of all non-human DNA) is carried out. All works on determining bacterial DNA concentration in the whole blood of healthy people are reviewed. Detailed comparison of characteristics of 16S rRNA test (hereinafter 16S-test) and whole metagenome sequencing test (hereinafter WMS-test) is carried out and published in Supplement S1. One of main goals of this review is to identify the drawbacks and mistakes which the studied works contain, particularly to emphasize the crucial importance of determining total concentration of bacterial DNA for comparing patients' metagenomes with those of healthy people as well as for comparing patients' metagenomes with each other. Controlling the level and composition of contamination is equally important. The absence of high-quality contamination control at each step (or at certain steps) of the research significantly reduces the reliability of achieved results. The given review is the first attempt to analyze and systematize the results of blood metagenome studies, whose number has increased considerably in the last few years. The review has been carried out as part of preparation for implementing a project on complex studying metagenomes of whole blood and skin biopsies of psoriatic patients.
Collapse
Affiliation(s)
- Nikolay Korotky
- Department of Dermatovenereology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail Peslyak
- Department of Dermatovenereology, Pirogov Russian National Research Medical University, Moscow, Russia.,Antipsoriatic Association "The Natural Alternative", Moscow, Russia
| |
Collapse
|
15
|
Salamon D, Gosiewski T, Krawczyk A, Sroka-Oleksiak A, Duplaga M, Fyderek K, Kowalska-Duplaga K. Quantitative changes in selected bacteria in the stool during the treatment of Crohn's disease. Adv Med Sci 2020; 65:348-353. [PMID: 32590155 DOI: 10.1016/j.advms.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of this study was to determine quantitative changes in selected species of bacteria (Bacteroides fragilis, Lactobacillus fermentum, Lactobacillus rhamnosus, Serratia marcescens) in the stool of patients with Crohn's disease (CD) in the course of induction treatment with exclusive enteral nutrition (EEN) or anti-tumor necrosis factor alpha (Infliximab, IFX) vs. healthy controls (HC). MATERIALS/METHODS DNA was isolated from stool samples of CD (n = 122) and HC (n = 17), and quantitative real-time Polymerase Chain Reaction (qPCR) was applied. In both treatment groups, the first stool sample was taken before the start of treatment, and the second 4 weeks after its end: in EEN (n = 48; age (mean; SD) 13.35 ± 3.09 years) and IFX groups (n = 13; age (mean; SD) 13.09 ± 3.76 years). RESULTS The only species that showed a statistically significant difference between the two groups of patients before any therapeutic intervention was L. fermentum. Moreover, its number increased after completion of EEN and differed significantly when compared with the HC. In the IFX group the number of L. fermentum decreased during the therapy but was significantly higher than in the HC. The number of S. marcescens in the EEN group was significantly lower than in the controls both before and after EEN. CONCLUSION The implemented treatment (EEN or IFX) modifies the microbiome in CD patients, but does not make it become the same as in HC.
Collapse
|
16
|
Źródłowski T, Sobońska J, Salamon D, McFarlane IM, Ziętkiewicz M, Gosiewski T. Classical Microbiological Diagnostics of Bacteremia: Are the Negative Results Really Negative? What is the Laboratory Result Telling Us About the "Gold Standard"? Microorganisms 2020; 8:microorganisms8030346. [PMID: 32121353 PMCID: PMC7143506 DOI: 10.3390/microorganisms8030346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022] Open
Abstract
Standard blood cultures require at least 24–120 h to be reported as preliminary positive. The objective of this study was to compare the reliability of Gram staining and fluorescent in-situ hybridization (FISH) for detecting bacteria in otherwise negative blood culture bottles. Ninety-six sets were taken from patients with a diagnosis of sepsis. Six incomplete blood culture sets and eight blood cultures sets demonstrating positive growth were excluded. We performed Gram stain and FISH on 82 sets taken from post-operative septic patients: 82 negative aerobic blood cultures, 82 anaerobic blood cultures, and 82 blood samples, as well as 57 blood samples taken from healthy volunteers. From the eighty-two blood sets analyzed from the septic patients, Gram stain visualized bacteria in 62.2% of blood samples, 35.4% of the negative aerobic bottles, and in 31.7% of the negative anaerobic bottles. Utilizing FISH, we detected bacteria in 75.6%, 56.1%, and 64.6% respectively. Among the blood samples from healthy volunteers, FISH detected bacteria in 64.9%, while Gram stain detected bacteria in only 38.6%. The time needed to obtain the study results using Gram stain was 1 h, for FISH 4 h, and for the culture method, considering the duration of growth, 5 days. Gram stain and FISH allow quick detection of bacteria in the blood taken directly from a patient. Finding phagocytosed bacteria, which were also detected among healthy individuals, confirms the hypothesis that blood microbiome exists.
