1
|
Van TTB, Anh NTL, Vo VT, Thi NPA. Isolation and characterization of a novel bacteriophage ST1749 and its effectiveness against Vibrio parahaemolyticus and Salmonella spp. Virus Res 2025; 356:199579. [PMID: 40300702 PMCID: PMC12123327 DOI: 10.1016/j.virusres.2025.199579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
Bacteriophages are extensively employed across various fields, including medicine, veterinary medicine, the food industry, agriculture, biotechnology, and pharmacy, owing to their numerous advantages. These advantages include rapid clearance of pathogens, self-propagation at the infection site, host specificity, potential for genetic modification, ease of isolation, stability, and low production costs. This study isolated a bacteriophage from shrimp pond wastewater in the Mekong Delta region. The bacteriophage was identified as a lytic bacteriophage belonging to the genus Bruyoghevirus, class Caudoviricetes, with the ability to effectively lyse three bacterial strains: V. parahaemolyticus, Salmonella enteritidis, and Salmonella typhimurium. Growth curve analysis revealed variations in the latency period and the number of phages produced during the life cycle across all three hosts. Bacteriophage Produced 117, 176, and 52 PFU/cell against V. parahaemolyticus, S. enteritidis, and S. typhimurium, respectively. Phage ST1749 demonstrated activity across a broad range of temperatures (-20 °C to 70 °C) and pH levels (2 to 10), with optimal stability observed at pH 5 to 7. Furthermore, phage ST1749 exhibited biofilm-degrading and lytic capabilities against the three bacterial strains studied. These findings suggest that phage ST1749 has the potential to serve as a biocontrol agent for treating infections caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Truong Thi Bich Van
- Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam.
| | - Nguyen Thi Loan Anh
- Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Van-Thanh Vo
- Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Pham Anh Thi
- Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| |
Collapse
|
2
|
Albarella D, Dall’Ara P, Rossi L, Turin L. Bacteriophage Therapy in Freshwater and Saltwater Aquaculture Species. Microorganisms 2025; 13:831. [PMID: 40284667 PMCID: PMC12029768 DOI: 10.3390/microorganisms13040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Bacteriophages, or phages, which are viruses with specifically restricted tropism for bacteria, have regained interest in the last few decades as alternative therapeutic agents against antibiotic-resistant pathogenic bacteria in animals and humans worldwide. In this context, bacteriophage therapy has been developed to treat bacterial infections of cultured fish, shellfish, and crustaceans. Nowadays, aquaculture is the only feasible solution to meet the continuously growing global demand for high-quality seafood. As such, it is crucial to focus on controlling the spread of pathogenic bacteria, as they have a significant economic impact on aquaculture systems. Overall, the documented research supports the application of bacteriophage therapy in aquaculture, but also underlies the need for additional studies, as it is still mostly in the scientific stage. This review aims to highlight and critically examine recent advancements in the application of bacteriophages to treat the most common bacterial infectious diseases in both freshwater and saltwater aquaculture species, providing topical perspectives and innovative advances.
Collapse
Affiliation(s)
| | | | | | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; (D.A.); (P.D.); (L.R.)
