1
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Halvorsen TM, Schroeder KA, Jones AM, Hammarlöf D, Low DA, Koskiniemi S, Hayes CS. Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition. PLoS Genet 2024; 20:e1011494. [PMID: 39591464 PMCID: PMC11630599 DOI: 10.1371/journal.pgen.1011494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/10/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Contact-dependent growth inhibition (CDI) is a widespread form of inter-bacterial competition mediated by CdiA effector proteins. CdiA is presented on the inhibitor cell surface and delivers its toxic C-terminal region (CdiA-CT) into neighboring bacteria upon contact. Inhibitor cells also produce CdiI immunity proteins, which neutralize CdiA-CT toxins to prevent auto-inhibition. Here, we describe a diverse group of CDI ionophore toxins that dissipate the transmembrane potential in target bacteria. These CdiA-CT toxins are composed of two distinct domains based on AlphaFold2 modeling. The C-terminal ionophore domains are all predicted to form five-helix bundles capable of spanning the cell membrane. The N-terminal "entry" domains are variable in structure and appear to hijack different integral membrane proteins to promote toxin assembly into the lipid bilayer. The CDI ionophores deployed by E. coli isolates partition into six major groups based on their entry domain structures. Comparative sequence analyses led to the identification of receptor proteins for ionophore toxins from groups 1 & 3 (AcrB), group 2 (SecY) and groups 4 (YciB). Using forward genetic approaches, we identify novel receptors for the group 5 and 6 ionophores. Group 5 exploits homologous putrescine import proteins encoded by puuP and plaP, and group 6 toxins recognize di/tripeptide transporters encoded by paralogous dtpA and dtpB genes. Finally, we find that the ionophore domains exhibit significant intra-group sequence variation, particularly at positions that are predicted to interact with CdiI. Accordingly, the corresponding immunity proteins are also highly polymorphic, typically sharing only ~30% sequence identity with members of the same group. Competition experiments confirm that the immunity proteins are specific for their cognate ionophores and provide no protection against other toxins from the same group. The specificity of this protein interaction network provides a mechanism for self/nonself discrimination between E. coli isolates.
Collapse
Affiliation(s)
- Tiffany M. Halvorsen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Kaitlin A. Schroeder
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Allison M. Jones
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Disa Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David A. Low
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Christopher S. Hayes
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
3
|
Canè C, Gallucci N, Amoresano A, Fontanarosa C, Paduano L, De Gregorio E, Duilio A, Di Somma A. The antimicrobial peptide Temporin-L induces vesicle formation and reduces the virulence in S. aureus. Biochem Biophys Rep 2024; 39:101808. [PMID: 39238505 PMCID: PMC11375239 DOI: 10.1016/j.bbrep.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
The evolution of methicillin-resistant Staphylococcus aureus (MRSA) has required the development of new antimicrobial agents and new approaches to prevent and overcome drug resistance. AntiMicrobial Peptides (AMPs) represent promising alternatives due to their rapid bactericidal activity and their broad-spectrum of action against a wide range of microorganisms. The amphibian Temporins constitute a well-known family of AMPs with high antibacterial properties against both Gram-positive and Gram-negative bacteria. In this paper, we evaluated the in vivo effect of Temp-L on S. aureus performing morphological studies using Transmission Electron Microscopy (TEM) that revealed the occurrence of protrusions from the cell surface. The formation of vesicle-like structure was confirmed by Dynamic Light Scattering (DLS). The global effect of Temp-L on Staphylococcus aureus (S. aureus) was deeply investigated by differential proteomics leading to the identification of up-regulated proteins involved in the synthesis of the cell membrane and fatty acids, and down-regulated virulence factors. GC-MS analysis suggested a possible protective response mechanism implemented by the bacterium after treatment with Temp-L, as the synthesis of fatty acids was increased. Adhesion and invasion assays on eukaryotic cells confirmed a reduced virulence of S. aureus following treatment with Temp-L. These results suggested the targeting of virulence factors as novel strategy to replace traditional antimicrobial agents that can be used to treat infections, especially infections caused by the resistant pathogen S. aureus.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80126, Napoli, Italy
| |
Collapse
|
4
|
Esposito A, Rossi A, Stabile M, Pinto G, De Fino I, Melessike M, Tamanini A, Cabrini G, Lippi G, Aureli M, Loberto N, Renda M, Galietta LJV, Amoresano A, Dechecchi MC, De Gregorio E, Bragonzi A, Guaragna A. Assessing the Potential of N-Butyl-l-deoxynojirimycin (l-NBDNJ) in Models of Cystic Fibrosis as a Promising Antibacterial Agent. ACS Pharmacol Transl Sci 2024; 7:1807-1822. [PMID: 38898954 PMCID: PMC11184606 DOI: 10.1021/acsptsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Over the past few years, l-iminosugars have revealed attractive pharmacological properties for managing rare diseases including Cystic Fibrosis (CF). The iminosugar N-butyl-l-deoxynojirimycin (l-NBDNJ, ent-1), prepared by a carbohydrate-based route, was herein evaluated for its anti-inflammatory and anti-infective potential in models of CF lung disease infection. A significant decrease in the bacterial load in the airways was observed in the murine model of Pseudomonas aeruginosa chronic infection in the presence of l-NBDNJ, also accompanied by a modest reduction of inflammatory cells. Mechanistic insights into the observed activity revealed that l-NBDNJ interferes with the expression of proteins regulating cytoskeleton assembly and organization of the host cell, downregulates the main virulence factors of P. aeruginosa involved in the host response, and affects pathogen adhesion to human cells. These findings along with the observation of the absence of an in vitro bacteriostatic/bactericidal action of l-NBDNJ suggest the potential use of this glycomimetic as an antivirulence agent in the management of CF lung disease.