Collapse
Affiliation(s)
- Tomasz Źródłowski
- Thoracic Anesthesia and Respiratory Intensive Care Unit, John Paul II Hospital, 31- 202 Kraków, Poland;
- Department of Internal Medicine, St. John’s Episcopal Hospital, Far Rockaway, NY 11691, USA
| | - Joanna Sobońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Dominika Salamon
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Isabel M. McFarlane
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Mirosław Ziętkiewicz
- Thoracic Anesthesia and Respiratory Intensive Care Unit, John Paul II Hospital, 31- 202 Kraków, Poland;
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland
- Correspondence: (M.Z.); (T.G.)
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
- Correspondence: (M.Z.); (T.G.)
| |
Collapse
|
17
|
Metagenomic Analysis of Duodenal Microbiota Reveals a Potential Biomarker of Dysbiosis in the Course of Obesity and Type 2 Diabetes: A Pilot Study. J Clin Med 2020; 9:jcm9020369. [PMID: 32013181 PMCID: PMC7074165 DOI: 10.3390/jcm9020369] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Numerous scientific studies confirm that, apart from environmental and genetic factors, a significant role is played by gastrointestinal microbiota in the aetiology of type 2 diabetes and obesity. Currently, scientists mainly focus on the distal intestinal microbiota, while the equally important proximal parts of the intestine are overlooked. The aim of the study was a qualitative analysis of the structure of the duodenal mucosa microbiota in groups of patients with obesity and with type 2 diabetes and where obesity qualified for bariatric surgery: sleeve gastrectomy. The microbiological results obtained were compared with some clinical parameters. As a result, it was possible to determine the microbiological core that the treatment and control groups had in common, including phyla: Firmicutes, Proteobacteria, and Actinobacteria. The patients with obesity and with type 2 diabetes and obesity presented a significantly lower number of genus Bifidobacterium compared to healthy subjects. Furthermore, the numbers of Bifidobacterium were positively correlated with the high density lipoprotein (HDL) concentration in the groups under study. The obtained results indicate that bacteria of the genus Bifidobacterium should be considered in the future in the context of a potential biomarker in the progress of type 2 diabetes and obesity.
Collapse
|
18
|
Źródłowski TW, Jurkiewicz-Badacz D, Sroka-Oleksiak A, Salamon D, Bulanda M, Gosiewski T. Comparison of PCR, Fluorescent in Situ Hybridization and Blood Cultures for Detection of Bacteremia in Children and Adolescents During Antibiotic Therapy. Pol J Microbiol 2019; 67:479-486. [PMID: 30550234 PMCID: PMC7256870 DOI: 10.21307/pjm-2018-056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 02/02/2023] Open
Abstract
The gold standard in microbiological diagnostics of bacteremia is a blood culture in automated systems. This method may take several days and has low sensitivity. New screening methods that could quickly reveal the presence of bacteria would be extremely useful. The objective of this study was to estimate the effectiveness of these methods with respect to blood cultures in the context of antibiotic therapy. Blood samples from 92 children with sepsis were analyzed. Blood cultures were carried out in standard automated systems. Subsequently, FISH (Fluorescent In-Situ Hybridization) and nested multiplex-real-time-PCR (PCR) were performed. Blood cultures, FISH and PCR yielded positive results in 18%, 39.1%, and 71.7% of samples, respectively. Significant differences were found between the results obtained through culture before and after induction of antibiotherapy: 25.5% vs. 9.7%. There was no significant difference in FISH and PCR results in relation to antibiotics. The three methods employed demonstrated significant differences in detecting bacteria effectively. Time to obtain test results for FISH and PCR averaged 4–5 hours. FISH and PCR allow to detect bacteria in blood without prior culture. These methods had high sensitivity for the detection of bacteremia regardless of antibiotherapy. They provide more timely results as compared to automated blood culture, and may be useful as rapid screening tests in sepsis.
