1
|
Xie C, Shi G, Gao Q, Zhang Y, Fan S, Xu X. Efficient Biological Decolorization of Malachite Green by Deinococcus wulumuqiensis R12: Process Optimization and Degradation Pathway Analysis. Curr Microbiol 2025; 82:218. [PMID: 40153029 DOI: 10.1007/s00284-025-04192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/15/2025] [Indexed: 03/30/2025]
Abstract
Malachite green (MG) is a toxic triphenylmethane dye widely used in industry, as well as a controversial antimicrobial in aquaculture, leading to environmental concerns. In this study, the conditions for the decolorization of MG by Deinococcus wulumuqiensis R12 were optimized. Under the optimized conditions, a degradation efficiency of 99.30% was achieved for 200 mg/L MG within 30 min, with an initial biomass concentration of 5.5 g/L at 32 °C and pH 5.0. When the initial concentration of MG was increased to 1 g/L, the degradation efficiency surpassed 97% after 2.5 h. Analytical techniques, including UV-VIS, FTIR, GC-MS, and LC-MS analyses revealed that the degradation products included desmethyl-malachite green, di-desmethyl-malachite green, 4-(dimethylamino)benzophenone, and 4-(methylamino)benzophenone, indicating that the MG degradation mechanism of R12 was based on oxidation and demethylation processes. Furthermore, microbial assays confirmed that the byproducts of MG degradation by R12 are much less toxic than the parent compound, indicating the potential of Deinococcus wulumuqiensis R12 as an effective bioremediation agent for MG-contaminated environments.
Collapse
Affiliation(s)
- Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, 199 Huayang West Road, Yangzhou, 225127, Jiangsu, China
| | - Guangjian Shi
- School of Chemical Engineering, Yangzhou Polytechnic Institute, 199 Huayang West Road, Yangzhou, 225127, Jiangsu, China
| | - Qing Gao
- School of Chemical Engineering, Yangzhou Polytechnic Institute, 199 Huayang West Road, Yangzhou, 225127, Jiangsu, China
| | - Yujie Zhang
- School of Chemical Engineering, Yangzhou Polytechnic Institute, 199 Huayang West Road, Yangzhou, 225127, Jiangsu, China
| | - Siyu Fan
- School of Chemical Engineering, Yangzhou Polytechnic Institute, 199 Huayang West Road, Yangzhou, 225127, Jiangsu, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| |
Collapse
|
2
|
Pandey A, Kumar S, Bithel N, Kumar S, Mir MA. Sustainable biodegradation of malachite green dye by novel non-pathogenic Pseudomonas aeruginosa ED24. World J Microbiol Biotechnol 2025; 41:44. [PMID: 39841300 DOI: 10.1007/s11274-025-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries. The biochemical and molecular characterization of the bacterial strain showed the resemblance of most potent strain ED24 as Pseudomonas aeruginosa, which showed effective bioremediation potential against the MG dye. During response surface analysis (RSM), best MG degradation conditions have been observed at pH 7.0, 37 °C, 48 h, and 200 mg/L dye concentration, with highest degradation efficiency of 96.56 ± 0.8622 percent. Subsequently, supplementing various carbon and nitrogen sources increases MG decolorization by 1 to 2%, with beef extract (97.23%), sodium nitrate (97.46%), and maltose (98.67%). FT-IR results revealed the disappearance of distinct peaks, namely, 3328.275 cm-1, 2102.842 cm-1, 1101.140 cm-1, and 559.04 cm-1 from MG, and the formation of major intermediate compounds like leucomalachite green, benzoic acid, diacetamide, benzeneacetic acid, hexyl ester, ethyl 4-acetoxy butanoate, butanoic acid, and 2-methyl in GC-MS analysis of degraded dye sample confirms the biodegradation by bacterial strain ED24. The phytotoxicity studies on mung bean seeds confirmed MG dye toxicity reduction up to 67.53%, 54.16%, and 67.53% in biomass accumulation, root, and shoot lengths, respectively. Also, the microbial toxicity of MG was completely reduced on soil microflora Bacillus flexus, Stenotrophomonas maltophilia, Escherichia coli, Staphylococcus aureus, and Alternaria spp. The dual mitigation, both in microbial and plant systems, indicates the strong remediation potential of P. aeruginosa ED24 to break down MG dye ecologically sustainably.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Sachin Kumar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Navneet Bithel
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India
| | - Sandeep Kumar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India
| | - M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia
| |
Collapse
|
3
|
