1
|
Salehi Jouzani G, Sharafi R, Argentel-Martínez L, Peñuelas-Rubio O, Ozkan C, Incegul B, Goksu R, Hayta Z, Yilki D, Yazici B, Hancer V, Sansinenea E, Shin JH, El-Shabasy A, Azizoglu U. Novel insights into Bacillus thuringiensis: Beyond its role as a bioinsecticide. Res Microbiol 2025; 176:104264. [PMID: 39675400 DOI: 10.1016/j.resmic.2024.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This review explores the diverse applications of Bacillus thuringiensis (Bt) beyond its traditional role as a bioinsecticide. Bt produces a variety of compounds with distinct chemical structures and biological activities. These include antimicrobial agents effective against plant pathogens and bioactive compounds that promote plant growth through the production of siderophores, hormones, and enzymes. Additionally, Bt's industrial potential is highlighted, encompassing biofuel production, bioplastics, nanoparticle synthesis, food preservation, anticancer therapies, and heavy metal bioremediation. This critical analysis emphasizes recent advancements and applications, providing insights into Bt's role in sustainable agriculture, biotechnology, and environmental management.
Collapse
Affiliation(s)
- Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Sharafi
- National Center for Genetic Resources of Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd, Karaj, Iran
| | - Leandris Argentel-Martínez
- Department of Engineering, National Technological Institute of Mexico/Technological Institute of Yaqui Valley, Bacum, Sonora, Mexico
| | - Ofelda Peñuelas-Rubio
- Department of Engineering, National Technological Institute of Mexico/Technological Institute of Yaqui Valley, Bacum, Sonora, Mexico
| | - Ceyda Ozkan
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Bengisu Incegul
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Rana Goksu
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Zehra Hayta
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Deniz Yilki
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Beyza Yazici
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Vildan Hancer
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. C.P. 72570. Puebla, Pue. Mexico
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - A El-Shabasy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye; Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
2
|
Balla A, Silini A, Cherif-Silini H, Mapelli F, Borin S. Root colonization dynamics of alginate encapsulated rhizobacteria: implications for Arabidopsis thaliana root growth and durum wheat performance. AIMS Microbiol 2025; 11:87-125. [PMID: 40161245 PMCID: PMC11950683 DOI: 10.3934/microbiol.2025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Bioencapsulation in alginate capsules offers an interesting opportunity for the efficient delivery of microbial inoculants for agricultural purposes. The present study evaluated the ionic gelation technique to prepare beads loaded with two plant growth-promoting bacteria (PGPB), Bacillus thuringiensis strain B25 and Pantoea agglomerans strain Pa in 1% alginate supplemented with 5mM proline as an osmoprotectant. Capsule morphology, survival rate, encapsulation efficiency, and viability during 24 months of storage as well as the stability of PGP activities were studied. Our results indicate that more than 99% of bacteria were effectively trapped in the alginate beads, which successfully released live bacteria after 60 days of storage at room temperature. A considerable survival of B. thuringiensis B25 throughout the storage period was detected, while the inoculated concentration of 8.72 × 109 (±0.04 ×109) CFU/mL was reduced to 99.9% for P. agglomerans Pa after 24 months of storage. Notably, a higher survival of individually encapsulated bacteria was observed compared to their co-inoculation. The colonization capacity of model plant Arabidopsis thaliana roots by free and encapsulated bacteria was detected by the triphenyltetrazolium chloride test. Moreover, both strains effectively colonized the rhizosphere, rhizoplane, and endosphere of durum wheat plants and exerted a remarkable improvement in plant growth, estimated as a significant increase in the quantities of total proteins, sugars, and chlorophyll pigments, besides roots and shoots length. This study demonstrated that alginate-encapsulated B. thuringiensis B25 and P. agglomerans Pa could be used as inoculants in agriculture, as their encapsulation ensures robust protection, maintenance of viability and PGP activity, and controlled bacterial biostimulant release into the rhizosphere.
Collapse
Affiliation(s)
- Amel Balla
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif -1, 19000 Setif, Algeria
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif -1, 19000 Setif, Algeria
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif -1, 19000 Setif, Algeria
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| |
Collapse
|
3
|
Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, González-Aguilera J, Sudheer S, Salim LM, Lal S, Pradeep CK, Ortiz A, Sansinenea E, Hathurusinghe SHK, Shin JH, Babalola OO, Azizoglu U. Biotechnological advances in plant growth-promoting rhizobacteria for sustainable agriculture. World J Microbiol Biotechnol 2024; 41:21. [PMID: 39738995 DOI: 10.1007/s11274-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides. In this sense, biotechnological advancements respecting genomics and gene editing have been crucial to develop microbiome engineering which is pivotal in developing microbial consortia to improve crop production. Genome mining, which involves comprehensive analysis of the entire genome sequence data of PGPR, is crucial for identifying genes encoding valuable bacterial enzymes and metabolites. The CRISPR-Cas system, a cutting-edge genome-editing technology, has shown significant promise in beneficial microbial species. Advances in genetic engineering, particularly CRISPR-Cas, have markedly enhanced grain output, plant biomass, resistance to pests, and the sensory and nutritional quality of crops. There has been a great advance about the use of PGPR in important crops; however, there is a need to go further studying synthetic microbial communities, microbiome engineering, and gene editing approaches in field trials. This review focuses on future research directions involving several factors and topics around the use of PGPR putting special emphasis on biotechnological advances.
Collapse
Affiliation(s)
- Leandris Argentel-Martínez
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico.
| | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Angélica Herrera-Sepúlveda
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Jorge González-Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso Do Sul (UEMS), Cassilândia, MS, 79540-000, Brazil
| | - Surya Sudheer
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, 51005, Tartu, Estonia
| | - Linu M Salim
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Cochin, India
| | - Sunaina Lal
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Chittethu Kunjan Pradeep
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | | | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
4
|
Cheng S, Wang Q, Yang D, He Q, Deng J, Zhou Y, Zhang L, Jiang J. A Seed Endophytic Bacterium Cronobacter dublinensis BC-14 Enhances the Growth and Drought Tolerance of Echinochloa crus-galli. Microorganisms 2024; 12:2544. [PMID: 39770747 PMCID: PMC11677215 DOI: 10.3390/microorganisms12122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Successful seed germination and plant seedling growth often require association with endophytic bacteria. Barnyard grass (Echinochloa crus-galli (L.) P. Beauv.) is a main weed during rice cultivation and has frequently been found in drought-prone fields such as cornfields in recent years. To determine whether endophytic bacteria enhance the survival chances of barnyard grass in dryland conditions, endophytic bacteria were collected from barnyard grass seeds. An endophytic bacterial strain, BC-14, was selected and confirmed as Cronobacter dublinensis based on its morphology, physiology, biochemistry, and genomic information. Moreover, C. dublinensis BC-14 secreted IAA in the Luria-Bertani broth up to 28.44 mg/L after 5 days; it could colonize the roots of barnyard grass. After the inoculation with seeds or the well-mixed planting soil, the bacterium can significantly increase the root length and plant height of barnyard grass under drought conditions. When comparing with the control group on the 28th day, it can be seen that the bacterium can significantly increase the contents of chlorophyll b (up to 7.58 times) and proline (37.21%); improve the activities of superoxide dismutase, catalase, and peroxidase (36.90%, 51.51%, and 12.09%, respectively); and reduce the content of malondialdehyde around 25.92%, which are correlated to the drought tolerance. The bacterial genomic annotation revealed that it contains growth-promoting and drought-resistant functional genes. In a word, C. dublinensis BC-14 can help barnyard grass suppress drought stress, promote plant growth, and enhance biomass accumulation, which is helpful to interpret the mechanism of weed adaptability in dry environments.
Collapse
Affiliation(s)
- Sheng Cheng
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (S.C.); (Q.W.); (D.Y.); (Q.H.); (J.D.); (Y.Z.)
| | - Qingling Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (S.C.); (Q.W.); (D.Y.); (Q.H.); (J.D.); (Y.Z.)
| | - Dashan Yang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (S.C.); (Q.W.); (D.Y.); (Q.H.); (J.D.); (Y.Z.)
| | - Quanlong He
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (S.C.); (Q.W.); (D.Y.); (Q.H.); (J.D.); (Y.Z.)
