1
|
Chougule S, Basrani S, Gavandi T, Patil S, Yankanchi S, Jadhav A, Karuppayil SM. Zingerone effect against Candida albicans growth and biofilm production. J Mycol Med 2025; 35:101527. [PMID: 39742531 DOI: 10.1016/j.mycmed.2024.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND The increasing resistance of Candida albicans biofilms underscores the urgent need for effective antifungals. This study evaluated the efficacy of zingerone and elucidated its mode of action against C. albicans ATCC 90028 and clinical isolate C1. EXPERIMENTAL PROCEDURE Minimum inhibitory concentrations (MICs) of zingerone were determined using CLSI methods against planktonic cells, biofilm formation, and yeast-to-hyphal transition. The mode of action was investigated through fluorescent microscopy, ergosterol assays, cell cycle analysis, and RT-PCR for gene expression. KEY RESULTS Zingerone inhibited planktonic growth and biofilm formation at in C. albicans ATCC 90028 and clinical isolate C1 at 2 mg/mL 4 mg/mL and 1 mg/mL and 2 mg/mL respectively. Treatment with the MIC concentration caused significant cell cycle arrest at the G0/G1 phase, halting proliferation in both the strains. Propidium iodide Staining revealed compromised membrane integrity in both the strains. Also, acridine orange and ethidium bromide dual staining showed increased dead cell proportions in C. albicans ATCC 90028. RT-PCR studies showed downregulation of BCY1, PDE2, EFG1, and upregulation of negative regulators NRG1, TUP1 disrupting growth and virulence pathways. Zingerone induced elevated reactive oxygen species (ROS) levels, triggering apoptosis, evidenced by DNA fragmentation and upregulation of apoptotic markers. It also inhibited ergosterol synthesis in a concentration-dependent manner, crucial for membrane integrity. Importantly, zingerone exhibited minimal hemolytic activity. In an in vivo silkworm model, zingerone demonstrated significant antifungal efficacy, protecting silkworms from infection. It also modulated stress response genes, highlighting its multifaceted action. CONCLUSIONS In vitro and in vivo findings confirm the potent antifungal efficacy of zingerone against C. albicans ATCC 90028 and clinical isolate C1, suggesting its promising potential as a therapeutic agent that warrants further exploration.
Collapse
Affiliation(s)
- Sayali Chougule
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India
| | - Sargun Basrani
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India
| | - Tanjila Gavandi
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India
| | - Shivani Patil
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India
| | - Shivanand Yankanchi
- Department of Zoology, Shivaji University, Vidyanagar Kolhapur- 416004, Maharashtra, India
| | - Ashwini Jadhav
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India.
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India.
| |
Collapse
|
2
|
Shweqa NS, El-Naggar NEA, Abdelmigid HM, Alyamani AA, Elshafey N, El-Shall H, Heikal YM, Soliman HM. Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics. J Funct Biomater 2024; 15:354. [PMID: 39728154 PMCID: PMC11728425 DOI: 10.3390/jfb15120354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc. This study details the biosynthesis and characterization of silver nanoparticles (AgNPs) using the aqueous mycelial-free filtrate of Aspergillus flavus. The formation of AgNPs was indicated by a brown color in the extracellular filtrate and confirmed by UV-Vis spectroscopy with a peak at 426 nm. The Box-Behnken design (BBD) is used to optimize the physicochemical parameters affecting AgNPs biosynthesis. The desirability function was employed to theoretically predict the optimal conditions for the biosynthesis of AgNPs, which were subsequently experimentally validated. Through the desirability function, the optimal conditions for the maximum predicted value for the biosynthesized AgNPs (235.72 µg/mL) have been identified as follows: incubation time (58.12 h), initial pH (7.99), AgNO3 concentration (4.84 mM/mL), and temperature (34.84 °C). Under these conditions, the highest experimental value of AgNPs biosynthesis was 247.53 µg/mL. Model validation confirmed the great accuracy of the model predictions. Scanning electron microscopy (SEM) revealed spherical AgNPs measuring 8.93-19.11 nm, which was confirmed by transmission electron microscopy (TEM). Zeta potential analysis indicated a positive surface charge (+1.69 mV), implying good stability. X-ray diffraction (XRD) confirmed the crystalline nature, while energy-dispersive X-ray spectroscopy (EDX) verified elemental silver (49.61%). FTIR findings indicate the presence of phenols, proteins, alkanes, alkenes, aliphatic and aromatic amines, and alkyl groups which play significant roles in the reduction, capping, and stabilization of AgNPs. Cotton fabrics embedded with AgNPs biosynthesized using the aqueous mycelial-free filtrate of Aspergillus flavus showed strong antimicrobial activity. The disc diffusion method revealed inhibition zones of 15, 12, and 17 mm against E. coli (Gram-negative), S. aureus (Gram-positive), and C. albicans (yeast), respectively. These fabrics have potential applications in protective clothing, packaging, and medical care. In silico modeling suggested that the predicted compound derived from AgNPs on cotton fabric could inhibit Penicillin-binding proteins (PBPs) and Lanosterol 14-alpha-demethylase (L-14α-DM), with binding energies of -4.7 and -5.2 Kcal/mol, respectively. Pharmacokinetic analysis and sensitizer prediction indicated that this compound merits further investigation.