Ghosh N, Biswas AR, Chakraborty A, Ganguli A. Mixed-species Pseudomonas biofilms: a novel and sustainable strategy for malachite green dye decolorization and detoxification. Folia Microbiol (Praha) 2025:10.1007/s12223-024-01238-0. [PMID: 39747794 DOI: 10.1007/s12223-024-01238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
This study investigated the application of mixed biofilms formed by two Pseudomonas strains (NAA22 and NAA23) for bio-decolorization of malachite green (MG) dye. The isolated strains displayed biofilm formation and MG decolorization capabilities. Mixed biofilms exhibited significantly greater biofilm formation and MG decolorization (94.3%) compared to individual strains, suggesting synergistic interactions. This decolorization efficiency surpassed previously reported values for single strain decolorization. The mixed biofilms tolerated a broad range of temperatures (20-40 °C) and pH (5-9), with optimal decolorization at neutral or slightly acidic conditions (pH7.0). Enzyme analysis revealed laccase, NADH-DCIP reductase, and azoreductase as key contributors to MG decolorization, with significantly higher activity in mixed biofilms. Importantly, the bio-decolorization process transformed MG into non-phytotoxic compounds, demonstrated by seed germination and growth assays. These findings propose a promising and environmentally safe approach for MG bioremediation using mixed Pseudomonas biofilms.
Collapse
Affiliation(s)
- Nabanita Ghosh
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arup Ratan Biswas
- Department of Chemistry, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arindam Chakraborty
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
4
|
Pandey A, Pathak VM, Navneet, Rajput M. A feasible approach for azo-dye (methyl orange) degradation by textile effluent isolate Serratia marcescens ED1 strain for water sustainability: AST identification, degradation optimization and pathway hypothesis. Heliyon 2024; 10:e32339. [PMID: 38961949 PMCID: PMC11219335 DOI: 10.1016/j.heliyon.2024.e32339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024] Open
Abstract
Methyl orange (MO) is a dye commonly used in the textile industry that harms aquatic life, soil and human health due to its potential as an environmental pollutant. The present study describes the dye degradation ability of Serratia marcescens strain ED1 isolated from textile effluent and characterized by 16S rRNA gene sequence analysis. The laccase property of bacterial isolate was confirmed qualitatively. The effects of various factors (pH, temperature, incubation time, and dye concentration) were evaluated using Response Surface Methodology (RSM). The maximum dye (MO) degradation was 81.02 % achieved at 37 °C temperature and 7.0 pH with 200 mg/L dye concentration after 48 h of incubation. The beef extract, ammonium nitrate and fructose supplementation showed better response during bioremediation among the different carbon and nitrogen sources. The degree of pathogenicity was confirmed through the simple plate-based method, and an antibiotic resistance profile was used to check the low-risk rate of antibiotic resistance. However, the fate and extinct of degraded MO products were analysed through UV-Vis spectroscopy, FT-IR, and GC-MS analysis to confirm the biodegradation potential of the bacterial strain ED1 and intermediate metabolites were identified to propose metabolic pathway. The phytotoxicity study on Vigna radiata L. seeds confirmed nontoxic effect of degraded MO metabolites and indicates promising degradation potential of S. marcescens strain ED1 to successfully remediate MO dye ecologically sustainably.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Vinay Mohan Pathak
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
- Department of Microbiology, University of Delhi, New Delhi, 110021, India
| | - Navneet
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Minakshi Rajput
- Department of Biotechnology, School of Applied and Life Sciences (SALS) Uttaranchal University, Dehradun, 248007, India
| |
Collapse
|
5
|