| | - Jianxin Deng
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (S.C.); (Q.W.); (D.Y.); (Q.H.); (J.D.); (Y.Z.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Yangtze University, Jingzhou 434025, China
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (S.C.); (Q.W.); (D.Y.); (Q.H.); (J.D.); (Y.Z.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Yangtze University, Jingzhou 434025, China
| | - Lin Zhang
- Reclamation Foreign Economic Center, Department of Agriculture and Rural of Hubei Province, Wuhan 430071, China
| | - Jianwei Jiang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (S.C.); (Q.W.); (D.Y.); (Q.H.); (J.D.); (Y.Z.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Yangtze University, Jingzhou 434025, China
| |
Collapse
|
5
|
Romanenko MN, Shikov AE, Savina IA, Shmatov FM, Nizhnikov AA, Antonets KS. Genomic Insights into the Bactericidal and Fungicidal Potential of Bacillus mycoides b12.3 Isolated in the Soil of Olkhon Island in Lake Baikal, Russia. Microorganisms 2024; 12:2450. [PMID: 39770653 PMCID: PMC11676374 DOI: 10.3390/microorganisms12122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The dispersal of plant pathogens is a threat to the global economy and food industry which necessitates the need to discover efficient biocontrol agents such as bacteria, fungi, etc., inhibiting them. Here, we describe the Bacillus mycoides strain b12.3 isolated from the soil of Olkhon Island in Lake Baikal, Russia. By applying the co-cultivation technique, we found that the strain inhibits the growth of plant pathogens, such as the bacteria Xanthomonas campestris, Clavibacter michiganensis, and Pectobacterium atrospecticum, as well as the fungus Alternaria solani. To elucidate the genomic fundament explaining these activities, we leveraged next-generation whole-genome sequencing and obtained a high-quality assembly based on short reads. The isolate bore seven known BGCs (biosynthetic gene clusters), including those responsible for producing bacillibactin, fengycin, and petrobactin. Moreover, the genome contained insecticidal genes encoding for App4Aa1, Tpp78Ba1, and Spp1Aa1 toxins, thus implicating possible pesticidal potential. We compared the genome with the 50 closest assemblies and found that b12.3 is enriched with BGCs. The genomic analysis also revealed that genomic architecture corresponds to the experimentally observed activity spectrum implying that the combination of produced secondary metabolites delineates the range of inhibited phytopathogens Therefore, this study deepens our knowledge of the biology and ecology of B. mycoides residing in the Lake Baikal region.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Fedor M. Shmatov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Su L, Zhang J, Fan J, Li D, Zhao M, Wang Y, Pan H, Zhao L, Zhang X. Antagonistic Mechanism Analysis of Bacillus velezensis JLU-1, a Biocontrol Agent of Rice Pathogen Magnaporthe oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19657-19666. [PMID: 39190007 DOI: 10.1021/acs.jafc.4c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Magnaporthe oryzae, the causal agent of rice blast, is a fungal disease pathogen. Bacillus spp. have emerged as the most promising biological control agent alternative to chemical fungicides. In this study, the bacterial strain JLU-1 with significant antagonistic activity isolated from the rhizosphere soil of rice was identified as Bacillus velezensis through whole-genome sequencing, average nucleotide identity analysis, and 16S rRNA gene sequencing. Twelve gene clusters for secondary metabolite synthesis were identified in JLU-1. Furthermore, 3 secondary metabolites were identified in JLU-1, and the antagonistic effect of secondary metabolites against fungal pathogens was confirmed. Exposure to JLU-1 reduced the virulence of M. oryzae, and JLU-1 has the ability to induce the reactive oxygen species production of rice and improve the salt tolerance of rice. All of these results indicated that JLU-1 and its secondary metabolites have the promising potential to be developed into a biocontrol agent to control fungal diseases.
Collapse
Affiliation(s)
- Longhao Su
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiyue Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinyu Fan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dan Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meixi Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yichi Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Bernardes MB, Dal’Rio I, Rodrigues Coelho MR, Seldin L. Response of sweet potato cultivars to Bacillus velezensis T149-19 and Bacillus safensis T052-76 used as biofertilizers. Heliyon 2024; 10:e34377. [PMID: 39104509 PMCID: PMC11298936 DOI: 10.1016/j.heliyon.2024.e34377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
The global market of sweet potato (Ipomoea batatas (L.) Lam.) is continuously growing and, consequently, demands greater productivity from the agricultural sector. The use of biofertilizers facilitates plant growth by making essential nutrients available to crops or providing resistance against different abiotic and biotic factors. The strains Bacillus safensis T052-76 and Bacillus velezensis T149-19 have previously been inoculated in the sweet potato cultivar Ourinho, showing positive effects on plant shoot growth and inhibiting the phytopathogen Plenodomus destruens. To elucidate the effects of these strains on sweet potato growth, four different cultivars of sweet potato were selected: Capivara, IAPAR 69, Rosinha de Verdan and Roxa. The plants were grown in pots in a greenhouse and inoculated with the combined strains according to a randomized block design. A control (without the inoculation of both strains) was also used. A slight positive effect of the inoculation of the two Bacillus strains was observed on the aerial parts of some of the cultivars. An increase in the fresh weight of the sweet potatoes of the inoculated plants was obtained, varying from 2.7 to 11.4 %. The number of sweet potatoes obtained from the inoculated cultivars IAPAR 69 and Roxa increased 15.2 % and 16.7 %, respectively. The rhizosphere soil of each cultivar was further sampled for DNA extraction, and the 16S rRNA gene metabarcoding technique was used to determine how the introduction of these Bacillus strains influenced the rhizosphere bacterial community. The bacterial communities of the four different cultivars were dominated by Actinobacteria, Proteobacteria and Firmicutes. Nonmetric multidimensional scaling (NMDS) revealed that the rhizosphere bacterial communities of plants inoculated with Bacillus strains were more similar to each other than to the bacterial communities of uninoculated plants. This study highlights the contribution of these Bacillus strains to the promotion of sweet potato growth.
Collapse
Affiliation(s)
- Matheus Barbosa Bernardes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isabella Dal’Rio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Ramírez-Pool JA, Calderón-Pérez B, Ruiz-Medrano R, Ortiz-Castro R, Xoconostle-Cazares B. Bacillus Strains as Effective Biocontrol Agents Against Phytopathogenic Bacteria and Promoters of Plant Growth. MICROBIAL ECOLOGY 2024; 87:76. [PMID: 38801423 PMCID: PMC11129970 DOI: 10.1007/s00248-024-02384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.
Collapse
Affiliation(s)
- José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, Xalapa, Veracruz, 91073, Mexico.
| | - Beatriz Xoconostle-Cazares
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico.
| |
Collapse
|
9
|
Čėsna V, Čėsnienė I, Sirgedaitė-Šėžienė V, Marčiulynienė D. Changes in Biologically Active Compounds in Pinus sylvestris Needles after Lymantria monacha Outbreaks and Treatment with Foray 76B. PLANTS (BASEL, SWITZERLAND) 2024; 13:328. [PMID: 38276785 PMCID: PMC10821276 DOI: 10.3390/plants13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Due to climate warming, the occurrence of Lymantria monacha outbreaks is predicted to become more frequent, causing repeated and severe damage to conifer trees. Currently, the most effective way to control the outbreaks is aerial spraying with the bioinsecticide Foray 76B. The present study aimed to determine the impact of both: (i) L. monacha outbreaks and (ii) treatment with Foray 76B on tree resistance through the synthesis of polyphenols (TPC), flavonoids (TFC), photosynthetic pigments (chlorophyll a and b, carotenoids), lipid peroxidation (MDA), and soluble sugars (TSS) in Pinus sylvestris needles. Samples were collected from visually healthy (control), damaged/untreated, and damaged/Foray 76B-treated plots in 2020 and 2021 (following year after the outbreaks). The results revealed that L. monacha outbreaks contributed to the increase in TPC by 34.1% in 2020 and 26.7% in 2021. TFC negatively correlated with TPC, resulting in 17.6% and 11.1% lower concentrations in L. monacha-damaged plots in 2020 and 2021, respectively. A decrease in MDA was found in the damaged plots in both 2020 and 2021 (10.2% and 23.3%, respectively), which was associated with the increased synthesis of photosynthetic pigments in 2021. The research results also showed that in the following year after the outbreaks, the increase in the synthesis of photosynthetic pigments was also affected by the treatment with Foray 76B. Moreover, the increase in the synthesis of TPC and photosynthetic pigments in the damaged plots in 2021 illustrates the ability of pines to keep an activated defense system to fight biotic stress. Meanwhile, a higher synthesis of photosynthetic pigments in Foray 76B-treated plots indicates a possible effect of the treatment on faster tree growth and forest recovery after L. monacha outbreaks.
Collapse
Affiliation(s)
- Vytautas Čėsna
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, Girionys, LT-53101 Kaunas, Lithuania; (I.Č.); (V.S.-Š.); (D.M.)
| | | | | | | |
Collapse
|
10
|
Manfredini A, Malusà E, Canfora L. Aptamer-based technology for detecting Bacillus subtilis in soil. Appl Microbiol Biotechnol 2023; 107:6963-6972. [PMID: 37698608 DOI: 10.1007/s00253-023-12765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
The uncertainty associated with the impact of a bioinoculant on soil microbial community and, as a consequence, on soil quality, as well as the need to define its persistence, has prompted the demand for an accurate detection and tracking of the presence and the quantification of a target microbial inoculant in soil. Although DNA or RNA-based molecular detection are well established and commonly applied in this regard, alternative ligands such as DNA-aptamers have several advantages over them, such as low cost, ease of modification, ease of immobilisation on lab-on-chip or nanosensors, high stability and not thermolability. In this study, we used a toggle-cell SELEX method to isolate, select and characterise ssDNA (single-strand DNA) aptamers to detect a Bacillus subtilis strain which is being tested as a plant growth promoting rhizobacteria (PGPR) formulation. Two ssDNA aptamers (patenting application n.102022000022590) showed strong affinity and specificity for B. subtilis strains, with values of the kinetic parameters Kd (dissociation constant) in the nanomolar range and Bmax (maximum intensity of binding) around 1. Validation of the suitability of the aptamers was validated on three inoculated soils characterised by different chemical-physical features and in soil from a field trial with the formulated B. subtilis PCM/B 00105 strain. These are considered significant features to monitor B. subtilis strains in soil, practical to optimise bioinoculant application methods, support regulatory processes and foster the shift of agricultural production toward more sustainable cropping systems. KEY POINTS: • First DNA aptamers binding a B. subtilis strain included in a bioinoculum formulation. • First DNA aptamer binding B. subtilis in soil. • Aptamer may be a method for microbial inoculant detection in soil.