Collapse
Affiliation(s)
- Anna Esposito
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples I-80125, Italy
| | - Alice Rossi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Maria Stabile
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Gabriella Pinto
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| | - Ida De Fino
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Medede Melessike
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Anna Tamanini
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Giulio Cabrini
- Center on
Innovative Therapies for Cystic Fibrosis, Department of Life Sciences
and Biotechnology, University of Ferrara, Ferrara I-40121, Italy
| | - Giuseppe Lippi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Massimo Aureli
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Nicoletta Loberto
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Mario Renda
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
| | - Luis J. V. Galietta
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
- Department
of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples I-80131, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
- Istituto
Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Rome I-00136, Italy
| | - Maria Cristina Dechecchi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Eliana De Gregorio
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Alessandra Bragonzi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Annalisa Guaragna
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| |
Collapse
|
5
|
Elery ZK, Myers-Morales T, Phillips ED, Garcia EC. Relaxed specificity of BcpB transporters mediates interactions between Burkholderia cepacia complex contact-dependent growth inhibition systems. mSphere 2023; 8:e0030323. [PMID: 37498085 PMCID: PMC10449530 DOI: 10.1128/msphere.00303-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 07/28/2023] Open
Abstract
Belonging to the two-partner secretion family of proteins, contact-dependent growth inhibition (CDI) systems mediate interbacterial antagonism among closely related Gram-negative bacteria. The toxic portion of a large surface protein, BcpA/CdiA, is delivered to the cytoplasm of neighboring cells where it inhibits growth. Translocation of the antibacterial polypeptide out of the producing cell requires an associated outer membrane transporter, BcpB/CdiB. Some bacteria, including many Burkholderia species, encode multiple distinct CDI systems, but whether there is interaction between these systems is largely unknown. Using Burkholderia cepacia complex species as a model, here we show that related BcpB transporters exhibit considerable secretion flexibility and can secrete both cognate and non-cognate BcpA substrates. We also identified an additional unique Burkholderia dolosa CDI system capable of mediating interbacterial competition and demonstrated that its BcpB transporter has similar relaxed substrate specificity. Our results showed that two BcpB transporters (BcpB-2 and BcpB-3) were able to secrete all four of the B. dolosa BcpA toxins, while one transporter (BcpB-1) appeared unable to secrete even its cognate BcpA substrate under the tested conditions. This flexibility provided a competitive advantage, as strains lacking the full repertoire of BcpB proteins had decreased CDI activity. Similar results were obtained in Burkholderia multivorans, suggesting that secretion flexibility may be a conserved feature of Burkholderia CDI systems. Together these findings suggest that the interaction between distinct CDI systems enhances the efficiency of bacterial antagonism. IMPORTANCE The Burkholderia cepacia complex (Bcc) is a group of related opportunistic bacterial pathogens that occupy a diverse range of ecological niches and exacerbate disease in patients with underlying conditions. Contact-dependent growth inhibition (CDI) system proteins, produced by Gram-negative bacteria, contain antagonistic properties that allow for intoxication of closely related neighboring bacteria via a secreted protein, BcpA. Multiple unique CDI systems can be found in the same bacterial strain, and here we show that these distinct systems interact in several Bcc species. Our findings suggest that the interaction between CDI system proteins is important for interbacterial toxicity. Understanding the mechanism of interplay between CDI systems provides further insight into the complexity of bacterial antagonism. Moreover, since many bacterial species are predicted to encode multiple CDI systems, this study suggests that interactions between these distinct systems likely contribute to the overall competitive fitness of these species.
