1
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
2
|
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. PLoS Pathog 2021; 17:e1009943. [PMID: 34555129 PMCID: PMC8491875 DOI: 10.1371/journal.ppat.1009943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/05/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.
Collapse
|
3
|
Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y, Wang T. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J 2021; 40:e105320. [PMID: 33591591 PMCID: PMC8167358 DOI: 10.15252/embj.2020105320] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Incorporation of microbiome data has recently become important for prevention, diagnosis, and treatment of colorectal cancer, and several species of bacteria were shown to be associated with carcinogenesis. However, the role of commensal fungi in colon cancer remains poorly understood. Here, we report that mice lacking the c-type lectin Dectin-3 (Dectin-3-/- ) show increased tumorigenesis and Candida albicans burden upon chemical induction. Elevated C. albicans load triggered glycolysis in macrophages and interleukin-7 (IL-7) secretion. IL-7 induced IL-22 production in RORγt+ (group 3) innate lymphoid cells (ILC3s) via aryl hydrocarbon receptor and STAT3. Consistently, IL-22 frequency in tumor tissues of colon cancer patients positively correlated with fungal burden, indicating the relevance of this regulatory axis in human disease. These results establish a C. albicans-driven crosstalk between macrophages and innate lymphoid cells in the intestine and expand our understanding on how commensal mycobiota regulate host immunity and promote tumorigenesis.
Collapse
Affiliation(s)
- Yanan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Tao Shi
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Xia Lu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Zhen Xu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Junxing Qu
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Zhiyong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Guoping Shi
- Department of Colorectal SurgeryThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Yugen Chen
- Department of Colorectal SurgeryThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology & Nanjing Stomatological HospitalJiangsu Key Laboratory of Molecular MedicineDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
4
|
Effects of Salmonella enterica serovar typhimurium sseK1 on macrophage inflammation-related cytokines and glycolysis. Cytokine 2021; 140:155424. [PMID: 33513526 DOI: 10.1016/j.cyto.2021.155424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/12/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), an important virulent intracellular pathogen, causes inflammatory gastroenteritis or typhoid. Macrophages play a key role in innate immunity against Salmonella. Salmonella secreted effector K1 (SseK1) encoded by SPI2 has been identified a novel translocated protein. To investigate the role of Salmonella enterica serovar Typhimurium sseK1 about the inflammation and glycolysis in macrophages, the levels of IL-1β, IL-2, IL-4, IL-6, IFN-γ and Nitric Oxide in macrophages infected by S. Typhimurium SL1344 wild-type (WT) group, ΔsseK1 mutant group and sseK1-complemented group were measured. And the glycolysis level was determined in RAW 264.7 cells infected with these different Salmonella strains. The results showed that groups infected by wild-type strain, sseK1 mutant and sseK1-complemented strain upregulated the production of IL-1β, IL-2, IL-4, IL-6, IFN-γ and NO at 3 h, 6 h and 12 h, respectively. The production of IL-1β, IL-2, IL-4, IL-6, IFN-γ and NO in wild-type strain group were significantly decreased compared with the ΔsseK1 mutant group, which suggested that sseK1 down-regulated the production of related inflammatory factors. Moreover, hexokinase, lactic acid and pyruvic acid levels significantly decreased by infection with sseK1 mutant compared to the wild-type strain. The ATP level of ΔsseK1 mutant group was remarkably increased than WT group and sseK1-complemented group. These indicated that the sseK1 enhanced the level of glycolysis of macrophages infected by S. Typhimurium. In summary, the results demonstrated that sseK1 can down-regulate the inflammation-related cytokines and enhance the glycolysis level in macrophages infected by S. Typhimurium, which may be beneficial for S. typhimurium survival in macrophages.
Collapse
|
5
|
Yu C, Du F, Zhang C, Li Y, Liao C, He L, Cheng X, Zhang X. Salmonella enterica serovar Typhimurium sseK3 induces apoptosis and enhances glycolysis in macrophages. BMC Microbiol 2020; 20:151. [PMID: 32517648 PMCID: PMC7282050 DOI: 10.1186/s12866-020-01838-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important infectious disease pathogen that can survive and replicate in macrophages. Glycolysis is essential for immune responses against S. Typhimurium infection in macrophages, and is also associated with apoptosis. S. Typhimurium secreted effector K3 (SseK3) was recently identified as a novel translated and secreted protein. However, there is no study about the role of sseK3 in the relationship between apoptosis and glycolysis in cells infected with S. Typhimurium. It is unclear whether this protein exerts a significant role in the progress of apoptosis and glycolysis in S. Typhimurium-infected macrophages. Results Macrophages were infected with S. Typhimurium SL1344 wild-type (WT), ΔsseK3 mutant or sseK3-complemented strain, and the effects of sseK3 on apoptosis and glycolysis were determined. The adherence and invasion in the ΔsseK3 mutant group were similar to that in the WT and sseK3-complemented groups, indicating that SseK3 was not essential for the adherence and invasion of S. Typhimurium in macrophages. However, the percentage of apoptosis in the ΔsseK3 mutant group was much lower than that in the WT and sseK3-complemented groups. Caspase-3, caspase-8, and caspase-9 enzyme activity in the ΔsseK3 mutant group were significantly lower than in the WT group and sseK3-complemented groups, indicating that sseK3 could improve the caspase-3, caspase-8, and caspase-9 enzyme activity. We also found that there were no significant differences in pyruvic acid levels between the three groups, but the lactic acid level in the ΔsseK3 mutant group was much lower than that in the WT and sseK3-complemented groups. The ATP levels in the ΔsseK3 mutant group were remarkably higher than those in the WT and sseK3-complemented groups. These indicated that the sseK3 enhanced the level of glycolysis in macrophages infected by S. Typhimurium. Conclusions S. Typhimurium sseK3 is likely involved in promoting macrophage apoptosis and modulating glycolysis in macrophages. Our results could improve our understanding of the relationship between apoptosis and glycolysis in macrophages induced by S. Typhimurium sseK3.
Collapse
Affiliation(s)
- Chuan Yu
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.,Luoyang Polytechnic, 6 Airport Road, Luoyang, 471023, Henan, China
| | - Fuyu Du
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chunjie Zhang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China. .,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.
| | - Yinju Li
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chengshui Liao
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Lei He
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.,Luoyang Polytechnic, 6 Airport Road, Luoyang, 471023, Henan, China
| | - Xiaojie Zhang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| |
Collapse
|
6
|
Escoll P, Buchrieser C. Metabolic reprogramming: an innate cellular defence mechanism against intracellular bacteria? Curr Opin Immunol 2019; 60:117-123. [PMID: 31247377 DOI: 10.1016/j.coi.2019.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
The limited metabolic resources of a cell represent an intriguing 'conflict of interest' during host-pathogen interactions, as the battle for nutrients might determine the outcome of an infection. To adapt their metabolic needs, innate immune cells such as monocytes, macrophages or dendritic cells reprogram their metabolism upon activation by microbial compounds. In turn, infection by intracellular bacteria provokes metabolic alterations of the host cell that benefit the pathogen. Here, we discuss the state-of-the-art knowledge on metabolic reprogramming of host cells upon activation or infection with intracellular bacteria. The study of the host-driven and pathogen-driven metabolic alterations that seem to co-exist during infection is an emerging field that will define the metabolic pathways that might be targeted to combat infection.
Collapse
Affiliation(s)
- Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires, UMR 3525, CNRS, Paris, France.
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, UMR 3525, CNRS, Paris, France.
| |
Collapse
|