Collapse
Affiliation(s)
| | - Eligio Malusà
- CREA Centro di Ricerca Viticoltura ed Enologia, 31015, Conegliano, Italy
- National Institute of Horticultural Research, 96-100, Skierniewice, Poland
| | - Loredana Canfora
- CREA Centro di Ricerca Agricoltura e Ambiente, 00184, Rome, Italy
| |
Collapse
|
11
|
Alippi AM, Lamelza F, Torres Tejerizo GA, Abrahamovich E, López AC. Identification, phylogenetic analysis, and genome mining of the tetracycline-resistant Bacillus thuringiensis strain m401 reveal its potential for biotechnological and biocontrol applications. Rev Argent Microbiol 2023; 55:317-331. [PMID: 37400312 DOI: 10.1016/j.ram.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023] Open
Abstract
Bacillus thuringiensis is an entomopathogen belonging to the Bacillus cereus clade. We isolated a tetracycline-resistant strain called m401, recovered it from honey, and identified it as Bacillus thuringiensis sv. kumamotoensis based on the average nucleotide identity calculations (ANIb) comparison and the analysis of the gyrB gene sequences of different B. thuringiensis serovars. Sequences with homology to virulence factors [cytK, nheA, nheB, nheC, hblA, hblB, hblC, hblD, entFM, and inhA] and tetracycline resistance genes [tet(45), tet(V), and tet(M)/tet(W)/tet(O)/tet(S) family] were identified in the bacterial chromosome. The prediction of plasmid-coding regions revealed homolog sequences to the MarR and TetR/AcrR family of transcriptional regulators, toxins, and lantipeptides. The genome mining analysis revealed 12 regions of biosynthetic gene clusters responsible for synthesizing secondary metabolites. We identified biosynthetic gene clusters coding for bacteriocins, siderophores, ribosomally synthesized post-translationally modified peptide products, and non-ribosomal peptide synthetase clusters that provide evidence for the possible use of Bt m401 as a biocontrol agent. Furthermore, Bt m401 showed high inhibition against all Paenibacillus larvae genotypes tested in vitro. In conclusion, Bt m401 owns various genes involved in different biological processes, such as transductional regulators associated with antibiotic resistance, toxins, and antimicrobial peptides with potential biotechnological and biocontrol applications.
Collapse
Affiliation(s)
- Adriana M Alippi
- Unidad de Bacteriología, Centro de Investigaciones de Fitopatología (CIDEFI), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, S/N, 1900 La Plata, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA), Argentina.
| | - Florencia Lamelza
- Unidad de Bacteriología, Centro de Investigaciones de Fitopatología (CIDEFI), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, S/N, 1900 La Plata, Argentina
| | - Gonzalo A Torres Tejerizo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT La Plata), Argentina; IBBM (Instituto de Biotecnología y Biología Molecular), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calles 49 y 115 S/N, 1900 La Plata, Argentina
| | - Eliana Abrahamovich
- YPF Tecnología (Y-Tec), Av. del Petróleo S/N entre 129 y 143, 1923 Berisso, Argentina
| | - Ana C López
- Unidad de Bacteriología, Centro de Investigaciones de Fitopatología (CIDEFI), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, cc 31, calle 60 y 119, S/N, 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT La Plata), Argentina
| |
Collapse
|
12
|
Oliveira-Santos N, Pimentel Rodrigues Dos Santos LB, Fernandes JV, Cruz-Magalhães V, Loguercio LL. More than just an insect killer: The non-insecticidal activities of Bacillus thuringiensis with biotechnological potential. Toxicon 2023; 233:107261. [PMID: 37611671 DOI: 10.1016/j.toxicon.2023.107261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Bacillus thuringiensis (Bt) is known for the biological control of important insect pests, but scientific advances have revealed several interesting characteristics, in addition to this classical function as a bioinsecticide. To investigate the current knowledge about these non-insecticidal activities, a systematic research on primary data in the scientific literature was conducted on alternative functions of Bt with biotechnological potential. Out of a total of 140 articles selected, 15 non-insecticidal Bt activities were found. Publications related to this topic are available since 1971, and different metadata were reported, such as biomolecules and genes involved in Bt performances in non-insecticidal bioactivities. A total of 11 Bt activities with different effect measures (response variables) were identified, with an average of 48 distinct Bt strains evaluated per activity. Approximately 81.2% of all identified experiments/tests deal with the direct effects of Bt on target cells/organisms, with 36.3% of the strains within these studies tested for antibacterial action; of all microbial targets tested, 92.8% are bacteria, which led to 75.2% of the experimental conditions for all direct activities being performed in vitro. Regarding indirect Bt activities, 67.6% of these studies reported tritrophic Bt-plant-pathogen interactions. Bioremediation also appears as a relevant Bt activity being investigated in-depth. Alternative Bt activities offer innovative ways of developing biotechnology for different areas of anthropic interest; hence, we also focus on the possibility of finding multifunctional strains of Bt, as this may be advantageous from a bioeconomic point of view. Our findings are discussed in terms of research trends, aspects, details and depth of the current knowledge on alternative non-insecticidal Bt traits. We also discuss the potential application of this science for useful technological developments, aiming at solving issues related to human health, sustainable agriculture and environmental preservation/restoration.
Collapse
Affiliation(s)
- Naiane Oliveira-Santos
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus, BA, 45662-900, Brazil.
| | | | - Jacquelline Viana Fernandes
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus, BA, 45662-900, Brazil.
| | - Valter Cruz-Magalhães
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus, BA, 45662-900, Brazil; Department of Phytophatology (DFP), Federal University of Lavras (UFLA), Lavras, MG, Brazil.
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
13
|
Zhou M, Guan X, Deng T, Hu R, Qian L, Yang X, Wu B, Li J, He Q, Shu L, Yan Q, He Z. Synthetic phylogenetically diverse communities promote denitrification and stability. ENVIRONMENTAL RESEARCH 2023; 231:116184. [PMID: 37207729 DOI: 10.1016/j.envres.2023.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Denitrification is an important process of the global nitrogen cycle as some of its intermediates are environmentally important or related to global warming. However, how the phylogenetic diversity of denitrifying communities affects their denitrification rates and temporal stability remains unclear. Here we selected denitrifiers based on their phylogenetic distance to construct two groups of synthetic denitrifying communities: one closely related (CR) group with all strains from the genus Shewanella and the other distantly related (DR) group with all constituents from different genera. All synthetic denitrifying communities (SDCs) were experimentally evolved for 200 generations. The results showed that high phylogenetic diversity followed by experimental evolution promoted the function and stability of synthetic denitrifying communities. Specifically, the productivity and denitrification rates were significantly (P < 0.05) higher with Paracocus denitrificans as the dominant species (since the 50th generation) in the DR community than those in the CR community. The DR community also showed significantly (t = 7.119, df = 10, P < 0.001) higher stability through overyielding and asynchrony of species fluctuations, and showed more complementarity than the CR group during the experimental evolution. This study has important implications for applying synthetic communities to remediate environmental problems and mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Min Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
14
|
Khan V, Umar S, Iqbal N. Palliating Salt Stress in Mustard through Plant-Growth-Promoting Rhizobacteria: Regulation of Secondary Metabolites, Osmolytes, Antioxidative Enzymes and Stress Ethylene. PLANTS (BASEL, SWITZERLAND) 2023; 12:705. [PMID: 36840054 PMCID: PMC9963382 DOI: 10.3390/plants12040705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The severity of salt stress is alarming for crop growth and production and it threatens food security. Strategies employed for the reduction in stress are not always eco-friendly or sustainable. Plant-growth-promoting rhizobacteria (PGPR) could provide an alternative sustainable stress reduction strategy owning to its role in various metabolic processes. In this study, we have used two strains of PGPR, Pseudomonas fluorescens (NAIMCC-B-00340) and Azotobacter chroococcum Beijerinck 1901 (MCC 2351), either singly or in combination, and studied their effect in the amelioration of salt toxicity in mustard cultivar Pusa Jagannath via its influence on plants' antioxidants' metabolism, photosynthesis and growth. Individually, the impact of Pseudomonas fluorescens was better in reducing stress ethylene, oxidative stress, photosynthesis and growth but maximal alleviation was observed with their combined application. MDA and H2O2 content as indicator of oxidative stress decreased by 27.86% and 45.18% and osmolytes content (proline and glycine-betaine) increased by 38.8% and 26.3%, respectively, while antioxidative enzymes (SOD, CAT, APX and GR) increased by 58.40, 25.65, 81.081 and 55.914%, respectively, over salt-treated plants through the application of Pseudomonas fluorescens. The combined application maximally resulted in more cell viability and less damage to the leaf with lesser superoxide generation due to higher antioxidative enzymes and reduced glutathione formation (GSH). Considering the obtained results, we can supplement the PGPR in combination to plants subjected to salt stress, prevent photosynthetic and growth reduction, and increase the yield of plants.