| |
Collapse
|
3
|
Unzueta-Martínez A, Girguis PR. Taxonomic diversity and functional potential of microbial communities in oyster calcifying fluid. Appl Environ Microbiol 2025; 91:e0109424. [PMID: 39665561 PMCID: PMC11784444 DOI: 10.1128/aem.01094-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024] Open
Abstract
Creating and maintaining an appropriate chemical environment is essential for biomineralization, the process by which organisms precipitate minerals to form their shells or skeletons, yet the mechanisms involved in maintaining calcifying fluid chemistry are not fully defined. In particular, the role of microorganisms in facilitating or hindering animal biomineralization is poorly understood. Here, we investigated the taxonomic diversity and functional potential of microbial communities inhabiting oyster calcifying fluid. We used shotgun metagenomics to survey calcifying fluid microbial communities from three different oyster harvesting sites. There was a striking consistency in taxonomic composition across the three collection sites. We also observed archaea and viruses that had not been previously identified in oyster calcifying fluid. Furthermore, we identified microbial energy-conserving metabolisms that could influence the host's calcification, including genes involved in sulfate reduction and denitrification that are thought to play pivotal roles in inorganic carbon chemistry and calcification in microbial biofilms. These findings provide new insights into the taxonomy and functional capacity of oyster calcifying fluid microbiomes, highlighting their potential contributions to shell biomineralization, and contribute to a deeper understanding of the interplay between microbial ecology and biogeochemistry that could potentially bolster oyster calcification. IMPORTANCE Previous research has underscored the influence of microbial metabolisms in carbonate deposition throughout the geological record. Despite the ecological importance of microbes to animals and inorganic carbon transformations, there have been limited studies characterizing the potential role of microbiomes in calcification by animals such as bivalves. Here, we use metagenomics to investigate the taxonomic diversity and functional potential of microbial communities in calcifying fluids from oysters collected at three different locations. We show a diverse microbial community that includes bacteria, archaea, and viruses, and we discuss their functional potential to influence calcifying fluid chemistry via reactions like sulfate reduction and denitrification. We also report the presence of carbonic anhydrase and urease, both of which are critical in microbial biofilm calcification. Our findings have broader implications in understanding what regulates calcifying fluid chemistry and consequentially the resilience of calcifying organisms to 21st century acidifying oceans.
Collapse
Affiliation(s)
- Andrea Unzueta-Martínez
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Molina-Quiroz RC, Silva-Valenzuela CA. Interactions of Vibrio phages and their hosts in aquatic environments. Curr Opin Microbiol 2023; 74:102308. [PMID: 37062175 DOI: 10.1016/j.mib.2023.102308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
Bacteriophages (phages) are viruses that specifically infect bacteria. These viruses were discovered a century ago and have been used as a model system in microbial genetics and molecular biology. In order to survive, bacteria have to quickly adapt to phage challenges in their natural settings. In turn, phages continuously develop/evolve mechanisms for battling host defenses. A deeper understanding of the arms race between bacteria and phages is essential for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections. Vibrio species and their phages (vibriophages) are a suitable model to study these interactions. Phages are highly ubiquitous in aquatic environments and Vibrio are waterborne bacteria that must survive the constant attack by phages for successful transmission to their hosts. Here, we review relevant literature from the past two years to delve into the molecular interactions of Vibrio species and their phages in aquatic niches.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | | |
Collapse
|
5
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
6
|
Zhu P, Liu G, Liu C, Yang L, Liu M, Xie K, Shi S, Shi M, Jiang J. Novel RNA viruses in oysters revealed by virome. IMETA 2022; 1:e65. [PMID: 38867911 PMCID: PMC10989897 DOI: 10.1002/imt2.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 06/14/2024]
Abstract
Eighteen novel RNA viruses were found in Crassostrea hongkongensis. Phylogenic analysis shows evidence of recombination between major genes of viruses. Picobirnaviruses are ubiquitous and abundant in oysters.