Collapse
Affiliation(s)
- Tomasz W Źródłowski
- Thoracic Anesthesia and Respiratory Intensive Care Unit, John Paul II Hospital , Cracow , Poland
| | | | - Agnieszka Sroka-Oleksiak
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College , Cracow , Poland.,Department of Mycology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College , Czysta 18; 31-121 Krakow , Poland
| | - Dominika Salamon
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College , Cracow , Poland
| | - Małgorzata Bulanda
- Chair of Microbiology, Department of Epidemiology of Infection, Faculty of Medicine, Jagiellonian University Medical College , Cracow , Poland
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College , Cracow , Poland
| |
Collapse
|
19
|
Wu JF, Muthusamy A, Al-Ghalith GA, Knights D, Guo B, Wu B, Remmel RP, Schladt DP, Alegre ML, Oetting WS, Jacobson PA, Israni AK. Urinary microbiome associated with chronic allograft dysfunction in kidney transplant recipients. Clin Transplant 2018; 32:e13436. [PMID: 30372560 PMCID: PMC6984979 DOI: 10.1111/ctr.13436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/14/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND We performed a study to identify differences in the urinary microbiome associated with chronic allograft dysfunction (CAD) and compared the urinary microbiome of male and female transplant recipients with CAD. METHODS This case-control study enrolled 67 patients within the Deterioration of Kidney Allograft Function (DeKAF) Genomics cohort at two transplant centers. CAD was defined as a greater than 25% rise in serum creatinine relative to a 3 month post-transplant baseline. Urine samples from patients with and without CAD were analyzed using 16S V4 bacterial ribosomal DNA sequences. RESULTS Corynebacterium was more prevalent in female and male patients with CAD compared to non-CAD female patients (P = 0.0005). A total 21 distinct Operational Taxonomic Unit (OTUs) were identified as significantly different when comparing CAD and non-CAD patients using Kruskal-Wallis (P < 0.01). A subset analysis of female patients with CAD compared to non-CAD females identified similar differentially abundant OTUs, including the genera Corynebacterium and Staphylococcus (Kruskal-Wallis; P = 0.01; P = 0.004, respectively). Male CAD vs female CAD analysis showed greater abundance of phylum Proteobacteria in males. CONCLUSION There were differences in the urinary microbiome when comparing female and male CAD patients with their female non-CAD counterparts and these differences persisted in the subset analysis limited to female patients only.
Collapse
Affiliation(s)
- Jennifer F. Wu
- Department of Medicine, Nephrology Division, Hennepin Healthcare, Minneapolis, MN
| | | | | | - Dan Knights
- Department of Computer Science and Biotechnology Institute, University of Minnesota, Minneapolis, MN
| | - Bin Guo
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Baolin Wu
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Rory P. Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN
| | | | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL
| | - William S. Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN
| | - Pamala A. Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN
| | - Ajay K. Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare, Minneapolis, MN
- Hennepin Healthcare Research Institute, Minneapolis, MN
| |
Collapse
|
20
|
Liang F, Browne DJ, Gray MJ, Gartlan KH, Smith DD, Barnard RT, Hill GR, Corrie SR, Markey KA. Development of a Multiplexed Microsphere PCR for Culture-Free Detection and Gram-Typing of Bacteria in Human Blood Samples. ACS Infect Dis 2018; 4:837-844. [PMID: 29350524 DOI: 10.1021/acsinfecdis.7b00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bloodstream infection is a significant clinical problem, particularly in vulnerable patient groups such as those undergoing chemotherapy and bone marrow transplantation. Clinical diagnostics for suspected bloodstream infection remain centered around blood culture (highly variable timing, in the order of hours to days to become positive), and empiric use of broad-spectrum antibiotics is therefore employed for patients presenting with febrile neutropenia. Gram-typing provides the first opportunity to target therapy (e.g., combinations containing vancomycin or teicoplanin for Gram-positives; piperacillin-tazobactam or a carbapenem for Gram-negatives); however, current approaches require blood culture. In this study, we describe a multiplexed microsphere-PCR assay with flow cytometry readout, which can distinguish Gram-positive from Gram-negative bacterial DNA in a 3.5 h time period. The combination of a simple assay design (amplicon-dependent release of Gram-type specific Cy3-labeled oligonucleotides) and the Luminex-based readout (for quantifying each specific Cy3-labeled sequence) opens opportunities for further multiplexing. We demonstrate the feasibility of detecting common Gram-positive and Gram-negative organisms after spiking whole bacteria into healthy human blood prior to DNA extraction. Further development of DNA extraction methods is required to reach detection limits comparable to blood culture.