Collapse
|
15
|
Hernández-Huerta J, Tamez-Guerra P, Gomez-Flores R, Delgado-Gardea MCE, Robles-Hernández L, Gonzalez-Franco AC, Infante-Ramirez R. Pepper growth promotion and biocontrol against Xanthomonas euvesicatoria by Bacillus cereus and Bacillus thuringiensis formulations. PeerJ 2023; 11:e14633. [PMID: 36710864 PMCID: PMC9881471 DOI: 10.7717/peerj.14633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
Background Bacillus genus has been used in horticultural crops as a biocontrol agent against insect pests, microbial phytopathogens, and plant growth-promoting bacteria (PGPB), representing an alternative to agrochemicals. In particular, B. cereus (Bc) and B. thuringiensis (Bt) have been studied for their fungicidal and insecticidal activities. However, their use as biofertilizer formulations and biocontrol agents against phytopathogenic bacteria is limited. Objective To evaluate Bc and Bt formulations as PGPB and biocontrol agents against the bacterial spot agent Xanthomonas euvesicatoria (Xe) in greenhouse-grown chili peppers. Methods Bc and Bt isolates obtained from soil samples were identified and characterized using conventional biochemical and multiplex PCR identification methods. Bioassays to determine Bc and Bt isolates potential as PGPB were evaluated on chili pepper seedlings in seedbeds. In addition, formulations based on Bc (F-BC26 and F-BC08) and Bt (F-BT24) strains were assessed as biofertilizers on pepper, under controlled conditions. Furthermore, in vitro antagonism assays were performed by confronting Bc and Bt isolate formulations against Xe isolates in direct (foliage) and indirect (resistance induction) phytopathogen biocontrol assays on pepper plants, which were grown under controlled conditions for 15 d after formulations treatment. Results Isolates were identified as Bc and Bt. Formulations significantly improved pepper growth in seedbeds and pots, whereas in vitro bioassays demonstrated the bactericidal effect of Bc and Bt strains against Xe isolates. Furthermore, assays showed significant plant protection by F-BC26, F-BC08, and F-BT24 formulated strains against Xe. Conclusion Results indicated that F-BT24 and F-BC26 isolates formulations promoted pepper growth and protected it against Xanthomonas euvesicatoria.
Collapse
Affiliation(s)
- Jared Hernández-Huerta
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Patricia Tamez-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Ricardo Gomez-Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | | | | | | | | |
Collapse
|
16
|
Al-Tammar FK, Khalifa AYZ. Plant growth promoting bacteria drive food security. BRAZ J BIOL 2022; 82:e267257. [PMID: 36515299 DOI: 10.1590/1519-6984.267257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
The essence of food security centers on ensuring availability and accessibility of foods in adequate amounts and quality for all populations at all times for an active and healthy life. Microorganisms are tiny bioreactors, which represent sustainable resources and promising approaches to bridging the gap between food production and consumption globally via various biotechnological applications. This review focuses on plant-growth promoting bacteria (PGPB) which exert their potential impacts on increasing soil fertility, plant growth, and productivity through a variety of processes, including direct, indirect, and synergistic mechanisms. PGPB plays a substantial role in accelerating nutrients' availability such as (N, P), producing phytohormones such as gibberellins, IAA, and bioactive compounds against biotic and abiotic stressors. Recent advances in PGPB will be addressed as a sustainable approach to satisfy global food demand.
Collapse
Affiliation(s)
- Fatimah K Al-Tammar
- King Faisal University, College of Science, Biological Sciences Department, Al-Ahsa, Saudi Arabia
| | - A Y Z Khalifa
- King Faisal University, College of Science, Biological Sciences Department, Al-Ahsa, Saudi Arabia.,Beni-Suef University, Faculty of Science, Botany and Microbiology Department, Beni-Suef, Egypt
| |
Collapse
|
17
|
Khan AR, Mustafa A, Hyder S, Valipour M, Rizvi ZF, Gondal AS, Yousuf Z, Iqbal R, Daraz U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. BIOLOGY 2022; 11:biology11121763. [PMID: 36552272 PMCID: PMC9775066 DOI: 10.3390/biology11121763] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, and vulnerability to both abiotic and biotic stresses are problems caused by the usage of these pesticides and fertilizers. The major goal of sustainable agriculture is to ameliorate productivity and reduce pests and disease prevalence to such a degree that prevents large-scale damage to crops. Agriculture is a composite interrelation among plants, microbes, and soil. Plant microbes play a major role in growth promotion and improve soil fertility as well. Bacillus spp. produces an extensive range of bio-chemicals that assist in plant disease control, promote plant development, and make them suitable for agricultural uses. Bacillus spp. support plant growth by N fixation, P and K solubilization, and phytohormone synthesis, in addition to being the most propitious biocontrol agent. Moreover, Bacilli excrete extracellular metabolites, including antibiotics, lytic enzymes, and siderophores, and demonstrate antagonistic activity against phytopathogens. Bacillus spp. boosts plant resistance toward pathogens by inducing systemic resistance (ISR). The most effective microbial insecticide against insects and pests in agriculture is Bacillus thuringiensis (Bt). Additionally, the incorporation of toxin genes in genetically modified crops increases resistance to insects and pests. There is a constant increase in the identified Bacillus species as potential biocontrol agents. Moreover, they have been involved in the biosynthesis of metallic nanoparticles. The main objective of this review article is to display the uses and application of Bacillus specie as a promising biopesticide in sustainable agriculture. Bacillus spp. strains that are antagonistic and promote plant yield attributes could be valuable in developing novel formulations to lead the way toward sustainable agriculture.
Collapse
Affiliation(s)
- Aimen Razzaq Khan
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Adeena Mustafa
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
- Correspondence: (S.H.); (M.V.)
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO 80217, USA
- Correspondence: (S.H.); (M.V.)
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | - Zubaida Yousuf
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umar Daraz
- State Key Laboratory of Grassland Agroecosystem, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiol Res 2022; 266:127218. [DOI: 10.1016/j.micres.2022.127218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
19
|
Pronk LJU, Bakker PAHM, Keel C, Maurhofer M, Flury P. The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. Environ Microbiol 2022; 24:3273-3289. [PMID: 35315557 PMCID: PMC9542179 DOI: 10.1111/1462-2920.15968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
Root-colonizing bacteria have been intensively investigated for their intimate relationship with plants and their manifold plant-beneficial activities. They can inhibit growth and activity of pathogens or induce defence responses. In recent years, evidence has emerged that several plant-beneficial rhizosphere bacteria do not only associate with plants but also with insects. Their relationships with insects range from pathogenic to mutualistic and some rhizobacteria can use insects as vectors for dispersal to new host plants. Thus, the interactions of these bacteria with their environment are even more complex than previously thought and can extend far beyond the rhizosphere. The discovery of this secret life of rhizobacteria represents an exciting new field of research that should link the fields of plant-microbe and insect-microbe interactions. In this review, we provide examples of plant-beneficial rhizosphere bacteria that use insects as alternative hosts, and of potentially rhizosphere-competent insect symbionts. We discuss the bacterial traits that may enable a host-switch between plants and insects and further set the multi-host lifestyle of rhizobacteria into an evolutionary and ecological context. Finally, we identify important open research questions and discuss perspectives on the use of these rhizobacteria in agriculture.
Collapse
Affiliation(s)
| | | | - Christoph Keel
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Pascale Flury
- Crop Protection – Phytopathology, Department of Crop SciencesResearch Institute of Organic Agriculture FiBLFrickSwitzerland
| |
Collapse
|
20
|
Liang Z, Ali Q, Wang Y, Mu G, Kan X, Ren Y, Manghwar H, Gu Q, Wu H, Gao X. Toxicity of Bacillus thuringiensis Strains Derived from the Novel Crystal Protein Cry31Aa with High Nematicidal Activity against Rice Parasitic Nematode Aphelenchoides besseyi. Int J Mol Sci 2022; 23:ijms23158189. [PMID: 35897765 PMCID: PMC9331774 DOI: 10.3390/ijms23158189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The plant parasitic nematode, Aphelenchoides besseyi, is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi, by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC50) value of 131.80 μg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi, which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2O2) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.