Collapse
Affiliation(s)
- Peng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouGuangdongChina
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghaiChina
| | - Guang‐Feng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouGuangdongChina
| | - Chang Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouGuangdongChina
| | - Li‐Ling Yang
- One Health Biotechnology (Suzhou) Co., Ltd.JiangsuChina
| | - Min Liu
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghaiChina
| | - Ke‐Ming Xie
- College of Life Science and BiopharmacyGuangdong Pharmaceutical UniversityGuangzhouGuangdongChina
| | - Shao‐Kun Shi
- Ministry of Fisheries TechnologyShenzhen Fisheries Development Research CenterShenzhenGuangdongChina
| | - Mang Shi
- School of MedicineSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jing‐Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouGuangdongChina
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghaiChina
- College of Life Science and BiopharmacyGuangdong Pharmaceutical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Isolation and Characterization of a Lytic Vibrio parahaemolyticus Phage vB_VpaP_GHSM17 from Sewage Samples. Viruses 2022; 14:v14081601. [PMID: 35893666 PMCID: PMC9331696 DOI: 10.3390/v14081601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen and the main cause of diarrheal diseases transmitted by seafood such as fish, shrimp, and shellfish. In the current study, a novel lytic phage infecting V. parahaemolyticus, vB_VpaP_GHSM17, was isolated from the sewage of a seafood market, Huangsha, Guangzhou, and its morphology, biochemistry, and taxonomy features were identified. Morphological observation revealed that GHSM17 had an icosahedral head with a short, non-contractile tail. The double-stranded DNA genome of GHSM17 consisted of 43,228 bp with a GC content of 49.42%. In total, 45 putative ORFs were identified in the GHSM17 genome. Taxonomic analysis indicated GHSM17 belonging to genus Maculvirus, family Autographiviridae. In addition, GHSM17 was stable over a wide range of temperatures (20-60 °C) and pH (5-11) and was completely inactivated after 70 min of ultraviolet irradiation. The bacterial inhibition assay revealed that GHSM17 could inhibit the growth of V. parahaemolyticus within 8 h. The results support that phage GHSM17 may be a potential candidate in the biological control of V. parahaemolyticus contamination in aquaculture.
Collapse
|
8
|
Phages in Food Industry Biocontrol and Bioremediation. Antibiotics (Basel) 2021; 10:antibiotics10070786. [PMID: 34203362 PMCID: PMC8300737 DOI: 10.3390/antibiotics10070786] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Bacteriophages are ubiquitous in nature and their use is a current promising alternative in biological control. Multidrug resistant (MDR) bacterial strains are present in the livestock industry and phages are attractive candidates to eliminate them and their biofilms. This alternative therapy also reduces the non-desirable effects produced by chemicals on food. The World Health Organization (WHO) estimates that around 420,000 people die due to a foodborne illness annually, suggesting that an improvement in food biocontrol is desirable. This review summarizes relevant studies of phage use in biocontrol focusing on treatments in live animals, plants, surfaces, foods, wastewaters and bioremediation.
Collapse
|
9
|
Cristobal-Cueto P, García-Quintanilla A, Esteban J, García-Quintanilla M. Phages in Food Industry Biocontrol and Bioremediation. Antibiotics (Basel) 2021; 10:antibiotics10070786. [PMID: 34203362 DOI: 10.3390/antibiotic6as10070786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages are ubiquitous in nature and their use is a current promising alternative in biological control. Multidrug resistant (MDR) bacterial strains are present in the livestock industry and phages are attractive candidates to eliminate them and their biofilms. This alternative therapy also reduces the non-desirable effects produced by chemicals on food. The World Health Organization (WHO) estimates that around 420,000 people die due to a foodborne illness annually, suggesting that an improvement in food biocontrol is desirable. This review summarizes relevant studies of phage use in biocontrol focusing on treatments in live animals, plants, surfaces, foods, wastewaters and bioremediation.
