1
|
Rijal A, Johnson ET, Curtis PD. Upstream CtrA-binding sites both induce and repress pilin gene expression in Caulobacter crescentus. BMC Genomics 2024; 25:703. [PMID: 39030481 PMCID: PMC11264516 DOI: 10.1186/s12864-024-10533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024] Open
Abstract
Pili are bacterial surface structures important for surface adhesion. In the alphaproteobacterium Caulobacter crescentus, the global regulator CtrA activates transcription of roughly 100 genes, including pilA which codes for the pilin monomer that makes up the pilus filament. While most CtrA-activated promoters have a single CtrA-binding site at the - 35 position and are induced at the early to mid-predivisional cell stage, the pilA promoter has 3 additional upstream CtrA-binding sites and it is induced at the late predivisional cell stage. Reporter constructs where these additional sites were disrupted by deletion or mutation led to increased activity compared to the WT promoter. In synchronized cultures, these mutations caused pilA transcription to occur approximately 20 min earlier than WT. The results suggested that the site overlapping the - 35 position drives pilA gene expression while the other upstream CtrA-binding sites serve to reduce and delay expression. EMSA experiments showed that the - 35 Site has lower affinity for CtrA∼P compared to the other sites, suggesting binding site affinity may be involved in the delay mechanism. Mutating the upstream inhibitory CtrA-binding sites in the pilA promoter caused significantly higher numbers of pre-divisional cells to express pili, and phage survival assays showed this strain to be significantly more sensitive to pilitropic phage. These results suggest that pilA regulation evolved in C. crescentus to provide an ecological advantage within the context of phage infection.
Collapse
Affiliation(s)
- Anurag Rijal
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA
| | - Eli T Johnson
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA.
| |
Collapse
|
2
|
Lin WH, Tsai TS. Comparisons of the Oral Microbiota from Seven Species of Wild Venomous Snakes in Taiwan Using the High-Throughput Amplicon Sequencing of the Full-Length 16S rRNA Gene. BIOLOGY 2023; 12:1206. [PMID: 37759605 PMCID: PMC10525742 DOI: 10.3390/biology12091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
A venomous snake's oral cavity may harbor pathogenic microorganisms that cause secondary infection at the wound site after being bitten. We collected oral samples from 37 individuals belonging to seven species of wild venomous snakes in Taiwan, including Naja atra (Na), Bungarus multicinctus (Bm), Protobothrops mucrosquamatus (Pm), Trimeresurus stejnegeri (Ts), Daboia siamensis (Ds), Deinagkistrodon acutus (Da), and alpine Trimeresurus gracilis (Tg). Bacterial species were identified using full-length 16S rRNA amplicon sequencing analysis, and this is the first study using this technique to investigate the oral microbiota of multiple Taiwanese snake species. Up to 1064 bacterial species were identified from the snake's oral cavities, with 24 pathogenic and 24 non-pathogenic species among the most abundant ones. The most abundant oral bacterial species detected in our study were different from those found in previous studies, which varied by snake species, collection sites, sampling tissues, culture dependence, and analysis methods. Multivariate analysis revealed that the oral bacterial species compositions in Na, Bm, and Pm each were significantly different from the other species, whereas those among Ts, Ds, Da, and Tg showed fewer differences. Herein, we reveal the microbial diversity in multiple species of wild snakes and provide potential therapeutic implications regarding empiric antibiotic selection for wildlife medicine and snakebite management.