Collapse
Affiliation(s)
- Zhao Liang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Xuefei Kan
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Yajun Ren
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China;
| | - Qin Gu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Wu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5268
| |
Collapse
|
21
|
Carroll LM, Pierneef R, Mathole A, Atanda A, Matle I. Genomic Sequencing of Bacillus cereus Sensu Lato Strains Isolated from Meat and Poultry Products in South Africa Enables Inter- and Intranational Surveillance and Source Tracking. Microbiol Spectr 2022; 10:e0070022. [PMID: 35475639 PMCID: PMC9241823 DOI: 10.1128/spectrum.00700-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Members of the Bacillus cereus sensu lato species complex, also known as the B. cereus group, vary in their ability to cause illness but are frequently isolated from foods, including meat products; however, food safety surveillance efforts that use whole-genome sequencing (WGS) often neglect these potential pathogens. Here, we evaluate the surveillance and source tracking potential of WGS as applied to B. cereus sensu lato by (i) using WGS to characterize B. cereus sensu lato strains isolated during routine surveillance of meat products across South Africa (n = 25) and (ii) comparing the genomes sequenced here to all publicly available, high-quality B. cereus sensu lato genomes (n = 2,887 total genomes). Strains sequenced here were collected from meat products obtained from (i) retail outlets, processing plants, and butcheries across six South African provinces (n = 23) and (ii) imports held at port of entry (n = 2). The 25 strains sequenced here were partitioned into 15 lineages via in silico seven-gene multilocus sequence typing (MLST). While none of the South African B. cereus sensu lato strains sequenced here were identical to publicly available genomes, six MLST lineages contained multiple strains sequenced in this study, which were identical or nearly identical at the whole-genome scale (≤3 core single nucleotide polymorphisms). Five MLST lineages contained (nearly) identical genomes collected from two or three South African provinces; one MLST lineage contained nearly identical genomes from two countries (South Africa and the Netherlands), indicating that B. cereus sensu lato can spread intra- and internationally via foodstuffs. IMPORTANCE Nationwide foodborne pathogen surveillance programs that use high-resolution genomic methods have been shown to provide vast public health and economic benefits. However, Bacillus cereus sensu lato is often overlooked during large-scale routine WGS efforts. Thus, to our knowledge, no studies to date have evaluated the potential utility of WGS for B. cereus sensu lato surveillance and source tracking in foodstuffs. In this preliminary proof-of-concept study, we applied WGS to B. cereus sensu lato strains collected via South Africa's national surveillance program of domestic and imported meat products, and we provide strong evidence that B. cereus sensu lato can be disseminated intra- and internationally via the agro-food supply chain. Our results showcase that WGS has the potential to be used for source tracking of B. cereus sensu lato in foods, although future WGS and metadata collection efforts are needed to ensure that B. cereus sensu lato surveillance initiatives are on par with those of other foodborne pathogens.
Collapse
Affiliation(s)
- Laura M. Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Aletta Mathole
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Abimbola Atanda
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| |
Collapse
|
22
|
Qiu Z, Paungfoo-Lonhienne C, Ye J, Garcia AG, Petersen I, Di Bella L, Hobbs R, Ibanez M, Heenan M, Wang W, Reeves S, Schmidt S. Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environ Microbiol 2022; 24:3655-3671. [PMID: 35506306 PMCID: PMC9544788 DOI: 10.1111/1462-2920.16027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Fertilizers are costly inputs into crop systems. To compensate for inefficiencies and losses from soil, farmers apply on average double the amount of nitrogen (N) fertilizer acquired by crops. We explored if N efficiency improves with biofertilizers formulated with organic waste, mineral N or plant growth-promoting rhizobacteria (PGPR). We compared treatments receiving mineral N fertilizer or biofertilizers at industry-recommended (100%) or lower (60%) N rates at two commercial sugarcane farms. Biofertilizer at the 60% N-rate generated promising results at one farm with significantly higher biomass and sugar yield than the no-N control, which matched the 100% mineral N treatment. This yield difference was accompanied by a shift in microbial diversity and composition. Correlation analysis confirmed that shifts in microbial communities were strongly linked to soil mineral N levels, as well as crop productivity and yield. Microbial co-occurrence networks further revealed that biofertilizer, including treatments with an added PGPR, can enhance bacterial associations, especially in the context of complex fungal networks. Collectively, the results confirm that biofertilizers have quantifiable effects on soil microbial communities in a crop system setting, which underscores the opportunities for biofertilizers to promote N use efficiency and the circular N economy.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Jun Ye
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Axa Gonzalez Garcia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ian Petersen
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Lawrence Di Bella
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Richard Hobbs
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Minka Ibanez
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Marijke Heenan
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Weijin Wang
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Steven Reeves
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
23
|
The Response to Inoculation with PGPR Plus Orange Peel Amendment on Soybean Is Cultivar and Environment Dependent. PLANTS 2022; 11:plants11091138. [PMID: 35567141 PMCID: PMC9104577 DOI: 10.3390/plants11091138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) effects on plant yield are highly variable under field conditions due to competition with soil microbiota. Previous research determined that many Bacillus velezensis PGPR strains can use pectin as a sole carbon source and that seed inoculation with PGPR plus pectin-rich orange peel (OP) can enhance PGPR-mediated increases in plant growth. Because the previous studies used a single soybean cultivar, the objective of this research was to test the effect of PGPR plus OP inoculation on plant responses in a wide range of soybean cultivars. Preliminary screening with 20 soybean cultivars in the greenhouse showed that the PGPR plus OP produced a positive increase in all plant growth parameters when all cultivar data was averaged. However, when the inoculation response was examined cultivar by cultivar there was a range of cultivar response from a 60% increase in growth parameters to a 12% decrease, pointing to the presence of a cultivar-PGPR specificity. Further greenhouse and field experiments that studied cultivars with contrast responses to synbiotic inoculation revealed that the environment and/or the molecular interactions between the plant and microorganisms may play an important role in plant responsiveness.
Collapse
|
24
|
Belaouni HA, Compant S, Antonielli L, Nikolic B, Zitouni A, Sessitsch A. In-depth genome analysis of Bacillus sp. BH32, a salt stress-tolerant endophyte obtained from a halophyte in a semiarid region. Appl Microbiol Biotechnol 2022; 106:3113-3137. [PMID: 35435457 DOI: 10.1007/s00253-022-11907-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Endophytic strains belonging to the Bacillus cereus group were isolated from the halophytes Atriplex halimus L. (Amaranthaceae) and Tamarix aphylla L. (Tamaricaceae) from costal and continental regions in Algeria. Based on their salt tolerance (up to 5%), the strains were tested for their ability to alleviate salt stress in tomato and wheat. Bacillus sp. strain BH32 showed the highest potential to reduce salinity stress (up to + 50% and + 58% of dry weight improvement, in tomato and wheat, respectively, compared to the control). To determine putative mechanisms involved in salt tolerance and plant growth promotion, the whole genome of Bacillus sp. BH32 was sequenced, annotated, and used for comparative genomics against the genomes of closely related strains. The pangenome of Bacillus sp. BH32 and its closest relative was further analyzed. The phylogenomic analyses confirmed its taxonomic position, a member of the Bacillus cereus group, with intergenomic distances (GBDP analysis) pinpointing to a new taxon (digital DNA-DNA hybridization, dDDH < 70%). Genome mining unveiled several genes involved in stress tolerance, production of anti-oxidants and genes involved in plant growth promotion as well as in the production of secondary metabolites. KEY POINTS : • Bacillus sp. BH32 and other bacterial endophytes were isolated from halophytes, to be tested on tomato and wheat and to limit salt stress adverse effects. • The strain with the highest potential was then studied at the genomic level to highlight numerous genes linked to plant growth promotion and stress tolerance. • Pangenome approaches suggest that the strain belongs to a new taxon within the Bacillus cereus group.
Collapse
Affiliation(s)
- Hadj Ahmed Belaouni
- Laboratoire de Biologie Des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria.
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| | - Branislav Nikolic
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| | - Abdelghani Zitouni
- Laboratoire de Biologie Des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| |
Collapse
|
25
|
Zhang Y, Zhao M, Chen W, Yu H, Jia W, Pan H, Zhang X. Multi-Omics Techniques for Analysis Antifungal Mechanisms of Lipopeptides Produced by Bacillus velezensis GS-1 against Magnaporthe oryzae In Vitro. Int J Mol Sci 2022; 23:ijms23073762. [PMID: 35409115 PMCID: PMC8998706 DOI: 10.3390/ijms23073762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Magnaporthe oryzae is a fungal pathogen that causes rice blast, a highly destructive disease. In the present study, the bacteria strain GS-1 was isolated from the rhizosphere soil of ginseng and identified as Bacillus velezensis through 16S rRNA gene sequencing, whole genome assembly, and average nucleotide identity analysis. B. velezensis strain GS-1 exhibited significant antagonistic activity to several plant fungal pathogens. Through whole genome sequencing, 92 Carbohydrate-Active Enzymes and 13 gene clusters that encoded for secondary metabolites were identified. In addition, strain GS-1 was able to produce the lipopeptide compounds, surfactin, fengycin, and plantazolicin. The inhibitory effects of lipopeptide compounds on M. oryzae were confirmed, and the antagonistic mechanism was explored using transcriptomics and metabolomics analysis. Differential expressed genes (DEGs) and differential accumulated metabolites (DAMs) revealed that the inhibition of M. oryzae by lipopeptide produced by GS-1 downregulated the expression of genes involved in amino acid metabolism, sugar metabolism, oxidative phosphorylation, and autophagy. These results may explain why GS-1 has antagonistic activity to fungal pathogens and revealed the mechanisms underlying the inhibitory effects of lipopeptides produced by GS-1 on fungal growth, which may provide a theoretical basis for the potential application of B. velezensis GS-1 in future plant protection.