Collapse
Affiliation(s)
- Zaria K. Elery
- University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | - Erica D. Phillips
- University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Erin C. Garcia
- University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Han B, Chen Y, Han S, Han L. Uncovering the Secretion Systems of Acinetobacter baumannii: Structures and Functions in Pathogenicity and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020195. [PMID: 36830106 PMCID: PMC9952577 DOI: 10.3390/antibiotics12020195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Infections led by Acinetobacter baumannii strains are of great concern in healthcare environments due to the strong ability of the bacteria to spread through different apparatuses and develop drug resistance. Severe diseases can be caused by A. baumannii in critically ill patients, but its biological process and mechanism are not well understood. Secretion systems have recently been demonstrated to be involved in the pathogenic process, and five types of secretion systems out of the currently known six from Gram-negative bacteria have been found in A. baumannii. They can promote the fitness and pathogenesis of the bacteria by releasing a variety of effectors. Additionally, antibiotic resistance is found to be related to some types of secretion systems. In this review, we describe the genetic and structural compositions of the five secretion systems that exist in Acinetobacter. In addition, the function and molecular mechanism of each secretion system are summarized to explain how they enable these critical pathogens to overcome eukaryotic hosts and prokaryotic competitors to cause diseases.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yanjiong Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence:
| |
Collapse
|
7
|
Migliaccio A, Esposito EP, Bagattini M, Berisio R, Triassi M, De Gregorio E, Zarrilli R. Inhibition of AdeB, AceI, and AmvA Efflux Pumps Restores Chlorhexidine and Benzalkonium Susceptibility in Acinetobacter baumannii ATCC 19606. Front Microbiol 2022; 12:790263. [PMID: 35197939 PMCID: PMC8859242 DOI: 10.3389/fmicb.2021.790263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/23/2021] [Indexed: 01/17/2023] Open
Abstract
The management of infections caused by Acinetobacter baumannii is hindered by its intrinsic tolerance to a wide variety of biocides. The aim of the study was to analyze the role of different A. baumannii efflux pumps (EPs) in tolerance to chlorhexidine (CHX) and benzalkonium (BZK) and identify non-toxic compounds, which can restore susceptibility to CHX and BZK in A. baumannii. A. baumannii ATCC 19606 strain was tolerant to both CHX and BZK with MIC and MBC value of 32 mg/L. CHX subMIC concentrations increased the expression of adeB and adeJ (RND superfamily), aceI (PACE family) and amvA (MFS superfamily) EP genes. The values of CHX MIC and MBC decreased by eightfold in ΔadeB and twofold in ΔamvA or ΔaceI mutants, respectively, while not affected in ΔadeJ mutant; EPs double and triple deletion mutants showed an additive effect on CHX MIC. CHX susceptibility was restored in double and triple deletion mutants with inactivation of adeB gene. BZK MIC was decreased by fourfold in ΔadeB mutant, and twofold in ΔamvA and ΔaceI mutants, respectively; EPs double and triple deletion mutants showed an additive effect on BZK MIC. BZK susceptibility was recovered in ΔadeB ΔaceI ΔadeJ and ΔamvA ΔadeB ΔadeJ triple mutants. The structural comparison of AdeB and AdeJ protomers showed a more negatively charged entrance binding site and F-loop in AdeB, which may favor the transport of CHX. The carbonyl cyanide m-chlorophenylhydrazine protonophore (CCCP) EP inhibitor reduced dose-dependently CHX MIC in A. baumannii ATCC 19606 and in ΔadeJ, ΔaceI, or ΔamvA mutants, but not in ΔadeB mutant. Either piperine (PIP) or resveratrol (RV) at non-toxic concentrations inhibited CHX MIC in A. baumannii ATCC 19606 parental strain and EPs gene deletion mutants, and CHX-induced EP gene expression. Also, RV inhibited BZK MIC and EP genes expression in A. baumannii ATCC 19606 parental strain and EPs mutants. These results demonstrate that tolerance to CHX and BZK in A. baumannii is mediated by the activation of AdeB, AceI and AmvA EPs, AdeB playing a major role. Importantly, inhibition of EP genes expression by RV restores CHX and BZK susceptibility in A. baumannii.