Collapse
Affiliation(s)
- Wen-Hao Lin
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
3
|
Berrios L. The genus Caulobacter and its role in plant microbiomes. World J Microbiol Biotechnol 2022; 38:43. [PMID: 35064419 DOI: 10.1007/s11274-022-03237-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Recent omics approaches have revealed the prevalent microbial taxa that constitute the microbiome of various plant species. Across global scales and environmental conditions, strains belonging to the bacterial genus Caulobacter have consistently been found in association with various plant species. Aligned with agroecological relevance and biotechnological advances, many scientific communications have demonstrated that several Caulobacter strains (spanning several Caulobacter species) harbor the potential to enhance plant biomass for various plant species ranging from Arabidopsis to Citrullus and Zea mays. In the past several years, co-occurrence data have driven mechanistically resolved communications about select Caulobacter-plant interactions. Given the long-standing history of Caulobacter as a model organism for cell cycle regulation, genetic studies, and the prevalence of Caulobacter species in various plant microbiomes, the genus Caulobacter offers researchers a unique opportunity to leverage for investigating plant-microbe interactions and realizing targeted biotechnological applications. In this review, recent developments regarding Caulobacter-plant interactions are presented in terms of model utility for future biotechnological investigations.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Ely B. Genomic GC content drifts downward in most bacterial genomes. PLoS One 2021; 16:e0244163. [PMID: 34038432 PMCID: PMC8153448 DOI: 10.1371/journal.pone.0244163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
In every kingdom of life, GC->AT transitions occur more frequently than any other type of mutation due to the spontaneous deamination of cytidine. In eukaryotic genomes, this slow loss of GC base pairs is counteracted by biased gene conversion which increases genomic GC content as part of the recombination process. However, this type of biased gene conversion has not been observed in bacterial genomes, so we hypothesized that GC->AT transitions cause a reduction of genomic GC content in prokaryotic genomes on an evolutionary time scale. To test this hypothesis, we used a phylogenetic approach to analyze triplets of closely related genomes representing a wide range of the bacterial kingdom. The resulting data indicate that genomic GC content is drifting downward in bacterial genomes where GC base pairs comprise 40% or more of the total genome. In contrast, genomes containing less than 40% GC base pairs have fewer opportunities for GC->AT transitions to occur so genomic GC content is relatively stable or actually increasing. It should be noted that this observed change in genomic GC content is the net change in shared parts of the genome and does not apply to parts of the genome that have been lost or acquired since the genomes being compared shared common ancestor. However, a more detailed analysis of two Caulobacter genomes revealed that the acquisition of mobile elements by the two genomes actually reduced the total genomic GC content as well.
Collapse
Affiliation(s)
- Bert Ely
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Moore GM, Gitai Z. Both clinical and environmental Caulobacter species are virulent in the Galleria mellonella infection model. PLoS One 2020; 15:e0230006. [PMID: 32163465 PMCID: PMC7067423 DOI: 10.1371/journal.pone.0230006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
The Caulobacter genus, including the widely-studied model organism Caulobacter crescentus, has been thought to be non-pathogenic and thus proposed as a bioengineering vector for various environmental remediation and medical purposes. However, Caulobacter species have been implicated as the causative agents of several hospital-acquired infections, raising the question of whether these clinical isolates represent an emerging pathogenic species or whether Caulobacters on whole possess previously-unappreciated virulence capability. Given the proposed environmental and medical applications for C. crescentus, understanding the potential pathogenicity of this bacterium is crucial. Consequently, we sequenced a clinical Caulobacter isolate to determine if it has acquired novel virulence determinants. We found that the clinical isolate represents a new species, Caulobacter mirare that, unlike C. crescentus, grows well in standard clinical culture conditions. C. mirare phylogenetically resembles both C. crescentus and the related C. segnis, which was also thought to be non-pathogenic. The similarity to other Caulobacters and lack of obvious pathogenesis markers suggested that C. mirare is not unique amongst Caulobacters and that consequently other Caulobacters may also have the potential to be virulent. We tested this hypothesis by characterizing the ability of Caulobacters to infect the model animal host Galleria mellonella. In this context, two different lab strains of C. crescentus proved to be as pathogenic as C. mirare, while lab strains of E. coli were non-pathogenic. Further characterization showed that Caulobacter pathogenesis in the Galleria model is mediated by lipopolysaccharide (LPS), and that differences in LPS chemical composition across species could explain their differential toxicity. Taken together, our findings suggest that many Caulobacter species can be virulent in specific contexts and highlight the importance of broadening our methods for identifying and characterizing potential pathogens.
Collapse
Affiliation(s)
- Gabriel M. Moore
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
6
|
Bustamante D, Segarra S, Tortajada M, Ramón D, del Cerro C, Auxiliadora Prieto M, Iglesias JR, Rojas A. In silico prospection of microorganisms to produce polyhydroxyalkanoate from whey: Caulobacter segnis DSM 29236 as a suitable industrial strain. Microb Biotechnol 2019; 12:487-501. [PMID: 30702206 PMCID: PMC6465232 DOI: 10.1111/1751-7915.13371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters of microbial origin that can be synthesized by prokaryotes from noble sugars or lipids and from complex renewable substrates. They are an attractive alternative to conventional plastics because they are biodegradable and can be produced from renewable resources, such as the surplus of whey from dairy companies. After an in silico screening to search for ß-galactosidase and PHA polymerase genes, several bacteria were identified as potential PHA producers from whey based on their ability to hydrolyse lactose. Among them, Caulobacter segnis DSM 29236 was selected as a suitable strain to develop a process for whey surplus valorization. This microorganism accumulated 31.5% of cell dry weight (CDW) of poly(3-hydroxybutyrate) (PHB) with a titre of 1.5 g l-1 in batch assays. Moreover, the strain accumulated 37% of CDW of PHB and 9.3 g l-1 in fed-batch mode of operation. This study reveals this species as a PHA producer and experimentally validates the in silico bioprospecting strategy for selecting microorganisms for waste re-valorization.