El-Bendary MA, Fawzy ME, Abdelraof M, El-Sedik M, Allam MA. Efficient malachite green biodegradation by Pseudomonas plecoglossicide MG2: process optimization, application in bioreactors, and degradation pathway. Microb Cell Fact 2023; 22:192. [PMID: 37735405 PMCID: PMC10512475 DOI: 10.1186/s12934-023-02194-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Microbial degradation of synthetic dyes is considered a promising green dye detoxification, cost-effective and eco-friendly approach. A detailed study on the decolorization and degradation of malachite green dye (MG) using a newly isolated Pseudomonas plecoglossicide MG2 was carried out. Optimization of MG biodegradation by the tested organism was investigated by using a UV-Vis spectrophotometer and the resultant degraded products were analyzed by liquid chromatography-mass spectrometry and FTIR. Also, the cytotoxicity of MG degraded products was studied on a human normal retina cell line. The optimum conditions for the significant maximum decolorization of MG dye (90-93%) by the tested organism were pH 6-7, inoculum size 4-6%, and incubation temperature 30-35 °C, under static and aerobic conditions. The performance of Pseudomonas plecoglossicide MG2 grown culture in the bioreactors using simulated wastewater was assessed. MG degradation (99% at 100 and 150 mg MG/l at an optimal pH) and COD removal (95.95%) by using Pseudomonas plecoglossicide MG2 culture were the best in the tested culture bioreactor in comparison with that in activated sludge or tested culture-activated sludge bioreactors.The FTIR spectrum of the biodegraded MG displayed significant spectral changes, especially in the fingerprint region 1500-500 as well as disappearance of some peaks and appearance of new peaks. Twelve degradation intermediates were identified by LC-MS. They were desmalachite green, didesmalachite green, tetradesmalachite green, 4-(diphenylmethyl)aniline, malachite green carbinol, bis[4-(dimethylamino)phenyl]methanone, [4-(dimethylamino)phenyl][4-(methyl-amino)phenyl]methanone, bis[4-(methylamino)phenyl]methanone, (4-amino- phenyl)[4-(methylamino)phenyl]methanone, bis(4-amino phenyl)methanone, (4-amino phenyl)methanone, and 4-(dimathylamino)benzaldehyde. According to LC-MS and FTIR data, two pathways for MG degradation by using Pseudomonas plecoglossicide MG2 were proposed. MG showed cytotoxicity to human normal retina cell line with LC50 of 28.9 µg/ml and LC90 at 79.7 µg/ml. On the other hand, MG bio-degraded products showed no toxicity to the tested cell line. Finally, this study proved that Pseudomonas plecoglossicide MG2 could be used as an efficient, renewable, eco-friendly, sustainable and cost-effective biotechnology tool for the treatment of dye wastewater effluent.
Collapse
Affiliation(s)
- Magda A El-Bendary
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 Bohouth St., Dokki, Giza, Egypt.
| | - Mariam E Fawzy
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 Bohouth st., Dokki, Giza, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 Bohouth St., Dokki, Giza, Egypt
| | - Mervat El-Sedik
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 Bohouth st., Dokki, Giza, Egypt
| | - Mousa A Allam
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 Bohouth st., Dokki, Giza, Egypt
| |
Collapse
|
6
|
Aghapour AA, Alizadeh N, Khorsandi H. Biological degradation and mineralization of tetracycline antibiotic using SBR equipped with a vertical axially rotating biological bed (SBR-VARB). Biodegradation 2023; 34:325-340. [PMID: 36840888 PMCID: PMC10191986 DOI: 10.1007/s10532-023-10018-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
Tetracycline (TC) is a widely used antibiotic with a complex aromatic chemical structure and is highly resistant to biodegradation. In this study, an SBR equipped with a vertical axially rotating biological bed (SBR-VARB) was used for the biodegradation and mineralization of TC. SBR-VARB showed high efficiency in removing TC (97%), total phenolic compounds (TP) (95%), and COD (85%) under optimal operating conditions (TC = 50 mg/L, HRT = 1.75 d, and OLR = 36 g COD/m3 d). The SBR-VARB was able to treat higher concentrations of TC in shorter HRT than reported in previous studies. The contribution of VARB to improve SBR efficiency in removing TC, TP, and COD was 16, 36, and 48%, respectively. Intermediate compounds formed during the biodegradation of TC were identified using GC-MS under the optimal operating conditions of the bioreactor. These are mainly organic compounds with linear chemical structures. Based on the complete biodegradation of TC under the optimal operating conditions of the bioreactor, 93% and 36% of the chlorine and nitrogen atoms in the chemical structure of TC appeared in the wastewater, respectively. According to the sequence analysis of 16SrDNA, Pseudomonas sp., Kocuria Polaris, and Staphylococcus sp. were identified in the biofilm of VARB and the suspended biomass of the bioreactor. Therefore, SBR-VARB showed high efficiency in the biodegradation and mineralization of TC and can be used as a suitable option for treating wastewater containing antibiotics and other toxic compounds.