Collapse
|
26
|
Cataldo E, Fucile M, Mattii GB. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:162. [PMID: 35050049 PMCID: PMC8777853 DOI: 10.3390/plants11020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors) in the vineyard have become interesting maneuvers for counteracting vine diseases and improving grape quality. These also represent a partial alternative to soil fertilization by improving nutrient absorption and avoiding its leaching into the groundwater. Their role as elicitors has important repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes the PBs' implications in viticulture, gathering historical, functional, and applicative information. This work aims to highlight the innumerable beneficial effects on vines brought by these products. It also serves to spur the scientific community to a greater contribution in investigating the response mechanisms of the plant to positive inductions.
Collapse
Affiliation(s)
- Eleonora Cataldo
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (M.F.); (G.B.M.)
| | | | | |
Collapse
|
27
|
Niu H, Sun Y, Zhang Z, Zhao D, Wang N, Wang L, Guo H. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res 2021; 256:126956. [PMID: 34995970 DOI: 10.1016/j.micres.2021.126956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Entomopathogenic bacteria are commonly used as biological agents to control different insect pests. However, little is known about the role of bacterial entomopathogens as endophytes in regulating both plant growth and resistance against insect pests. Here, we applied the entomopathogenic bacterium Serratia marcescens S-JS1 via rice seed inoculation and evaluated its effects on host plant growth and resistance against the rice pest Nilaparvata lugens. Furthermore, the induction of defense-related secondary metabolites by the bacterium was assessed by GC-MS/MS. We showed that S-JS1 was able to endophytically colonize the roots and shoots of rice seedlings following seed inoculation. Colonized plants showed increased seed germination (9.4-13.3 %), root (8.2-36.4 %) and shoot lengths (4.1-22.3 %), and root (26.7-69.3 %) and shoot fresh weights (19.0-49.0 %) compared to plants without inoculation. We also identified the production of indole-3-acetic acid by S-JS1, which is likely involved in enhancing rice plant growth. In a two-choice test, N. lugens adults preferred to feed on untreated control plants than on plants treated with S-JS1. In the no-choice feeding tests, the survival of N. lugens nymphs that fed on S-JS1-treated plants was significantly lower than that of nymphs that fed on untreated plants. Additionally, seeds treated with 109 cfu/mL S-JS1 resulted in elevated levels of secondary metabolites, which may be associated with N. lugens resistance in rice plants. Therefore, we suggest that the entomopathogenic bacterium S. marcescens be considered a potentially promising endophyte for use in an innovative strategy for the integrated management of insect pests.
Collapse
Affiliation(s)
- Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yang Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
28
|
Gaona-Mendoza AS, Bravo Rivas MC, Barboza-Corona JE, Massange-Sánchez JA, Casados-Vázquez LE. Expression of thurincin H, ChiA74 and Cry proteins at the sporulation phase in Bacillus thuringiensis HD1. J Appl Microbiol 2021; 132:3049-3057. [PMID: 34967963 DOI: 10.1111/jam.15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
AIMS The objective of this study was to produce thurincin H, ChiA74 and Cry proteins together using B. thuringiensis subsp. kurstaki HD1 as a heterologous host. METHODS AND RESULTS pSTAB-ThurH and pSTAB-ChiA74 constructs were designed to produce thurincin H and chitinase respectively, at the sporulation phase. They were transformed into Bt HD1 generating the recombinant strains HD1/pSTAB-ThurH and HD1/pSTAB-ThurH/pSTAB-ChiA74. Antimicrobial and chitinolytic activity tests were performed with recombinant strains. Both strains were able to produce thurincin H up to 72 h with antibacterial activity of ~ 4000 U mg-1 . The HD1/pSTAB-ThurH/pSTAB-ChiA74 strain also showed chitinolytic activity of ~ 23 mU mg-1 at 72 h. All B. thuringiensis strains exhibited crystal formation at 72, and 96 h. In addition, the application of thurincin H in corn seeds increased the germination percentage and root length by 7 % and 10 %, respectively. CONCLUSIONS We showed that is possible to produce three proteins of biotechnological interest at the sporulation stage in B. thuringiensis, which two of them (thurincin H, and ChiA74) are naturally expressed in the vegetative stage. SIGNIFICANCE AND IMPACT OF THE STUDY These results form the basis for developing of a biocontrol and biostimulator product that can be used as an alternative for chemical application.
Collapse
Affiliation(s)
- America S Gaona-Mendoza
- Universidad de Guanajuato Campus Irapuato-Salamanca, Life Science Division, Graduate Program in Biosciences.,Food Department, Irapuato, Guanajuato, Mexico, 36500
| | - Martha C Bravo Rivas
- Universidad de Guanajuato Campus Irapuato-Salamanca, Life Science Division, Graduate Program in Biosciences.,Food Department, Irapuato, Guanajuato, Mexico, 36500
| | - José E Barboza-Corona
- Universidad de Guanajuato Campus Irapuato-Salamanca, Life Science Division, Graduate Program in Biosciences.,Food Department, Irapuato, Guanajuato, Mexico, 36500
| | - Julio A Massange-Sánchez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología, Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, 44270, Mexico
| | - Luz E Casados-Vázquez
- Universidad de Guanajuato Campus Irapuato-Salamanca, Life Science Division, Graduate Program in Biosciences.,Food Department, Irapuato, Guanajuato, Mexico, 36500.,Cátedra Conacyt-Universidad de Guanajuato
| |
Collapse
|
29
|
de Almeida JR, Bonatelli ML, Batista BD, Teixeira-Silva NS, Mondin M, Dos Santos RC, Bento JMS, de Almeida Hayashibara CA, Azevedo JL, Quecine MC. Bacillus thuringiensis RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant's production of volatile organic compounds during co-inoculation with Azospirillum brasilense Ab-V5. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:812-821. [PMID: 34433236 DOI: 10.1111/1758-2229.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The beneficial features of Bacillus thuringiensis (Bt) are not limited to its role as an insecticide; it is also able to promote plant growth interacting with plants and other plant growth-promoting rhizobacterium (PGPR). The PGPR Bt strain RZ2MS9 is a multi-trait maize growth promoter. We obtained a stable mutant of RZ2MS9 labelled with green fluorescent protein (RZ2MS9-GFP). We demonstrated that the Bt RZ2MS9-GFP successfully colonizes maize's roots and leaves endophytically. We evaluated whether RZ2MS9 has an additive effect on plant growth promotion when co-inoculated with Azospirillum brasilense Ab-V5. The two strains combined enhanced maize's roots and shoots dry weight around 50% and 80%, respectively, when compared to the non-inoculated control. However, non-differences were observed comparing RZ2MS9 alone and when co-inoculated with Ab-V5, In addition, we used co-inoculation experiments in glass chambers to analyse the plant's volatile organic compounds (VOCs) production during the maize-RZ2MS9 and maize-RZ2MS9-Ab-V5 interaction. We found that the single and co-inoculation altered maize's VOCs emission profile, with an increase in the production of indoles in the co-inoculation. Collectively, these results increase our knowledge about the interaction between the Bt and maize, and provide a new possibility of combined application with the commercial inoculant A. brasilense Ab-V5.
Collapse
Affiliation(s)
- Jaqueline Raquel de Almeida
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Maria Letícia Bonatelli
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Bruna Durante Batista
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Natalia Sousa Teixeira-Silva
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Mateus Mondin
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Rafaela Cristina Dos Santos
- Department of Entomology, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - José Maurício Simões Bento
- Department of Entomology, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | | | - João Lúcio Azevedo
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
30
|
Xu M, Guo J, Li T, Zhang C, Peng X, Xing K, Qin S. Antibiotic Effects of Volatiles Produced by Bacillus tequilensis XK29 against the Black Spot Disease Caused by Ceratocystis fimbriata in Postharvest Sweet Potato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13045-13054. [PMID: 34705454 DOI: 10.1021/acs.jafc.1c04585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black spot disease caused by Ceratocystis fimbriata is destructive to the production, transportation, and storage of sweet potato. The antifungal effects of Bacillus tequilensis XK29 against C. fimbriata through volatile organic compounds (VOCs) were evaluated in this study. The activated carbon assay proved that XK29 could exert antibiotic effects through volatiles. By optimizing the wheat seed weight, inoculation method, concentration, volume, and time, the antifungal activity of XK29 was significantly improved. XK29 fumigation inhibited spore formation and germination and changed the cell morphology of C. fimbriata. During the storage of sweet potato tuber roots, XK29 effectively controlled black spot disease and reduced the weight loss and malondialdehyde content. Metabolomic analysis revealed that 21 volatile compounds were released from XK29. Isovaleric acid, isobutyric acid, and 2-methylbutanoic acid effectively inhibited the growth of C. fimbriata. These results indicate that B. tequilensis XK29 has a good potential to be developed as a microbial fumigation agent.