Collapse
Affiliation(s)
- Fang Liang
- Division of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia campus, Brisbane, Queensland 4072, Australia
| | - Daniel J. Browne
- Division of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Megan J. Gray
- Division of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia campus, Brisbane, Queensland 4072, Australia
| | - Kate H. Gartlan
- Division of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- School of Medicine, The University of Queensland, St Lucia campus, Brisbane, Queensland 4072, Australia
| | - David D. Smith
- Division of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Ross T. Barnard
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia campus, Brisbane, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, St Lucia campus, Brisbane, Queensland 4029, Australia
| | - Geoffrey R. Hill
- Division of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- Department of Haematology and Bone Marrow Transplantation, The Royal Brisbane and Women’s Hospital, Bowen Bridge Road & Butterfield Street, Brisbane, Queensland 4029, Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash and QLD nodes, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Kate A. Markey
- Division of Immunology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- School of Medicine, The University of Queensland, St Lucia campus, Brisbane, Queensland 4072, Australia
- Department of Haematology and Bone Marrow Transplantation, The Royal Brisbane and Women’s Hospital, Bowen Bridge Road & Butterfield Street, Brisbane, Queensland 4029, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, St Lucia campus, Brisbane, Queensland 4029, Australia
| |
Collapse
|
21
|
Huang TH, Tzeng YL, Dickson RM. FAST: Rapid determinations of antibiotic susceptibility phenotypes using label-free cytometry. Cytometry A 2018; 93:639-648. [PMID: 29733508 DOI: 10.1002/cyto.a.23370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 11/08/2022]
Abstract
Sepsis, a life-threatening immune response to blood infections (bacteremia), has a ∼30% mortality rate and is the 10th leading cause of US hospital deaths. The typical bacterial loads in adult septic patients are ≤100 bacterial cells (colony forming units, CFU) per ml blood, while pediatric patients exhibit only ∼1000 CFU/ml. Due to the low numbers, bacteria must be propagated through ∼24-hours blood cultures to generate sufficient CFUs for diagnosis and further analyses. Herein, we demonstrate that, unlike other rapid post-blood culture antibiotic susceptibility tests (ASTs), our phenotypic approach can drastically accelerate ASTs for the most common sepsis-causing gram-negative pathogens by circumventing long blood culture-based amplification. For all blood isolates of multi-drug resistant pathogens investigated (Escherichia coli, Klebsiella pneumoniae, and Acinetobacter nosocomialis), effective antibiotic(s) were readily identified within the equivalent of 8 hours from initial blood draw using <0.5 mL of adult blood per antibiotic. These methods should drastically improve patient outcomes by significantly reducing time to actionable treatment information and reduce the incidence of antibiotic resistance. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Tzu-Hsueh Huang
- School of Chemistry & Biochemistry and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400
| | - Yih-Ling Tzeng
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Robert M Dickson
- School of Chemistry & Biochemistry and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400
| |
Collapse
|
22
|
Dalla-Costa LM, Morello LG, Conte D, Pereira LA, Palmeiro JK, Ambrosio A, Cardozo D, Krieger MA, Raboni SM. Comparison of DNA extraction methods used to detect bacterial and yeast DNA from spiked whole blood by real-time PCR. J Microbiol Methods 2017; 140:61-66. [PMID: 28669799 DOI: 10.1016/j.mimet.2017.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022]
Abstract
Sepsis is the leading cause of death in intensive care units (ICUs) worldwide and its diagnosis remains a challenge. Blood culturing is the gold standard technique for blood stream infection (BSI) identification. Molecular tests to detect pathogens in whole blood enable early use of antimicrobials and affect clinical outcomes. Here, using real-time PCR, we evaluated DNA extraction using seven manual and three automated commercially available systems with whole blood samples artificially contaminated with Escherichia coli, Staphylococcus aureus, and Candida albicans, microorganisms commonly associated with BSI. Overall, the commercial kits evaluated presented several technical limitations including long turnaround time and low DNA yield and purity. The performance of the kits was comparable for detection of high microorganism loads (106CFU/mL). However, the detection of lower concentrations was variable, despite the addition of pre-processing treatment to kits without such steps. Of the evaluated kits, the UMD-Universal CE IVD kit generated a higher quantity of DNA with greater nucleic acid purity and afforded the detection of the lowest microbial load in the samples. The inclusion of pre-processing steps with the kit seems to be critical for the detection of microorganism DNA directly from whole blood. In conclusion, future application of molecular techniques will require overcoming major challenges such as the detection of low levels of microorganism nucleic acids amidst the large quantity of human DNA present in samples or differences in the cellular structures of etiological agents that can also prevent high-quality DNA yields.