Collapse
Affiliation(s)
| | - Eliana Pia Esposito
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Bagattini
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- *Correspondence: Eliana De Gregorio,
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Raffaele Zarrilli,
| |
Collapse
|
8
|
Kaushik V, Tiwari M, Joshi R, Tiwari V. Therapeutic strategies against potential antibiofilm targets of multidrug-resistant Acinetobacter baumannii. J Cell Physiol 2022; 237:2045-2063. [PMID: 35083758 DOI: 10.1002/jcp.30683] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Acinetobacter baumannii is the causative agent of various hospital-acquired infections. Biofilm formation is one of the various antimicrobial resistance (AMR) strategies and is associated with high mortality and morbidity. Hence, it is essential to review the potential antibiofilm targets in A. baumannii and come up with different strategies to combat these potential targets. This review covers different pathways involved in the regulation of biofilm formation in A. baumannii like quorum sensing (QS), cyclic-di-GMP signaling, two-component system (TCS), outer-membrane protein (ompA), and biofilm-associated protein (BAP). A newly discovered mechanism of electrical signaling-mediated biofilm formation and contact-dependent biofilm modulation has also been discussed. As biofilm formation and its maintenance in A. baumannii is facilitated by these potential targets, the detailed study of these targets and pathways can bring light to different therapeutic strategies such as anti-biofilm peptides, natural and synthetic molecule inhibitors, QS molecule degrading enzymes, and other strategies. These strategies may help in suppressing the lethality of biofilm-mediated infections. Targeting essential proteins/targets which are crucial for biofilm formation and regulation may render new therapeutic strategies that can aid in combating biofilm, thus reducing the recalcitrant infections and morbidity associated with the biofilm of A. baumannii.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Richa Joshi
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
9
|
Esposito A, Migliaccio A, Iula VD, Zarrilli R, Guaragna A, De Gregorio E. The Glucocorticoid PYED-1 Disrupts Mature Biofilms of Candida spp. and Inhibits Hyphal Development in Candida albicans. Antibiotics (Basel) 2021; 10:1396. [PMID: 34827334 PMCID: PMC8614962 DOI: 10.3390/antibiotics10111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Invasive Candida infections have become a global public health problem due to the increase of Candida species resistant against antifungal therapeutics. The glucocorticoid PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) has antimicrobial activity against various bacterial taxa. Consequently, it might be considered for the treatment of Candida infections. The antifungal activity of PYED-1 was evaluated against several fungal strains that were representative of the five species that causes the majority of Candida infections-namely, Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis and Candida krusei. PYED-1 exhibited a weak antifungal activity and a fungistatic effect on all five Candida species. On the other hand, PYED-1 exhibited a good anti-biofilm activity, and was able to eradicate the preformed biofilms of all Candida species analyzed. Moreover, PYED-1 inhibited germ tube and hyphae formation of C. albicans and reduced adhesion of C. albicans to abiotic surfaces by up to 30%.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Antonella Migliaccio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Vita Dora Iula
- Complex Operative Unit of Clinical Pathology, Ospedale del Mare-ASL NA1 Centro, 80145 Naples, Italy;
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Annalisa Guaragna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
10
|
Lipidation of Class IV CdiA Effector Proteins Promotes Target Cell Recognition during Contact-Dependent Growth Inhibition. mBio 2021; 12:e0253021. [PMID: 34634941 PMCID: PMC8510554 DOI: 10.1128/mbio.02530-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) systems enable the direct transfer of protein toxins between competing Gram-negative bacteria. CDI+ strains produce cell surface CdiA effector proteins that bind specific receptors on neighboring bacteria to initiate toxin delivery. Three classes of CdiA effectors that recognize different outer membrane protein receptors have been characterized in Escherichia coli to date. Here, we describe a fourth effector class that uses the lipopolysaccharide (LPS) core as a receptor to identify target bacteria. Selection for CDI-resistant target cells yielded waaF and waaP “deep-rough” mutants, which are unable to synthesize the full LPS core. The CDI resistance phenotypes of other waa mutants suggest that phosphorylated inner-core heptose residues form a critical CdiA recognition epitope. Class IV cdi loci also encode putative lysyl acyltransferases (CdiC) that are homologous to enzymes that lipidate repeats-in-toxin (RTX) cytolysins. We found that catalytically active CdiC is required for full target cell killing activity, and we provide evidence that the acyltransferase appends 3-hydroxydecanoate to a specific Lys residue within the CdiA receptor-binding domain. We propose that the lipid moiety inserts into the hydrophobic leaflet of lipid A to anchor CdiA interactions with the core oligosaccharide. Thus, LPS-binding CDI systems appear to have co-opted an RTX toxin-activating acyltransferase to increase the affinity of CdiA effectors for the target cell outer membrane.