Collapse
Affiliation(s)
- Mingjie Xu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Jianheng Guo
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Tengjie Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
- Wanbang Biopharmaceuticals Group Co., Ltd., Xuzhou 221001, Jiangsu, P.R. China
| | - Chunmei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Xue Peng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Ke Xing
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Sheng Qin
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| |
Collapse
|
31
|
Andriūnaitė E, Tamošiūnė I, Aleksandravičiūtė M, Gelvonauskienė D, Vinskienė J, Rugienius R, Baniulis D. Stimulation of Nicotiana tabacum L. In Vitro Shoot Growth by Endophytic Bacillus cereus Group Bacteria. Microorganisms 2021; 9:1893. [PMID: 34576789 PMCID: PMC8470653 DOI: 10.3390/microorganisms9091893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
In vitro plant tissue cultures face various unfavorable conditions, such as mechanical damage, osmotic shock, and phytohormone imbalance, which can be detrimental to culture viability, growth efficiency, and genetic stability. Recent studies have revealed a presence of diverse endophytic bacteria, suggesting that engineering of the endophytic microbiome of in vitro plant tissues has the potential to improve their acclimatization and growth. Therefore, the aim of this study was to identify cultivated tobacco (Nicotiana tabacum L.) endophytic bacteria isolates that are capable of promoting the biomass accumulation of in vitro tobacco shoots. Forty-five endophytic bacteria isolates were obtained from greenhouse-grown tobacco plant leaves and were assigned to seven Bacillus spp. and one Pseudomonas sp. based on 16S rRNA or genome sequence data. To evaluate the bacterial effect on in vitro plant growth, tobacco shoots were inoculated with 22 isolates selected from distinct taxonomic groups. Four isolates of Bacillus cereus group species B. toyonensis, B. wiedmannii and B. mycoides promoted shoot growth by 11-21%. Furthermore, a contrasting effect on shoot growth was found among several isolates of the same species, suggesting the presence of strain-specific interaction with the plant host. Comparative analysis of genome assemblies was performed on the two closely related B. toyonensis isolates with contrasting plant growth-modulating properties. This revealed distinct structures of the genomic regions, including a putative enzyme cluster involved in the biosynthesis of linear azol(in)e-containing peptides and polysaccharides. However, the function of these clusters and their significance in plant-promoting activity remains elusive, and the observed contrasting effects on shoot growth are more likely to result from genomic sequence variations leading to differences in metabolic or gene expression activity. The Bacillus spp. isolates with shoot-growth-promoting properties have a potential application in improving the growth of plant tissue cultures in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas str. 30, Babtai, 54333 Kaunas reg., Lithuania; (E.A.); (I.T.); (M.A.); (D.G.); (J.V.); (R.R.)
| |
Collapse
|
32
|
The fate of plant growth-promoting rhizobacteria in soilless agriculture: future perspectives. 3 Biotech 2021; 11:382. [PMID: 34350087 DOI: 10.1007/s13205-021-02941-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
The application of plant growth-promoting rhizobacteria (PGPRs) can be an excellent and eco-friendly alternative to the use of chemical fertilizers. While PGPRs are often used in traditional agriculture to facilitate yield increases, their use in soilless agriculture has been limited. Soilless agriculture is growing in popularity among commercial farmers because it eliminates soil-borne problems, and the essential strategy is to keep the system as clean as possible. However, a new trend is the inclusion of PGPRs to enhance plant development. Despite the plethora of research that has been performed to date, there remains a huge knowledge gap that needs to be addressed to facilitate the commercialization of PGPRs for sustainable soilless agriculture. Hence, the development of proper strategies and additional research and trials are required. The present review provides an update on recent developments in the use of PGPRs in soilless agriculture, examining these bacteria from different perspectives in an attempt to generate critical discussion and aid in the understanding of the interaction between soilless agriculture and PGPRs.
Collapse
|
33
|
Jakubska-Busse A, Kędziora A, Cieniuch G, Korzeniowska-Kowal A, Bugla-Płoskońska G. Proteomics-based identification of orchid-associated bacteria colonizing the Epipactis albensis, E. helleborine and E. purpurata (Orchidaceae, Neottieae). Saudi J Biol Sci 2021; 28:4029-4038. [PMID: 34220261 PMCID: PMC8241612 DOI: 10.1016/j.sjbs.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
Using proteomics-based identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we conducted the first analysis of the composition of endophytic bacteria isolated from different parts of selected Epipactis species, i.e. the buds, the inflorescences and the central part of the shoots, as well as the rhizomes. We identified aerobic and anaerobic bacteria, including such taxa as Bacillus spp., Clostridium spp., Pseudomonas spp. and Stenotrophomonas spp., which may be considered as promoting plant growth. Because most of the indicated bacteria genera belong to spore-producing taxa (spores allow bacterial symbionts to survive adverse conditions), we suggest that these bacteria species contribute to the adaptation of orchids to the environment. We found clear differences in the microbiome between investigated closely related taxa, i.e., Epipactis albensis, E. helleborine, E. purpurata and E. purpurata f. chlorophylla. Some of the analysed orchid species, i.e. E. albensis and E. purpurata co-occur in habitats, and their bacterial microbiomes differ from each other.
Collapse
Affiliation(s)
- Anna Jakubska-Busse
- University of Wroclaw, Faculty of Biological Sciences, Department of Botany, 50-328 Wroclaw, Poland
| | - Anna Kędziora
- University of Wroclaw, Faculty of Biological Sciences, Department of Botany, 50-328 Wroclaw, Poland
| | - Gabriela Cieniuch
- University of Wroclaw, Faculty of Biological Sciences, Department of Microbiology, 51-148 Wroclaw, Poland
| | - Agnieszka Korzeniowska-Kowal
- Polish Collection of Microorganisms (PCM), Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland
| | - Gabriela Bugla-Płoskońska
- University of Wroclaw, Faculty of Biological Sciences, Department of Microbiology, 51-148 Wroclaw, Poland
| |
Collapse
|
34
|
Rathore P, Joy SS, Yadav R, Ramakrishna W. Co-occurrence and patterns of phosphate solubilizing, salt and metal tolerant and antibiotic-resistant bacteria in diverse soils. 3 Biotech 2021; 11:356. [PMID: 34249597 DOI: 10.1007/s13205-021-02904-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/19/2021] [Indexed: 11/28/2022] Open
Abstract
Soil is a treasure chest for beneficial bacteria with applications in diverse fields, which include agriculture, rhizoremediation, and medicine. Metagenomic analysis of four soil samples identified Proteobacteria as the dominant phylum (32-52%) followed by the phylum Acidobacteria (11-21% in three out of four soils). Bacteria that were prevalent at the highest level belong to the genus Kaistobacter (8-19%). PICRUSt analysis predicted KEGG functional pathways associated with the metagenomes of the four soils. The identified pathways could be attributed to metal tolerance, antibiotic resistance and plant growth promotion. The prevalence of phosphate solubilizing bacteria (PSB) was investigated in four soil samples, ranging from 26 to 59% of the total culturable bacteria. The abundance of salt-tolerant and metal-tolerant bacteria showed considerable variation ranging from 1 to 62% and 4-69%, respectively. In comparison, the soil with the maximum prevalence of temperature-tolerant and antibiotic-resistant bacteria was close 30%. In this study, the common pattern observed was that PSB were the most abundant in all types of soils compared to other traits. Conversely, most of the isolates, which are salt-tolerant, copper-tolerant, and ampicillin-resistant, showed phosphate solubilization activity. The sequencing of the partial 16S-rRNA gene revealed that PSB belonged to Bacillus genera. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02904-7.
Collapse
Affiliation(s)
- Parikshita Rathore
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab India
| | - Sherina Sara Joy
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab India
| | - Radheshyam Yadav
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab India
| | - Wusirika Ramakrishna
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab India
| |
Collapse
|
35
|
Molecular characterization of the chitinase genes of native Bacillus thuringiensis isolates and their antagonistic activity against three important phytopathogenic fungi. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00802-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Adeniji AA, Ayangbenro AS, Babalola OO. Genomic Exploration of Bacillus thuringiensis MORWBS1.1, Candidate Biocontrol Agent, Predicts Genes for Biosynthesis of Zwittermicin, 4,5-DOPA Dioxygenase Extradiol, and Quercetin 2,3-Dioxygenase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:602-605. [PMID: 33555220 DOI: 10.1094/mpmi-10-20-0272-sc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many strains from Bacillus thuringiensis are known for their genomic robustness and antimicrobial potentials. As a result, the quest for their biotechnological applications, especially in the agroindustry (e.g., as biopesticides), has increased over the years. This study documents the genome sequencing and probing of a Fusarium antagonist (B. thuringiensis strain MORWBS1.1) with possible biopesticidal metabolite producing capacity from South Africa. Based on in vitro evaluation and in silico antiSMASH investigation, B. thuringiensis strain MORWBS1.1 exhibited distinctive genomic properties that could be further exploited for in planta and food additive production purposes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Adetomiwa A Adeniji
- Human Metabolomics, Faculty of Natural and Agricultural Science, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Ayansina S Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola O Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
37
|
Belousova ME, Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems. Toxins (Basel) 2021; 13:toxins13050355. [PMID: 34065665 PMCID: PMC8155924 DOI: 10.3390/toxins13050355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides' safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants.