Collapse
Affiliation(s)
- Ali Ahmad Aghapour
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran.
| | - Nazila Alizadeh
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Khorsandi
- Department of Environmental Health Engineering, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Santal AR, Rani R, Kumar A, Sharma JK, Singh NP. Biodegradation and detoxification of textile dyes using a novel bacterium Bacillus sp. AS2 for sustainable environmental cleanup. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ritu Rani
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anil Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | | | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
8
|
Liu J, Wang G, Li B, Ma X, Hu Y, Cheng H. A high-efficiency mediator-free Z-scheme Bi 2MoO 6/AgI heterojunction with enhanced photocatalytic performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147227. [PMID: 33905930 DOI: 10.1016/j.scitotenv.2021.147227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
A high-efficiency Z-scheme Bi2MoO6/AgI heterojunction was designed and fabricated via in situ growth of AgI on Bi2MoO6. Its photocatalytic activity was investigated with the degradation of malachite green (MG). After 40 min of visible light irradiation, near complete degradation of MG (20 mg/L) occurred when BA11 (Bi2MoO6:AgI = 1:1, 2.0 g/L) was present, while only 29.0% and 49.7% of the MG could be degraded in the presence of Bi2MoO6 and AgI, respectively. The excellent photocatalytic activity of BA11 results from strong visible light absorption and the low recombination efficiency of photogenerated electron-hole pairs induced by the formation of heterojunction. Density function theory (DFT) calculations revealed that the formation of built-in electric field at the interface between Bi2MoO6 and AgI facilitates the effective separation and transfer of photogenerated charge carriers. Results of reuse experiments indicated that the heterostructured photocatalyst has excellent stability. Radical scavenging experiments and electron spin resonance spectra showed that superoxide radicals (O2-) and hydroxyl radicals (OH) were the major reactive oxygen species in the photocatalytic system. The photocatalytic degradation pathway of MG was proposed based on the organic degradation intermediates detected. These findings demonstrate that the mediator-free Z-scheme Bi2MoO6/AgI heterojunction could serve as a promising photocatalyst in photocatalytic treatment of organic pollutants.
Collapse
Affiliation(s)
- Jue Liu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guowei Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bing Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xue Ma
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Abstract
Intensive fish farming through aquaculture is vulnerable to infectious diseases that can increase fish mortality and damage the productivity of aquaculture farms. To prevent infectious diseases, malachite green (MG) has been applied as a veterinary drug for various microbial infections in aquaculture settings worldwide. However, little is known regarding the consequences of MG and MG-degrading bacteria (MGDB) on microbial communities in milkfish culture ponds (MCPs). In this study, small MCPs were used as a model system to determine the effects of MG on the microbial communities in MCPs. The addition of MG led to cyanobacterial blooms in the small MCP. The addition of MGDB could not completely reverse the effects of MG on microbial communities. Cyanobacterial blooms were not prevented. Microbial communities analyzed by next generation sequencing revealed that cyanobacterial blooms may be due to increase of nitrogen cycle (including nitrogen fixation, nitrate reduction and anammox) associated microbial communities, which raised the levels of ammonium in the water of the small MCP. The communities of anoxygenic phototrophic bacteria (beneficial for aquaculture and aquatic ecosystems) decreased after the addition of MG. The results of this investigation provide valuable insights into the effects of MG in aquaculture and the difficulties of bioremediation for aquatic environments polluted by MG.