Collapse
Affiliation(s)
- Daniel Bustamante
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Silvia Segarra
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Marta Tortajada
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Daniel Ramón
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Carlos del Cerro
- Microbial and Plant Biotechnology DepartmentCentro de Investigaciones BiológicasMadridSpain
- Present address:
National Renewable Energy Laboratory (NREL)15013 Denver West ParkwayGoldenCO80401USA
| | | | - José Ramón Iglesias
- Corporación Alimentaria Peñasanta (CAPSA) Polígono Industrial0, 33199Granda, AsturiasSpain
| | - Antonia Rojas
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| |
Collapse
|
7
|
Wilson K, Ely B. Analyses of four new Caulobacter Phicbkviruses indicate independent lineages. J Gen Virol 2019; 100:321-331. [PMID: 30657445 DOI: 10.1099/jgv.0.001218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages with genomes larger than 200 kbp are considered giant phages, and the giant Phicbkviruses are the most frequently isolated Caulobacter crescentus phages. In this study, we compare six bacteriophage genomes that differ from the genomes of the majority of Phicbkviruses. Four of these genomes are much larger than those of the rest of the Phicbkviruses, with genome sizes that are more than 250 kbp. A comparison of 16 Phicbkvirus genomes identified a 'core genome' of 69 genes that is present in all of these Phicbkvirus genomes, as well as shared accessory genes and genes that are unique for each phage. Most of the core genes are clustered into the regions coding for structural proteins or those involved in DNA replication. A phylogenetic analysis indicated that these 16 CaulobacterPhicbkvirus genomes are related, but they represent four distinct branches of the Phicbkvirus genomic tree with distantly related branches sharing little nucleotide homology. In contrast, pairwise comparisons within each branch of the phylogenetic tree showed that more than 80 % of the entire genome is shared among phages within a group. This conservation of the genomes within each branch indicates that horizontal gene transfer events between the groups are rare. Therefore, the Phicbkvirus genus consists of at least four different phylogenetic branches that are evolving independently from one another. One of these branches contains a 27-gene inversion relative to the other three branches. Also, an analysis of the tRNA genes showed that they are relatively mobile within the Phicbkvirus genus.
Collapse
Affiliation(s)
- Kiesha Wilson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Bert Ely
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Gottschick C, Deng ZL, Vital M, Masur C, Abels C, Pieper DH, Rohde M, Mendling W, Wagner-Döbler I. Treatment of biofilms in bacterial vaginosis by an amphoteric tenside pessary-clinical study and microbiota analysis. MICROBIOME 2017; 5:119. [PMID: 28903767 PMCID: PMC5598074 DOI: 10.1186/s40168-017-0326-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacterial vaginosis (BV) is the most common vaginal syndrome among women in their reproductive years. It is associated with an increased risk of acquiring sexually transmitted infections and complications like preterm labor. BV is characterized by a high recurrence rate for which biofilms frequently found on vaginal epithelial cells may be a reason. RESULTS Here, we report a controlled randomized clinical trial that tested the safety and effectiveness of a newly developed pessary containing an amphoteric tenside (WO3191) to disrupt biofilms after metronidazole treatment of BV. Pessaries containing lactic acid were provided to the control group, and microbial community composition was determined via Illumina sequencing of the V1-V2 region of the 16S rRNA gene. The most common community state type (CST) in healthy women was characterized by Lactobacillus crispatus. In BV, diversity was high with communities dominated by either Lactobacillus iners, Prevotella bivia, Sneathia amnii, or Prevotella amnii. Women with BV and proven biofilms had an increased abundance of Sneathia sanguinegens and a decreased abundance of Gardnerella vaginalis. Following metronidazole treatment, clinical symptoms cleared, Nugent score shifted to Lactobacillus dominance, biofilms disappeared, and diversity (Shannon index) was reduced in most women. Most of the patients responding to therapy exhibited a L. iners CST. Treatment with WO 3191 reduced biofilms but did not prevent recurrence. Women with high diversity after antibiotic treatment were more likely to develop recurrence. CONCLUSIONS Stabilizing the low diversity healthy flora by promoting growth of health-associated Lactobacillus sp. such as L. crispatus may be beneficial for long-term female health. TRIAL REGISTRATION ClinicalTrials.gov NCT02687789.