Collapse
|
11
|
Lin HH, Filloux A, Lai EM. Role of Recipient Susceptibility Factors During Contact-Dependent Interbacterial Competition. Front Microbiol 2020; 11:603652. [PMID: 33281802 PMCID: PMC7690452 DOI: 10.3389/fmicb.2020.603652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria evolved multiple strategies to survive and develop optimal fitness in their ecological niche. They deployed protein secretion systems for robust and efficient delivery of antibacterial toxins into their target cells, therefore inhibiting their growth or killing them. To maximize antagonism, recipient factors on target cells can be recognized or hijacked to enhance the entry or toxicity of these toxins. To date, knowledge regarding recipient susceptibility (RS) factors and their mode of action is mostly originating from studies on the type Vb secretion system that is also known as the contact-dependent inhibition (CDI) system. Yet, recent studies on the type VI secretion system (T6SS), and the CDI by glycine-zipper protein (Cdz) system, also reported the emerging roles of RS factors in interbacterial competition. Here, we review these RS factors and their mechanistic impact in increasing susceptibility of recipient cells in response to CDI, T6SS, and Cdz. Past and future strategies for identifying novel RS factors are also discussed, which will help in understanding the interplay between attacker and prey upon secretion system-dependent competition. Understanding these mechanisms would also provide insights for developing novel antibacterial strategies to antagonize aggressive bacteria-killing pathogens.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Contact-Dependent Growth Inhibition in Bacteria: Do Not Get Too Close! Int J Mol Sci 2020; 21:ijms21217990. [PMID: 33121148 PMCID: PMC7662968 DOI: 10.3390/ijms21217990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Over millions of years of evolution, bacteria have developed complex strategies for intra-and interspecies interactions and competition for ecological niches and resources. Contact-dependent growth inhibition systems (CDI) are designed to realize a direct physical contact of one bacterial cell with other cells in proximity via receptor-mediated toxin delivery. These systems are found in many microorganisms including clinically important human pathogens. The main purpose of these systems is to provide competitive advantages for the growth of the population. In addition, non-competitive roles for CDI toxin delivery systems including interbacterial signal transduction and mediators of bacterial collaboration have been suggested. In this review, our goal was to systematize the recent findings on the structure, mechanisms, and purpose of CDI systems in bacterial populations and discuss the potential biological and evolutionary impact of CDI-mediated interbacterial competition and/or cooperation.
Collapse
|
13
|
Crippen CS, Jr MJR, Sanchez S, Szymanski CM. Multidrug Resistant Acinetobacter Isolates Release Resistance Determinants Through Contact-Dependent Killing and Bacteriophage Lysis. Front Microbiol 2020; 11:1918. [PMID: 32922376 PMCID: PMC7456956 DOI: 10.3389/fmicb.2020.01918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is an ancient bacterial defense mechanism that has rapidly spread due to the frequent use of antibiotics for disease treatment and livestock growth promotion. We are becoming increasingly aware that pathogens, such as members of the genus Acinetobacter, are precipitously evolving drug resistances through multiple mechanisms, including the acquisition of antibiotic resistance genes. In this study, we isolated three multidrug resistant Acinetobacter species from birds on a free-range farm. Acinetobacter radioresistens, Acinetobacter lwoffii, and Acinetobacter johnsonii were isolated from hens, turkeys and ducks and were resistant to 14 clinically relevant antibiotics, including several listed by the World Health Organization as essential medicines. Co-culturing any of the three Acinetobacter species with Acinetobacter baumannii resulted in contact-dependent release of intact resistance determinants. We also isolated several lytic bacteriophages and selected two of these phages to be included in this study based on differences in plaquing characteristics, nucleic acid content and viral morphology. Both phages released host DNA, including antibiotic resistance genes during cell lysis and we demonstrated that these resistance determinants were transferable to a naïve strain of Escherichia coli. This study demonstrates that contact-dependent competition between bacterial species can readily contribute to DNA release into the environment, including antibiotic resistance determinants. We also highlight that the constant lysis and turnover of bacterial populations during the natural lifecycle of a lytic bacteriophage is an underappreciated mechanism for the liberation of DNA and subsequent genetic exchange.
Collapse
Affiliation(s)
- Clay S Crippen
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Michael J Rothrock Jr
- United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Susan Sanchez
- Athens Veterinary Diagnostic Lab, Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Christine M Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Krasauskas R, Skerniškytė J, Martinkus J, Armalytė J, Sužiedėlienė E. Capsule Protects Acinetobacter baumannii From Inter-Bacterial Competition Mediated by CdiA Toxin. Front Microbiol 2020; 11:1493. [PMID: 32849318 PMCID: PMC7396552 DOI: 10.3389/fmicb.2020.01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Currently, Acinetobacter baumannii is considered as one of the most important infectious agents causing hospital acquired infections worldwide. It has been observed that many clinically important pathogens express contact-dependent growth inhibition (CDI) phenomenon, which modulates cell–cell and cell–environment interactions, potentially allowing bacteria to adapt to ever-changing conditions. Mainly, these systems are used for the inhibition of the growth of genetically different individuals within the same species. In this work, by performing cell competition assays with three genotypically different (as determined by pulse-field gel electrophoresis) clinical A. baumannii isolates II-c, II-a, and II-a1, we show that A. baumannii capsule is the main feature protecting from CDI-mediated inhibition. We also observed that for one clinical isolate, the two-component BfmRS system, contributed to the resistance against CDI-mediated inhibition. Moreover, we were able to demonstrate, that the effector protein CdiA is released into the growth media and exhibits its inhibitory activity without the requirement of a cell–cell contact. Lastly, by evaluating the remaining number of the cells pre-mixed with the CdiA and performing live/dead assay, we demonstrate that purified CdiA protein causes a rapid cell growth arrest. Our results indicate, that capsule efficiently protects A. baumannii from a CDI-mediated inhibition by a clinical A. baumannii V15 strain, which is able to secrete CdiA effector into the growth media and cause target cell growth arrest without a cell–cell contact.