Collapse
|
10
|
Quintela DU, Henrique DC, dos Santos Lins PV, Ide AH, Erto A, Duarte JLDS, Meili L. Waste of Mytella Falcata shells for removal of a triarylmethane biocide from water: Kinetic, equilibrium, regeneration and thermodynamic studies. Colloids Surf B Biointerfaces 2020; 195:111230. [DOI: 10.1016/j.colsurfb.2020.111230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
|
11
|
Kalpana R, Maheshwaran M, Vimali E, Soosai MR, Shivamathi CS, Moorthy IG, Ashokkumar B, Varalakshmi P. Decolorization of Textile Dye by Halophilic Exiguobacteriumsp.VK1: Biomass and Exopolysaccharide (EPS) Enhancement for Bioremediation of Malachite Green. ChemistrySelect 2020. [DOI: 10.1002/slct.202001648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ramaraju Kalpana
- Department of Molecular MicrobiologySchool of BiotechnologyMadurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Manickam Maheshwaran
- Department of Molecular MicrobiologySchool of BiotechnologyMadurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Elamathi Vimali
- Department of Molecular MicrobiologySchool of BiotechnologyMadurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Michael Rahul Soosai
- Department of BiotechnologyKamaraj College of Engineering and Technology Virudhunagar 626001 Tamil Nadu India
| | | | - Innasimuthu Ganesh Moorthy
- Department of BiotechnologyKamaraj College of Engineering and Technology Virudhunagar 626001 Tamil Nadu India
| | - Balasubramaniem Ashokkumar
- Department of Genetic EngineeringSchool of BiotechnologyMadurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Perumal Varalakshmi
- Department of Molecular MicrobiologySchool of BiotechnologyMadurai Kamaraj University Madurai 625021 Tamil Nadu India
| |
Collapse
|
12
|
Seyedi ZS, Zahraei Z, Jookar Kashi F. Decolorization of Reactive Black 5 and Reactive Red 152 Azo Dyes by New Haloalkaliphilic Bacteria Isolated from the Textile Wastewater. Curr Microbiol 2020; 77:2084-2092. [PMID: 32462224 DOI: 10.1007/s00284-020-02039-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
Textile wastewaters are usually alkali and saline, so using haloalkaliphilic bacteria can be the best option for the treatment of wastewater. This study aimed at the decolorization of textile Reactive Black 5 and Reactive Red 152 dyes using new haloalkaliphilic bacteria isolated from the textile wastewater. Among 50 strains of bacteria isolated from the effluent of Kashan textile industry, three bacterial strains, namely D1, D2 and E49, exhibited high decolorization abilities for Reactive Black 5 and Reactive Red 152 dyes. Decolorization was evaluated through spectrophotometry at maximum absorbance wavelengths of 607 and 554 nm for Reactive Black 5 and Reactive Red 152, respectively. The highest decolorization percentage was observed at a dye concentration of 50 mg L-1. Aerobic conditions, 5% of the yeast extract and salt, 10% of peptone and glucose as nitrogen and carbon sources, respectively, and a pH range of 9-12 were considered as the optimal conditions for decolorization. The consortium of three haloalkaliphilic isolates showed a remarkable ability for decolorization of the Reactive Black 5 (87%) and Reactive Red 152 (85%) dyes. The consortium exhibited higher decolorization ability for the textile effluent, compared to individual bacterial inoculations. According to phenotypic characterization experiments and phylogenetic analyses based on comparing 16S rDNA sequence, the mentioned strains belonged to the genus Halomonas.
Collapse
Affiliation(s)
- Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, 8731751167, Islamic Republic of Iran
| | - Zohreh Zahraei
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, 8731751167, Islamic Republic of Iran.
| | - Fereshteh Jookar Kashi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, 8731751167, Islamic Republic of Iran
| |
Collapse
|
13
|
Han S, Han W, Chen J, Sun Y, Dai M, Zhao G. Bioremediation of malachite green by cyanobacterium Synechococcus elongatus PCC 7942 engineered with a triphenylmethane reductase gene. Appl Microbiol Biotechnol 2020; 104:3193-3204. [PMID: 32067057 DOI: 10.1007/s00253-020-10438-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Malachite green is a carcinogenic dye that has been detected in fish tissues and freshwater. Here we evaluated the malachite green decoloring ability of a photoautotrophic cyanobacterium, Synechococcus elongatus PCC 7942 (Synechococcus), that lives in freshwater. Results show that 99.5% of the dye was removed by Synechococcus through bioabsorption and bioaccumulation; however, the dye was not degraded or chemically modified. Next, we established an engineered Synechococcus strain to degrade the dye after uptake. The triphenylmethane reductase gene katmr was heterologously expressed, resulting in high production of a soluble recombinant protein. The engineered strain showed advanced decoloring abilities at a low cell density and in stressful environments. It degraded malachite green into the smaller molecules 4-methylaminobenzoic acid and 4-hydroxyl-aniline. After treatment with the engineered cyanobacterium, the growth of wheat seeds was fully recovered in the presence of malachite green. These results demonstrate the potential application of the engineered Synechococcus as a photosynthetic cell factory for the removal of malachite green from wastewater.