Collapse
Affiliation(s)
- Cornelia Gottschick
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Zhi-Luo Deng
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marius Vital
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Clarissa Masur
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Sudbrackstrasse 56, 33611 Bielefeld, Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Sudbrackstrasse 56, 33611 Bielefeld, Germany
| | - Dietmar H. Pieper
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Werner Mendling
- German Center for Infections in Gynecology and Obstetrics, Wuppertal, Germany
| | - Irene Wagner-Döbler
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| |
Collapse
|
9
|
Scott D, Ely B. Conservation of the Essential Genome Among Caulobacter and Brevundimonas Species. Curr Microbiol 2016; 72:503-10. [PMID: 26750121 PMCID: PMC4829470 DOI: 10.1007/s00284-015-0964-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
When the genomes of Caulobacter isolates NA1000 and K31 were compared, numerous genome rearrangements were observed. In contrast, similar comparisons of closely related species of other bacterial genera revealed nominal rearrangements. A phylogenetic analysis of the 16S rRNA indicated that K31 is more closely related to Caulobacter henricii CB4 than to other known Caulobacters. Therefore, we sequenced the CB4 genome and compared it to all of the available Caulobacter genomes to study genome rearrangements, discern the conservation of the NA1000 essential genome, and address concerns about using 16S rRNA to group Caulobacter species. We also sequenced the novel bacteria, Brevundimonas DS20, a representative of the genus most closely related to Caulobacter and used it as part of an outgroup for phylogenetic comparisons. We expected to find that there would be fewer rearrangements when comparing more closely related Caulobacters. However, we found that relatedness was not correlated with the amount of observed "genome scrambling." We also discovered that nearly all of the essential genes previously identified for C. crescentus are present in the other Caulobacter genomes and in the Brevundimonas genomes as well. However, a few of these essential genes were only found in NA1000, and some were missing in a combination of one or more species, while other proteins were 100 % identical across species. Also, phylogenetic comparisons of highly conserved genomic regions revealed clades similar to those identified by 16S rRNA-based phylogenies, verifying that 16S rRNA sequence comparisons are a valid method for grouping Caulobacters.
Collapse
Affiliation(s)
- Derrick Scott
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| | - Bert Ely
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
10
|
Ash K, Brown T, Watford T, Scott LE, Stephens C, Ely B. A comparison of the Caulobacter NA1000 and K31 genomes reveals extensive genome rearrangements and differences in metabolic potential. Open Biol 2015; 4:rsob.140128. [PMID: 25274120 PMCID: PMC4221894 DOI: 10.1098/rsob.140128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The genus Caulobacter is found in a variety of habitats and is known for its ability to thrive in low-nutrient conditions. K31 is a novel Caulobacter isolate that has the ability to tolerate copper and chlorophenols, and can grow at 4°C with a doubling time of 40 h. K31 contains a 5.5 Mb chromosome that codes for more than 5500 proteins and two large plasmids (234 and 178 kb) that code for 438 additional proteins. A comparison of the K31 and the Caulobacter crescentus NA1000 genomes revealed extensive rearrangements of gene order, suggesting that the genomes had been randomly scrambled. However, a careful analysis revealed that the distance from the origin of replication was conserved for the majority of the genes and that many of the rearrangements involved inversions that included the origin of replication. On a finer scale, numerous small indels were observed. K31 proteins involved in essential functions shared 80–95% amino acid sequence identity with their C. crescentus homologues, while other homologue pairs tended to have lower levels of identity. In addition, the K31 chromosome contains more than 1600 genes with no homologue in NA1000.
Collapse
Affiliation(s)
- Kurt Ash
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Theta Brown
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Tynetta Watford
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - LaTia E Scott
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Craig Stephens
- Biology Department, Santa Clara University, Santa Clara, CA 95053, USA
| | - Bert Ely
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|