Collapse
Affiliation(s)
- Libera M Dalla-Costa
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Bacteriology, Universidade Federal do Paraná, Rua Padre Camargo, 280, - 80060-240, Curitiba, Brazil; Faculdades e Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, - 80250-200, Curitiba, Brazil
| | - Luis G Morello
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Functional Genomics, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Rua Professor Algacyr Munhoz Mader, 3775, - 81310-020, Curitiba, Brazil
| | - Danieli Conte
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil
| | - Luciane A Pereira
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil
| | - Jussara K Palmeiro
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Bacteriology, Universidade Federal do Paraná, Rua Padre Camargo, 280, - 80060-240, Curitiba, Brazil
| | - Altair Ambrosio
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Bacteriology, Universidade Federal do Paraná, Rua Padre Camargo, 280, - 80060-240, Curitiba, Brazil
| | - Dayane Cardozo
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil
| | - Marco A Krieger
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Functional Genomics, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Rua Professor Algacyr Munhoz Mader, 3775, - 81310-020, Curitiba, Brazil.
| | - Sonia M Raboni
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Infectious Disease Division, Universidade Federal do Paraná, Rua Gen. Carneiro, 181, - 80060-900, Curitiba, Brazil.
| |
Collapse
|
23
|
Liu CF, Shi XP, Chen Y, Jin Y, Zhang B. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR. J Clin Lab Anal 2017; 32. [PMID: 28512861 DOI: 10.1002/jcla.22256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/17/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. METHODS Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. RESULTS The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. CONCLUSION TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis.
Collapse
Affiliation(s)
- Chang-Feng Liu
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xin-Ping Shi
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yun Chen
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ye Jin
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Bing Zhang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
24
|
Jiang L, Ren H, Zhou H, Qin T, Chen Y. Simultaneous Detection of Nine Key Bacterial Respiratory Pathogens Using Luminex xTAG ® Technology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030223. [PMID: 28241513 PMCID: PMC5369059 DOI: 10.3390/ijerph14030223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 01/26/2023]
Abstract
Early diagnosis and treatment are crucial to the outcome of lower respiratory tract infections (LRTIs). In this study, we developed an assay combining multiplex PCR and Luminex technology (MPLT) for the detection of nine important respiratory bacterial pathogens, which frequently cause LRTIs. These were Streptococcus pneumoniae, Moraxella catarrhalis, Staphylococcus aureus, Streptococcus pyogenes, Haemophilus influenzae, Mycoplasma pneumoniae, Legionella spp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Through the hybridization reaction between two new synthesized multiplex PCR products and MagPlex-TAG Microspheres, we demonstrate that the detection limits for these nine pathogens were as low as 102–103 CFU/mL. Furthermore, 86 clinical bronchoalveolar lavage fluid specimens were used to evaluate this method. Compared with the results of nine simplex real-time PCR reactions targeting these nine pathogens, this MPLT assay demonstrated a high diagnostic accuracy for Streptococcus pneumoniae (sensitivity, 87.5% and specificity, 100%). Furthermore, sensitivity and specificity for the other eight pathogens all attained 100% diagnostic accuracy. In addition, the consistency between MPLT and the nine real-time PCR reactions exceeded 98.8%. In conclusion, MPLT is a high-throughput, labor-saving and reliable method with high sensitivity and specificity for identifying nine respiratory pathogens responsible for LRTIs. Indeed, this assay may be a promising supplement to conventional methods used to diagnose LRTIs.