Collapse
Affiliation(s)
- Sheng Han
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Wenbo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jun Chen
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yuankai Sun
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
14
|
Song J, Han G, Wang Y, Jiang X, Zhao D, Li M, Yang Z, Ma Q, Parales RE, Ruan Z, Mu Y. Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Sci Rep 2020; 10:4502. [PMID: 32161360 PMCID: PMC7066194 DOI: 10.1038/s41598-020-61442-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/26/2020] [Indexed: 11/09/2022] Open
Abstract
Malachite green is a common environmental pollutant that poses a great threat to non-target organisms, including humans. This study reports the characterization of a bacterial strain, Pseudomonas veronii JW3-6, which was isolated from a malachite green enrichment culture. This strain degraded malachite green efficiently in a wide range of temperature and pH levels. Under optimal degradation conditions (32.4 °C, pH 7.1, and inoculum amount of 2.5 × 107 cfu/mL), P. veronii JW3-6 could degrade 93.5% of 50 mg/L malachite green within seven days. Five intermediate products from the degradation of malachite green were identified: leucomalachite green, 4-(dimethylamino) benzophenone, 4-dimethylaminophenol, benzaldehyde, and hydroquinone. We propose a possible degradation pathway based on these findings. The present study is the first to report the degradation of malachite green by P. veronii and the identification of hydroquinone as a metabolite in the degradation pathway.
Collapse
Affiliation(s)
- Jinlong Song
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yani Wang
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Xu Jiang
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China
| | - Dongxue Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| | - Miaomiao Li
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China.,College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Yang
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Qingyun Ma
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, 95156, United States of America
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China.
| | - Yingchun Mu
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
15
|
Abstract
Malachite green (MG) is usually applied as a biocide in aquaculture worldwide. The microbial degradation of MG and changes in the microbial community composition of milkfish (Chanos chanos) culture pond sediments were assessed in this study. Three MG-degrading bacteria strains—M6, M10, and M12—were isolated, identified, and characterized. Strains M6, M10, and M12 are closely related to Zhouia amylolytica, Tenacibaculum mesophilum, and Enterobacter cloacae, respectively. The bacterial strains M10 and M12 showed good ability to degrade MG in the sediment. The MG degradation rate was increased after adding MG three more times. The microbial community in the sediment changes with different treatments. The bacterial strains M10 and M12 provide a potential solution for the treatment of sediment of saline aquaculture ponds with MG contamination.
Collapse
|
16
|
Dai L, Zhu W, He L, Tan F, Zhu N, Zhou Q, He M, Hu G. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. BIORESOURCE TECHNOLOGY 2018; 267:510-516. [PMID: 30048926 DOI: 10.1016/j.biortech.2018.07.090] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 05/12/2023]
Abstract
Adsorption is the common-used method to remove dyes from wastewater, and many efforts have been made to develop low-cost but excellent adsorbents. Here, calcium-rich biochar (CRB) as a low-cost adsorbent was directly prepared from crab shell via a simple pyrolysis process without any modification. Batch adsorption results suggested that CRB was among the dye adsorbents with highest adsorption capacities and fastest adsorption rate. Specifically, it showed high adsorption capacities of 12,502 and 20,317 mg/g for cationic malachite green and anionic Congo red, respectively. The adsorption equilibrium for Congo red onto CRB could be achieved as short as 2 min. Furthermore, the dye adsorption mechanism for CRB, as investigated by zeta potential and FTIR spectra, could be attributed to electrostatic attraction, hydrogen bonding and π-π interaction. Finally, this study suggested that, attributed to its cheap source, simple synthesis process and excellent adsorption performance, CRB was promising in dye removal.
Collapse
Affiliation(s)
- Lichun Dai
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, China.
| | - Wenkun Zhu
- Sichuan Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Li He
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, China
| | - Furong Tan
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, China
| | - Nengmin Zhu
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, China
| | - Qin Zhou
- Key Laboratory of Environmental Nano-Technology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, China
| | - Guoquan Hu
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, China
| |
Collapse
|