Collapse
Affiliation(s)
- Nada S. Shweqa
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| | - Hala M. Abdelmigid
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Amal A. Alyamani
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Naglaa Elshafey
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt;
| | - Hadeel El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| | - Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Hoda M. Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| |
Collapse
|
3
|
Basrani ST, Kadam NS, Yadav DV, Patil SB, Mohan Karuppayil S, Jadhav AK. Antifungal Activity of Mefloquine Against Candida albicans Growth and Virulence Factors: Insights Into Mode of Action. Curr Microbiol 2024; 81:213. [PMID: 38847863 DOI: 10.1007/s00284-024-03739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/11/2024] [Indexed: 06/29/2024]
Abstract
The antimalarial drug Mefloquine has demonstrated antifungal activity against growth and virulence factors of Candida albicans. The current study focused on the identification of Mefloquine's mode of action in C. albicans by performing cell susceptibility assay, biofilm assay, live and dead assay, propidium iodide uptake assay, ergosterol quantification assay, cell cycle study, and gene expression studies by RT-PCR. Mefloquine inhibited the virulence factors in C. albicans, such as germ tube formation and biofilm formation at 0.125 and 1 mg/ml, respectively. Mefloquine-treated cells showed a decrease in the quantity of ergosterol content of cell membrane in a concentration-dependent manner. Mefloquine (0.25 mg/ml) arrested C. albicans cells at the G2/M phase and S phase of the cell cycle thereby preventing the progression of the normal yeast cell cycle. ROS level was measured to find out oxidative stress in C. albicans in the presence of mefloquine. The study revealed that, mefloquine was found to enhance the ROS level and subsequently oxidative stress. Gene expression studies revealed that mefloquine treatment upregulates the expressions of SOD1, SOD2, and CAT1 genes in C. albicans. In vivo, the antifungal efficacy of mefloquine was confirmed in mice for systemic candidiasis and it was found that there was a decrease in the pathogenesis of C. albicans after the treatment of mefloquine in mice. In conclusion, mefloquine can be used as a repurposed drug as an alternative drug against Candidiasis.
Collapse
Affiliation(s)
- Sargun T Basrani
- Department of Stem Cell and Regenerative Medicine & Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to Be University), Kasaba Bawada, Kolhapur, Maharashtra, 416006, India
| | - Nandakumar S Kadam
- iSERA Biological Pvt Ltd. MIDC Shirala, Sangli, Maharashtra, 415408, India
| | | | - Shivani B Patil
- Department of Stem Cell and Regenerative Medicine & Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to Be University), Kasaba Bawada, Kolhapur, Maharashtra, 416006, India
| | - S Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine & Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to Be University), Kasaba Bawada, Kolhapur, Maharashtra, 416006, India.
| | - Ashwini K Jadhav
- Department of Stem Cell and Regenerative Medicine & Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to Be University), Kasaba Bawada, Kolhapur, Maharashtra, 416006, India.
| |
Collapse
|
4
|
Patil SB, Basrani ST, Chougule SA, Gavandi TC, Karuppayil SM, Jadhav AK. Butyl isothiocyanate exhibits antifungal and anti-biofilm activity against Candida albicans by targeting cell membrane integrity, cell cycle progression and oxidative stress. Arch Microbiol 2024; 206:251. [PMID: 38727840 DOI: 10.1007/s00203-024-03983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.