Collapse
Affiliation(s)
- Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julius Martinkus
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
15
|
De Gregorio E, Esposito A, Vollaro A, De Fenza M, D’Alonzo D, Migliaccio A, Iula VD, Zarrilli R, Guaragna A. N-Nonyloxypentyl-l-Deoxynojirimycin Inhibits Growth, Biofilm Formation and Virulence Factors Expression of Staphylococcus aureus. Antibiotics (Basel) 2020; 9:E362. [PMID: 32604791 PMCID: PMC7344813 DOI: 10.3390/antibiotics9060362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is one of the major causes of hospital- and community-associated bacterial infections throughout the world, which are difficult to treat due to the rising number of drug-resistant strains. New molecules displaying potent activity against this bacterium are urgently needed. In this study, d- and l-deoxynojirimycin (DNJ) and a small library of their N-alkyl derivatives were screened against S. aureus ATCC 29213, with the aim to identify novel candidates with inhibitory potential. Among them, N-nonyloxypentyl-l-DNJ (l-NPDNJ) proved to be the most active compound against S. aureus ATCC 29213 and its clinical isolates, with the minimum inhibitory concentration (MIC) value of 128 μg/mL. l-NPDNJ also displayed an additive effect with gentamicin and oxacillin against the gentamicin- and methicillin-resistant S. aureus isolate 00717. Sub-MIC values of l-NPDNJ affected S. aureus biofilm development in a dose-dependent manner, inducing a strong reduction in biofilm biomass. Moreover, real-time reverse transcriptase PCR analysis revealed that l-NPDNJ effectively inhibited at sub-MIC values the transcription of the spa, hla, hlb and sea virulence genes, as well as the agrA and saeR response regulator genes.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Antonella Migliaccio
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Vita Dora Iula
- Complex Operative Unit of Clinical Pathology, “Ospedale del Mare-ASL NA1 Centro”, 80131 Naples, Italy;
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| |
Collapse
|
16
|
Vollaro A, Esposito A, Esposito EP, Zarrilli R, Guaragna A, De Gregorio E. PYED-1 Inhibits Biofilm Formation and Disrupts the Preformed Biofilm of Staphylococcus aureus. Antibiotics (Basel) 2020; 9:E240. [PMID: 32397205 PMCID: PMC7277567 DOI: 10.3390/antibiotics9050240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1 (PYED-1), a heterocyclic corticosteroid derivative of deflazacort, exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria. Here, we investigated the effect of PYED-1 on the biofilms of Staphylococcus aureus, an etiological agent of biofilm-based chronic infections such as osteomyelitis, indwelling medical device infections, periodontitis, chronic wound infections, and endocarditis. PYED-1 caused a strong reduction in biofilm formation in a concentration dependent manner. Furthermore, it was also able to completely remove the preformed biofilm. Transcriptional analysis performed on the established biofilm revealed that PYED-1 downregulates the expression of genes related to quorum sensing (agrA, RNAIII, hld, psm, and sarA), surface proteins (clfB and fnbB), secreted toxins (hla, hlb, and lukD), and capsular polysaccharides (capC). The expression of genes that encode two main global regulators, sigB and saeR, was also significantly inhibited after treatment with PYED-1. In conclusion, PYED-1 not only effectively inhibited biofilm formation, but also eradicated preformed biofilms of S. aureus, modulating the expression of genes related to quorum sensing, surface and secreted proteins, and capsular polysaccharides. These results indicated that PYED-1 may have great potential as an effective antibiofilm agent to prevent S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Eliana Pia Esposito
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (E.P.E.); (R.Z.)