Collapse
Affiliation(s)
- Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
38
|
Carroll LM, Cheng RA, Wiedmann M, Kovac J. Keeping up with the Bacillus cereus group: taxonomy through the genomics era and beyond. Crit Rev Food Sci Nutr 2021; 62:7677-7702. [PMID: 33939559 DOI: 10.1080/10408398.2021.1916735] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Bacillus cereus group, also known as B. cereus sensu lato (s.l.), is a species complex that contains numerous closely related lineages, which vary in their ability to cause illness in humans and animals. The classification of B. cereus s.l. isolates into species-level taxonomic units is thus essential for informing public health and food safety efforts. However, taxonomic classification of these organisms is challenging. Numerous-often conflicting-taxonomic changes to the group have been proposed over the past two decades, making it difficult to remain up to date. In this review, we discuss the major nomenclatural changes that have accumulated in the B. cereus s.l. taxonomic space prior to 2020, particularly in the genomic sequencing era, and outline the resulting problems. We discuss several contemporary taxonomic frameworks as applied to B. cereus s.l., including (i) phenotypic, (ii) genomic, and (iii) hybrid nomenclatural frameworks, and we discuss the advantages and disadvantages of each. We offer suggestions as to how readers can avoid B. cereus s.l. taxonomic ambiguities, regardless of the nomenclatural framework(s) they choose to employ. Finally, we discuss future directions and open problems in the B. cereus s.l. taxonomic realm, including those that cannot be solved by genomic approaches alone.
Collapse
Affiliation(s)
- Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
39
|
Koskey G, Mburu SW, Awino R, Njeru EM, Maingi JM. Potential Use of Beneficial Microorganisms for Soil Amelioration, Phytopathogen Biocontrol, and Sustainable Crop Production in Smallholder Agroecosystems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Smallholder agroecosystems play a key role in the world's food security providing more than 50% of the food produced globally. These unique agroecosystems face a myriad of challenges and remain largely unsupported, yet they are thought to be a critical resource for feeding the projected increasing human population in the coming years. The new challenge to increase food production through agricultural intensification in shrinking per capita arable lands, dwindling world economies, and unpredictable climate change, has led to over-dependence on agrochemical inputs that are often costly and hazardous to both human and animal health and the environment. To ensure healthy crop production approaches, the search for alternative ecofriendly strategies that best fit to the smallholder systems have been proposed. The most common and widely accepted solution that has gained a lot of interest among researchers and smallholder farmers is the use of biological agents; mainly plant growth promoting microorganisms (PGPMs) that provide essential agroecosystem services within a holistic vision of enhancing farm productivity and environmental protection. PGPMs play critical roles in agroecological cycles fundamental for soil nutrient amelioration, crop nutrient improvement, plant tolerance to biotic and abiotic stresses, biocontrol of pests and diseases, and water uptake. This review explores different research strategies involving the use of beneficial microorganisms, within the unique context of smallholder agroecosystems, to promote sustainable maintenance of plant and soil health and enhance agroecosystem resilience against unpredictable climatic perturbations.
Collapse
|
40
|
Zhu Y, Wang H, Lv X, Zhang Y, Wang W. Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Sci Rep 2020; 10:20112. [PMID: 33208871 PMCID: PMC7674410 DOI: 10.1038/s41598-020-77142-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
Consistent use of large amounts of fertilizers, pesticides, and mulch can cause the accumulation of harmful substances in cotton plants. Among these harmful substances, cadmium (Cd), an undegradable element, stands out as being particularly highly toxic to plants. The objective of this study was to evaluate the ability of biochar (3%) and biofertilizer (1.5%) to decrease Cd uptake, increase cotton dry weight, and modulate the activities of photosynthetic and peroxidase (POD), superoxide dismutase (SOD), catalase enzyme (CAT) in cotton (Gossypium hirsutum L.) grown in Cd-contaminated soil (0, 1, 2, or 4 mg Cd kg-1 soil) in pots. These studies showed that, as expected, exogenous Cd adversely affects cotton chlorophyll and photosynthesis. However, biochar and biofertilizer increased cotton dry weight by an average of 16.82% and 32.62%, respectively. Meanwhile, biochar and biofertilizer decreased the accumulation of Cd in cotton organs, and there was a significant reduction in the amount of Cd in bolls (P < 0.05). Biochar and biofertilizer have a positive impact on cotton chlorophyll content, net photosynthesis, stomatal conductance, transpiration rate, and intercellular CO2 concentration. Thus, the addition of biochar and biofertilizer promote cotton growth. However, biochar and biofertilizer increased the SOD activity of leaves (47.70% and 77.21%), CAT activity of leaves (35.40% and 72.82%), SOD activity of roots (33.62% and 39.37%), and CAT activity of roots (36.91% and 60.29%), respectively, and the addition of biochar and biofertilizer decreased the content of MDA and electrolyte leakage rate. Redundancy analyses showed that biochar and biofertilizer also improved SOD and POD activities by reducing the heavy metal-induced oxidative stress in cotton and reducing Cd uptake in cotton organs. Therefore, biochar and biofertilizer have a positive effect on the growth of cotton.
Collapse
Affiliation(s)
- Yongqi Zhu
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Haijiang Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| | - Xin Lv
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| | - Yutong Zhang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Weiju Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| |
Collapse
|
41
|
Azizoglu U, Jouzani GS, Yilmaz N, Baz E, Ozkok D. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139169. [PMID: 32460068 DOI: 10.1016/j.scitotenv.2020.139169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Entomopathogenic bacteria (EPBs), insect pathogens that produce pest-specific toxins, are environmentally-friendly alternatives to chemical insecticides. However, the most important problem with EPBs application is their limited field stability. Moreover, environmental factors such as solar radiation, leaf temperature, and vapor pressure can affect the pathogenicity of these pathogens and their toxins. Scientists have conducted intensive research to overcome such problems. Genetic engineering has great potential for the development of new engineered entomopathogens with more resistance to adverse environmental factors. Genetically modified entomopathogenic bacteria (GM-EPBs) have many advantages over wild EPBs, such as higher pathogenicity, lower spraying requirements and longer-term persistence. Genetic manipulations have been mostly applied to members of the bacterial genera Bacillus, Lysinibacillus, Pseudomonas, Serratia, Photorhabdus and Xenorhabdus. Although many researchers have found that GM-EPBs can be used safely as plant protection bioproducts, limited attention has been paid to their potential ecological impacts. The main concerns about GM-EPBs and their products are their potential unintended effects on beneficial insects (predators, parasitoids, pollinators, etc.) and rhizospheric bacteria. This review address recent update on the significant role of GM-EPBs in biological control, examining them through different perspectives in an attempt to generate critical discussion and aid in the understanding of their potential ecological impacts.
Collapse
Affiliation(s)
- Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey.
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nihat Yilmaz
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Ethem Baz
- Laboratory and Veterinary Health Department, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Duran Ozkok
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| |
Collapse
|
42
|
Martínez-Zavala SA, Barboza-Pérez UE, Hernández-Guzmán G, Bideshi DK, Barboza-Corona JE. Chitinases of Bacillus thuringiensis: Phylogeny, Modular Structure, and Applied Potentials. Front Microbiol 2020; 10:3032. [PMID: 31993038 PMCID: PMC6971178 DOI: 10.3389/fmicb.2019.03032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
The most important bioinsecticide used worldwide is Bacillus thuringiensis and its hallmark is a rich variety of insecticidal Cry protein, many of which have been genetically engineered for expression in transgenic crops. Over the past 20 years, the discovery of other insecticidal proteins and metabolites synthesized by B. thuringiensis, including chitinases, antimicrobial peptides, vegetative insecticidal proteins (VIP), and siderophores, has expanded the applied value of this bacterium for use as an antibacterial, fungicidal, and nematicidal resource. These properties allow us to view B. thuringiensis not only as an entity for the production of a particular metabolite, but also as a multifaceted microbial factory. In particular, chitinases of B. thuringiensis are secreted enzymes that hydrolyze chitin, an abundant molecule in the biosphere, second only to cellulose. The observation that chitinases increase the insecticidal activity of Cry proteins has stimulated further study of these enzymes produced by B. thuringiensis. Here, we provide a review of a subset of our knowledge of B. thuringiensis chitinases as it relates to their phylogenetic relationships, regulation of expression, biotechnological potential for controlling entomopathogens, fungi, and nematodes, and their use in generating chitin-derived oligosaccharides (ChOGs) that possess antibacterial activities against a number of clinically significant bacterial pathogens. Recent advances in the structural organization of these enzymes are also discussed, as are our perspective for future studies.
Collapse
Affiliation(s)
- Sheila A Martínez-Zavala
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico
| | - Uriel E Barboza-Pérez
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gustavo Hernández-Guzmán
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico.,Department of Biological Sciences, California Baptist University, Riverside, CA, United States
| | - Dennis K Bideshi
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.,Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico
| | - José E Barboza-Corona
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico.,Department of Biological Sciences, California Baptist University, Riverside, CA, United States
| |
Collapse
|