Collapse
Affiliation(s)
- Luxi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Hongyu Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Tian Qin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Yu Chen
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
25
|
Gosiewski T, Ludwig-Galezowska AH, Huminska K, Sroka-Oleksiak A, Radkowski P, Salamon D, Wojciechowicz J, Kus-Slowinska M, Bulanda M, Wolkow PP. Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method - the observation of DNAemia. Eur J Clin Microbiol Infect Dis 2016; 36:329-336. [PMID: 27771780 PMCID: PMC5253159 DOI: 10.1007/s10096-016-2805-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022]
Abstract
Blood is considered to be a sterile microenvironment, in which bacteria appear only periodically. Previously used methods allowed only for the detection of either viable bacteria with low sensitivity or selected species of bacteria. The Next-Generation Sequencing method (NGS) enables the identification of all bacteria in the sample with their taxonomic classification. We used NGS for the analysis of blood samples from healthy volunteers (n = 23) and patients with sepsis (n = 62) to check whether any bacterial DNA exists in the blood of healthy people and to identify bacterial taxonomic profile in the blood of septic patients. The presence of bacterial DNA was found both in septic and healthy subjects; however, bacterial diversity was significantly different (P = 0.002) between the studied groups. Among healthy volunteers, a significant predominance of anaerobic bacteria (76.2 %), of which most were bacteria of the order Bifidobacteriales (73.0 %), was observed. In sepsis, the majority of detected taxa belonged to aerobic or microaerophilic microorganisms (75.1 %). The most striking difference was seen in the case of Actinobacteria phyla, the abundance of which was decreased in sepsis (P < 0.001) and Proteobacteria phyla which was decreased in the healthy volunteers (P < 0.001). Our research shows that bacterial DNA can be detected in the blood of healthy people and that its taxonomic composition is different from the one seen in septic patients. Detection of bacterial DNA in the blood of healthy people may suggest that bacteria continuously translocate into the blood, but not always cause sepsis; this observation can be called DNAemia.
Collapse
Affiliation(s)
- T Gosiewski
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - A H Ludwig-Galezowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7C Kopernika Str., 31-034, Krakow, Poland
| | - K Huminska
- Genomic Laboratory, DNA Research Center, Poznan, Poland.,Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - A Sroka-Oleksiak
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - P Radkowski
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7C Kopernika Str., 31-034, Krakow, Poland
| | - D Salamon
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | | | | | - M Bulanda
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - P P Wolkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7C Kopernika Str., 31-034, Krakow, Poland.
| |
Collapse
|
26
|
Hou HW, Bhattacharyya RP, Hung DT, Han J. Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. LAB ON A CHIP 2015; 15:2297-307. [PMID: 25882432 PMCID: PMC4437799 DOI: 10.1039/c5lc00311c] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Detection of bacteria in bloodstream infections and their antibiotic susceptibility patterns is critical to guide therapeutic decision-making for optimal patient care. Current culture-based assays are too slow (>48 h), leading to excessive up-front use of broad-spectrum antibiotics and/or incorrect antibiotic choices due to resistant bacteria, each with deleterious consequences for patient care and public health. To approach this problem, we describe a method to rapidly isolate bacteria from whole blood using inertial microfluidics and directly determine pathogen identity and antibiotic susceptibility with hybridization-based RNA detection. Using the principle of Dean flow fractionation, bacteria are separated from host blood cells in a label-free separation method with efficient recovery of even low abundance bacteria. Ribosomal RNA detection can then be applied for direct identification of low abundance pathogens (~100 per mL) from blood without culturing or enzymatic amplification. Messenger RNA detection of antibiotic-responsive transcripts after brief drug exposure permits rapid susceptibility determination from bacteria with minimal culturing (~10(5) per mL). This unique coupling of microfluidic cell separation with RNA-based molecular detection techniques represents significant progress towards faster diagnostics (~8 hours) to guide antibiotic therapy.
Collapse
Affiliation(s)
- Han Wei Hou
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roby P. Bhattacharyya
- The Broad Institute, Cambridge, MA 02142, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Deborah T. Hung
- The Broad Institute, Cambridge, MA 02142, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA
- To whom correspondence may be addressed: Jongyoon Han (), Deborah T. Hung ()
| | - Jongyoon Han
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- To whom correspondence may be addressed: Jongyoon Han (), Deborah T. Hung ()
| |
Collapse
|
27
|
Berasaluce A, Matthys L, Mujika J, Antoñana-Díez M, Valero A, Agirregabiria M. Bead beating-based continuous flow cell lysis in a microfluidic device. RSC Adv 2015. [DOI: 10.1039/c5ra01251a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This paper describes a bead beating-based miniaturized cell lysis device that works in continuous flow allowing the analysis of large volumes of samples without previous treatment.