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (E.P.E.); (R.Z.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
17
|
Vollaro A, Esposito A, Antonaki E, Iula VD, D’Alonzo D, Guaragna A, De Gregorio E. Steroid Derivatives as Potential Antimicrobial Agents Against Staphylococcus aureus Planktonic Cells. Microorganisms 2020; 8:E468. [PMID: 32218320 PMCID: PMC7232480 DOI: 10.3390/microorganisms8040468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
In this work, the antibacterial activity of deflazacort and several of its synthetic precursors was tested against a panel of bacterial pathogens responsible for most drug-resistant infections including Staphylococcus aureus, Enterococcus spp., Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. The derivative of deflazacort, PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) showed the best antibacterial activity in a dose-dependent way. We focused on the action of PYED-1 against S. aureus cells. PYED-1 exhibited an additive antimicrobial effect with gentamicin and oxacillin against the methicillin-resistant S. aureus isolate 00717. In addition to its antimicrobial effect, PYED-1 was found to repress the expression of several virulence factors of S. aureus, including toxins encoded by the hla (alpha-haemolysin), hlb (beta-haemolysin), lukE-D (leucotoxins E-D), and sea (staphylococcal enterotoxin A) genes, and cell surface factors (fnbB (fibronectin-binding protein B) and capC (capsule biosynthesis protein C)). The expression levels of autolysin isaA (immunodominant staphylococcal antigen) were also increased.
Collapse
Affiliation(s)
- Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.V.); (E.A.)
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (D.D.)
| | - Eleni Antonaki
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.V.); (E.A.)
| | - Vita Dora Iula
- Complex Operative Unit of Clinical Pathology, “Ospedale del Mare-ASL NA1 Centro”, 80147 Naples, Italy;
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (D.D.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (D.D.)
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.V.); (E.A.)
| |
Collapse
|
18
|
Esposito A, Vollaro A, Esposito EP, D’Alonzo D, Guaragna A, Zarrilli R, De Gregorio E. Antibacterial and Antivirulence Activity of Glucocorticoid PYED-1 against Stenotrophomonas maltophilia. Antibiotics (Basel) 2020; 9:E105. [PMID: 32131413 PMCID: PMC7148523 DOI: 10.3390/antibiotics9030105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Stenotrophomonas maltophilia, an environmental Gram-negative bacterium, is an emerging nosocomial opportunistic pathogen that causes life-threatening infections in immunocompromised patients and chronic pulmonary infections in cystic fibrosis patients. Due to increasing resistance to multiple classes of antibiotics, S. maltophilia infections are difficult to treat successfully. This makes the search for new antimicrobial strategies mandatory. In this study, the antibacterial activity of the heterocyclic corticosteroid deflazacort and several of its synthetic precursors was tested against S. maltophilia. All compounds were not active against standard strain S. maltophilia K279a. The compound PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) showed a weak effect against some S. maltophilia clinical isolates, but exhibited a synergistic effect with aminoglycosides. PYED-1 at sub-inhibitory concentrations decreased S. maltophilia biofilm formation. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of biofilm- and virulence- associated genes (StmPr1, StmPr3, sphB, smeZ, bfmA, fsnR) was significantly suppressed after PYED-1 treatment. Interestingly, PYED-1 also repressed the expression of the genes aph (3´)-IIc, aac (6´)-Iz, and smeZ, involved in the resistance to aminoglycosides.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Eliana Pia Esposito
- Department of Public Health, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (E.P.E.); (R.Z.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (E.P.E.); (R.Z.)
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
19
|
Krasauskas R, Skerniškytė J, Armalytė J, Sužiedėlienė E. The role of Acinetobacter baumannii response regulator BfmR in pellicle formation and competitiveness via contact-dependent inhibition system. BMC Microbiol 2019; 19:241. [PMID: 31690263 PMCID: PMC6833216 DOI: 10.1186/s12866-019-1621-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Acinetobacter baumannii is one of the most important opportunistic pathogens responsible for hospital acquired infections. It displays multi-drug resistance profile and has the ability to colonize surfaces and persist under harsh conditions. A. baumannii two-component signal transduction system BfmRS, consisting of response regulator BfmR and sensor kinase BfmS, has been implicated in the control of various virulence-related traits and has been suggested to act as a global modulator of A. baumannii physiology. Results Here, we assessed the role of BfmR regulator in pellicle formation and bacterial competition, features important for the establishment of A. baumannii in clinical environment. We show that BfmR is required for the pellicle formation of A. baumannii, as ΔbfmRS mutant lacked this phenotype. The loss of bfmRS also greatly reduced the secretion of A. baumannii Hcp protein, which is a component of T6SS secretion system. However, T6SS-mediated killing phenotype was not impaired in ΔbfmRS mutant. On the contrary, the same mutation resulted in the transcriptional activation of contact-dependent inhibition (CDI) system, which A. baumannii used to inhibit the growth of another clinical A. baumannii strain and a closely related species Acinetobacter baylyi. Conclusions The obtained results indicate that BfmR is not only required for the pellicle phenotype induction in A. baumannii, but also, due to the down-regulation of a CDI system, could allow the incorporation of other A. baumannii strains or related species, possibly increasing the likelihood of the pathogens’ survival.