Collapse
Affiliation(s)
- Shivani Balasaheb Patil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sargun Tushar Basrani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sayali Ashok Chougule
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Tanjila Chandsaheb Gavandi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| | - Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| |
Collapse
|
5
|
Hamdy R, Hamoda AM, Al-Khalifa M, Menon V, El-Awady R, Soliman SSM. Efficient selective targeting of Candida CYP51 by oxadiazole derivatives designed from plant cuminaldehyde. RSC Med Chem 2022; 13:1322-1340. [PMID: 36439981 PMCID: PMC9667785 DOI: 10.1039/d2md00196a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 07/24/2023] Open
Abstract
Candida infection represents a global threat with associated high resistance and mortality rate. Azoles such as the triazole drug fluconazole are the frontline therapy against invasive fungal infections; however, the emerging multidrug-resistant strains limit their use. Therefore, a series of novel azole UOSO1-15 derivatives were developed based on a modified natural scaffold to combat the evolved resistance mechanism and to provide improved safety and target selectivity. The antifungal screening against C. albicans and C. auris showed that UOSO10 and 12-14 compounds were the most potent derivatives. Among them, UOSO13 exhibited superior potent activity with MIC50 values of 0.5 and 0.8 μg mL-1 against C. albicans and C. auris compared to 25 and 600 μg mL-1 for fluconazole, respectively. UOSO13 displayed significant CaCYP51 enzyme inhibition activity in a concentration-dependent manner with an IC50 10-fold that of fluconazole, while exhibiting no activity against human CYP50 enzyme or toxicity to human cells. Furthermore, UOSO13 caused a significant reduction of Candida ergosterol content by 70.3% compared to a 35.6% reduction by fluconazole. Homology modeling, molecular docking, and molecular dynamics simulations of C. auris CYP51 enzyme indicated the stability and superiority of UOSO13. ADME prediction indicated that UOSO13 fulfils the drug-likeness criteria with good physicochemical properties.
Collapse
Affiliation(s)
- Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- Faculty of Pharmacy, Zagazig University Zagazig Egypt
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Medicine, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirate
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut-71526 Egypt
| | - Mariam Al-Khalifa
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Pharmacy, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates +97165057472
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Pharmacy, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates +97165057472
| |
Collapse
|
6
|
Jin M, He J, Li J, Hu Y, Sun D, Gu H. Edwardsiella piscicida YccA: A novel virulence factor essential to membrane integrity, mobility, host infection, and host immune response. FISH & SHELLFISH IMMUNOLOGY 2022; 126:318-326. [PMID: 35654386 DOI: 10.1016/j.fsi.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
YccA is a hydrophobic protein with seven transmembrane domains. The function of YccA is largely unknown in pathogenic bacteria. Edwardsiella piscicide (formerly known as E. tarda) is an aquatic pathogen that can infect various economically important fish, including flounder (Paralichthys olivaceus) and tilapia (Oreochromis niloticus). In this study, we investigated the role of YccA in E. piscicida by the construction of a mar kerless yccA in-frame mutant strain, TX01ΔyccA. We found that (i) in comparison to the wild type TX01, TX01ΔyccA exhibited markedly compromised tolerance to high temperature and tobramycin; (ii) deletion of yccA significantly impaired the integrity of the cell membrane and retarded bacterial biofilm formation and mobility; (iii) deficiency of yccA reduced bacterial adhesion and invasion of fish cells and immune tissues, while the introduction of a trans-expressed yccA gene restored the lost virulence of TX01ΔyccA; and (iv) host immune responses induced by TX01 and TX01ΔyccA were different in terms of reactive oxygen species (ROS) levels and expression levels of cytokines. Taken together, the results of our study indicate that YccA is a novel virulence factor of E. piscicida, and YccA is essential for bacterial pathogenicity through evasion of the host's innate immune functions.
Collapse
Affiliation(s)
- Mengru Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Jiaojiao He
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, Michigan, 49783, USA
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Dongmei Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
7
|
Preparation of antibacterial Zn and Ni substituted cobalt ferrite nanoparticles for efficient biofilm eradication. Anal Biochem 2022; 653:114787. [PMID: 35709929 DOI: 10.1016/j.ab.2022.114787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
Abstract
Zinc (Zn) and, alternatively, nickel (Ni) substituted cobalt ferrite (CF) nanoparticles (NPs) were prepared by sol-gel method. X-ray diffraction analysis revealed the formation of cubic structure of cobalt ferrite. FTIR analysis confirmed the vibrational band located at 550-580 cm-1 that belongs to the M - O bond (M = Ni, and Zn). The alteration of the surface morphology of CF after the addition of Zn and Ni ions was observed from scanning electron microscopic images. The additional peaks in the energy dispersive X-ray diffraction (EDX) analysis spectra were found to correspond to Zn and Ni. The presence of Zn and, alternatively, Ni ions enhanced the biocidal properties of CF NPs against gram negative organisms, in a concentration and time-dependent manner. Furthermore, exposure to CF, CF-Zn and CF-Ni NPs decreased metabolic activity due to the damage of extra polymorphic substances, live/dead cell variation, architecture and surface integrity of the cells. Altogether, the present investigation provides the basis of metal ion substituted metal oxide NPs as anti-biofilm agents against gram-positive and gram-negative bacteria.
Collapse
|