Collapse
Affiliation(s)
- A. Berasaluce
- CIC-Microgune
- Polo Garaia
- 20500 Arrasate
- Spain
- IK4-Ikerlan
| | - L. Matthys
- IK4-Ikerlan
- Polo Garaia
- 20500 Arrasate
- Spain
| | - J. Mujika
- IK4-Ikerlan
- Polo Garaia
- 20500 Arrasate
- Spain
| | | | - A. Valero
- CIC-Microgune
- Polo Garaia
- 20500 Arrasate
- Spain
| | | |
Collapse
|
28
|
Comparison of nested, multiplex, qPCR; FISH; SeptiFast and blood culture methods in detection and identification of bacteria and fungi in blood of patients with sepsis. BMC Microbiol 2014; 14:313. [PMID: 25551203 PMCID: PMC4302608 DOI: 10.1186/s12866-014-0313-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/26/2014] [Indexed: 01/08/2023] Open
Abstract
Background Microbiological diagnosis of sepsis relies primarily on blood culture data. This study compares four diagnostic methods, i.e. those developed by us: nested, multiplex, qPCR (qPCR) and FISH with commercial methods: SeptiFast (Roche) (SF) and BacT/ALERT® 3D blood culture system (bioMérieux). Blood samples were derived from adult patients with clinical symptoms of sepsis, according to SIRS criteria, hospitalized in the Intensive Care Unit. Results Using qPCR, FISH, SF, and culture, microbial presence was found in 71.8%, 29.6%, 25.3%, and 36.6% of samples, respectively. It was demonstrated that qPCR was significantly more likely to detect microorganisms than the remaining methods; qPCR confirmed the results obtained with the SF kit in all cases wherein bacteria were detected with simultaneous confirmation of Gram-typing. All data collected through the FISH method were corroborated by qPCR. Conclusions The qPCR and FISH methods described in this study may constitute alternatives to blood culture and to the few existing commercial molecular assays since they enable the detection of the majority of microbial species, and the qPCR method allows their identification in a higher number of samples than the SF test. FISH made it possible to show the presence of microbes in a blood sample even before its culture.
Collapse
|
29
|
Gosiewski T, Jurkiewicz-Badacz D, Sroka A, Brzychczy-Włoch M, Bulanda M. A novel, nested, multiplex, real-time PCR for detection of bacteria and fungi in blood. BMC Microbiol 2014; 14:144. [PMID: 24893651 PMCID: PMC4049433 DOI: 10.1186/1471-2180-14-144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022] Open
Abstract
Background The study describes the application of the PCR method for the simultaneous detection of DNA of Gram-negative bacteria, Gram-positive bacteria, yeast fungi and filamentous fungi in blood and, thus, a whole range of microbial etiological agents that may cause sepsis. Material for the study was sterile blood inoculated with four species of microorganisms (Escherichia coli, Staphylococcus aureus, Candida albicans and Aspergillus fumigatus) and blood collected from patients with clinical symptoms of sepsis. The developed method is based on nested-multiplex real-time PCR . Results Analysis of the obtained data shows that sensitivity of nested-multiplex real-time PCR remained at the level of 101 CFU/ml for each of the four studied species of microorganisms and the percentage of positive results of the examined blood samples from the patients was 70% and 19% for the microbiological culture method. The designed primers correctly typed the studied species as belonging to the groups of Gram-positive bacteria, Gram-negative bacteria, yeast fungi, or filamentous fungi. Conclusions Results obtained by us indicated that the designed PCR methods: (1) allow to detect bacteria in whole blood samples, (2) are much more sensitive than culture method, (3) allow differentiation of the main groups of microorganisms within a few hours.
Collapse
Affiliation(s)
- Tomasz Gosiewski
- Department of Bacteriology, Microbial Ecology and Parasitology, Chair of Microbiology Jagiellonian University Medical College, Czysta 18 Str, 31-121 Kraków, Poland.
| | | | | | | | | |
Collapse
|