Collapse
Affiliation(s)
- Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
20
|
The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly. Sci Rep 2019; 9:9438. [PMID: 31263148 PMCID: PMC6602968 DOI: 10.1038/s41598-019-45875-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/13/2019] [Indexed: 11/11/2022] Open
Abstract
Type VI secretion system (T6SS) is described as a macromolecular secretion machine that is utilized for bacterial competition. The gene clusters encoding T6SS are composed of core tss genes and tag genes. However, the clusters differ greatly in different pathogens due to the great changes accumulated during the long-term evolution. In this work, we identified a novel hypothetical periplasmic protein designated as AsaA which is encoded by the first gene of the T6SS cluster in the genus Acinetobacter. By constructing asaA mutant, we delineated its relative contributions to bacterial competition and secretion of T6SS effector Hcp. Subsequently, we studied the localization of AsaA and potential proteins that may have interactions with AsaA. Our results showed that AsaA in Acinetobacter baumannii (A. baumannii) localized in the bacterial periplasmic space. Results based on bacterial two-hybrid system and protein pull-down assays indicated that it was most likely to affect the assembly or stability of T6SS by interacting with the T6SS core protein TssM. Collectively, our findings of AsaA is most likely a key step in understanding of the T6SS functions in A. baumannii.
Collapse
|
21
|
Diversity of Contact-Dependent Growth Inhibition Systems of Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00776-18. [PMID: 31036723 DOI: 10.1128/jb.00776-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems are used in bacterial competition to hinder the growth of neighboring microbes. These systems utilize a two-partner secretion mechanism to display the CdiA exoprotein at the bacterial cell surface. CdiA forms a long filamentous stalk that facilitates binding to a target cell and delivery of a C-terminal toxin (CT) domain. This CT domain is processed and delivered into the cytoplasm of a target cell upon contact. CDI systems also encode a cognate immunity protein (CdiI) that protects siblings and resistant targeted cells from intoxication by high-affinity binding to the CT. CdiA CT domains vary among strains within a species, and many alleles encode enzymatic functions that target nucleic acids. This variation is thought to help drive diversity and adaptation within a species. CdiA diversity is well studied in Escherichia coli and several other bacteria, but little is known about the extent of this diversity in Pseudomonas aeruginosa. The purpose of this review is to highlight the variability that exists in CDI systems of P. aeruginosa. We show that this diversity is apparent even among strains isolated from a single geographical region, suggesting that CDI systems play an important role in the ecology of P. aeruginosa.
Collapse
|
22
|
De Gregorio E, Zarrilli R, Di Nocera PP. Contact-dependent growth inhibition systems in Acinetobacter. Sci Rep 2019; 9:154. [PMID: 30655547 PMCID: PMC6336857 DOI: 10.1038/s41598-018-36427-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/21/2018] [Indexed: 11/09/2022] Open
Abstract
In bacterial contact-dependent growth inhibition (CDI) systems, CdiA proteins are exported to the outer membrane by cognate CdiB proteins. CdiA binds to receptors on susceptible bacteria and subsequently delivers its C-terminal toxin domain (CdiA-CT) into neighbouring target cells. Whereas self bacteria produce CdiI antitoxins, non-self bacteria lack antitoxins and are therefore inhibited in their growth by CdiA. In silico surveys of pathogenic Acinetobacter genomes have enabled us to identify >40 different CDI systems, which we sorted into two distinct groups. Type-II CdiAs are giant proteins (3711 to 5733 residues) with long arrays of 20-mer repeats. Type-I CdiAs are smaller (1900-2400 residues), lack repeats and feature central heterogeneity (HET) regions, that vary in size and sequence and can be exchanged between CdiA proteins. HET regions in most type-I proteins confer the ability to adopt a coiled-coil conformation. CdiA-CT and pretoxin modules differ significantly between type-I and type-II CdiAs. Moreover, type-II genes only have remnants of genes in their 3' end regions that have been displaced by the insertion of novel cdi sequences. Type-I and type-II CDI systems are equally abundant in A. baumannii, whereas A. pittii and A. nosocomialis predominantly feature type-I and type-II systems, respectively.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,Dipartimento di Sanità Pubblica, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Raffaele Zarrilli
- Dipartimento di Sanità Pubblica, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Pier Paolo Di Nocera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.
| |
Collapse
|