Collapse
Affiliation(s)
- Pablo Cristobal-Cueto
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Alberto García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Calle Profesor García Gonzalez, 2, 41012 Seville, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | | |
Collapse
|
10
|
Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, Hara H, Thung TY, Lee E, Radu S. Isolation and Characterization of Six Vibrio parahaemolyticus Lytic Bacteriophages From Seafood Samples. Front Microbiol 2021; 12:616548. [PMID: 33776954 PMCID: PMC7987779 DOI: 10.3389/fmicb.2021.616548] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
Vibrio parahaemolyticus is a foodborne pathogen that is frequently isolated from a variety of seafood. To control this pathogenic Vibrio spp., the implementation of bacteriophages in aquaculture and food industries have shown a promising alternative to antibiotics. In this study, six bacteriophages isolated from the seafood samples demonstrated a narrow host range specificity that infecting only the V. parahaemolyticus strains. Morphological analysis revealed that bacteriophages Vp33, Vp22, Vp21, and Vp02 belong to the Podoviridae family, while bacteriophages Vp08 and Vp11 were categorized into the Siphoviridae family. All bacteriophages were composed of DNA genome and showed distinctive restriction fragment length polymorphism. The optimal MOI for bacteriophage propagation was determined to be 0.001 to 1. One-step growth curve revealed that the latent period ranged from 10 to 20 min, and the burst size of bacteriophage was approximately 17 to 51 PFU/cell. The influence of temperature and pH levels on the stability of bacteriophages showed that all bacteriophages were optimally stable over a wide range of temperatures and pH levels. In vitro lytic activity of all bacteriophages demonstrated to have a significant effect against V. parahaemolyticus. Besides, the application of a bacteriophage cocktail instead of a single bacteriophage suspension was observed to have a better efficiency to control the growth of V. parahaemolyticus. Results from this study provided a basic understanding of the physiological and biological properties of the isolated bacteriophages before it can be readily used as a biocontrol agent against the growth of V. parahaemolyticus.
Collapse
Affiliation(s)
- Chia Wanq Tan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noor-Azira Abdul-Mutalib
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nuzul Noorahya Jambari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Hirofumi Hara
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Tze Young Thung
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Epeng Lee
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Veyrand-Quirós B, Gómez-Gil B, Lomeli-Ortega CO, Escobedo-Fregoso C, Millard AD, Tovar-Ramírez D, Balcázar JL, Quiroz-Guzmán E. Use of bacteriophage vB_Pd_PDCC-1 as biological control agent of Photobacterium damselae subsp. damselae during hatching of longfin yellowtail (Seriola rivoliana) eggs. J Appl Microbiol 2020; 129:1497-1510. [PMID: 32538525 DOI: 10.1111/jam.14744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023]
Abstract
AIMS This study describes the effect of phage therapy on hatching of longfin yellowtail (Seriola rivoliana) eggs challenged with Photobacterium damselae subsp. damselae. METHODS AND RESULTS A lytic phage (vB_Pd_PDCC-1) against P. damselae subsp. damselae was isolated and characterized. The use of phage vB_Pd_PDCC-1 increased the hatching rate of eggs, and reduced presumptive Vibrio species to non-detectable numbers, even in non-disinfected eggs. High-throughput 16S rRNA gene sequencing analysis revealed that phage vB_Pd_PDCC-1 caused significant changes in the composition and structure of the associated microbiota, allowing that members (e.g. those belonging to the family Vibrionaceae) of the class Gammaproteobacteria to be displaced by members of the class Alphaproteobacteria. CONCLUSIONS To the best of our knowledge, this represents the first study evaluating phage therapy to control potential negative effects of P. damselae subsp. damselae during hatching of longfin yellowtail eggs. SIGNIFICANCE AND IMPACT OF THE STUDY The Seriola genus includes several important commercial fish species due to its rapid growth and easy adaptability to confinement conditions. However, bacterial infections (especially those caused by Vibrio and Photobacterium species) are among the main limiting factors for the intensification of marine fish aquaculture, particularly during early development stages. Therefore, the use of phages, which are natural killers of bacteria, represents a promising strategy to reduce the mortality of farmed organisms caused by pathogenic bacteria.
Collapse
Affiliation(s)
- B Veyrand-Quirós
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, La Paz Baja California Sur, Mexico
| | - B Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa, Mexico
| | - C O Lomeli-Ortega
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, La Paz Baja California Sur, Mexico
| | - C Escobedo-Fregoso
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional, La Paz Baja California Sur, Mexico
| | - A D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - D Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, La Paz Baja California Sur, Mexico
| | - J L Balcázar
- Catalan Institute for Water Research (ICRA), Girona, Spain.,University of Girona, Girona, Spain
| | - E Quiroz-Guzmán
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional, La Paz Baja California Sur, Mexico
| |
Collapse
|