1
|
Hu H, Cai L, Shao L, Xu X, Wang H, Zhou G. Characterization and genome analysis of Pseudomonas phages isolated from various sources related to chilled chicken. Food Res Int 2025; 202:115544. [PMID: 39967128 DOI: 10.1016/j.foodres.2024.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Pseudomonas stands out as the dominant spoilage bacteria in chilled meat. Bacteriophages are anticipated to emerge as a novel bactericidal preservative, offering a solution to the issue of antibiotic resistance. In this work, the Pseudomonas phages named P1, P9 and P20 were obtained from 84 samples collected from slaughtering environments and 24 chilled chicken products. The three phages displayed high strain specificity and a limited host spectrum. The latent period for all three phages was less than 10 min under the optimal MOI condition (0.0001), while the lysis periods were 60, 90, and 120 min respectively. The tested phages could maintain stable survival within a temperature range of 4 to 40 °C and a pH range of 5 to 11. Combined with morphological and genomic comparison, the three phages belonged to the order Caudovirales, family Podoviridae, subfamily Autographivirinae, and genus T7virus. Their genomes comprised linear dsDNA ranging from 40,000 to 50,000 bp, devoid of genes encoding toxins, virulence factors, antibiotic resistance, and lysogen markers. The finding indicated that the three phages were lytic bacteriophages, showing promise as safe bacteriostatic agents for inhibiting Pseudomonas in food.
Collapse
Affiliation(s)
- Haijing Hu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Linlin Cai
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Liangting Shao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Huhu Wang
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Xinjiang Agricultural University, Urumqi, Xinjiang, PR China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
2
|
Wójcicki M, Shymialevich D, Średnicka P, Emanowicz P, Ostrowska A, Cieślak H, Sokołowska B. Phenotypic Characterization and Genome Analysis of New Broad-Spectrum Virulent Salmophage, Salmonella Phage KKP_3822, for Biocontrol of Multidrug-Resistant Salmonella enterica Strains. Int J Mol Sci 2024; 25:12930. [PMID: 39684641 DOI: 10.3390/ijms252312930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella is one of the main foodborne pathogens. Irrational antibiotic management has led to an increase in the incidence of multidrug-resistant strains. Bacteriophages may be an alternative method of food biopreservation and contribute to reducing the number of food poisonings requiring pharmacotherapy. This study aimed to isolate a bacteriophage (phage) targeting indigenous multidrug-resistant (MDR) Salmonella strains, followed by their biological, morphological, and genomic characterization. In this study we isolated Salmonella phage KKP_3822, targeting MDR Salmonella Manchester strain KKP 1213. Salmonella phage KKP_3822 retained high activity in the temperature range from -20 °C to 40 °C and active acidity from pH 3 to 11. Temperatures of 70 °C and 80 °C and extreme pH values (2 and 12) significantly reduced the phage titer. Its activity decreased proportionally to the time of UV exposure. Genome analysis (linear dsDNA with a length of 114,843 bp) revealed the presence of 27 tRNA genes. Proteins encoded by the vB_Sen-IAFB3822 phage were divided into functional modules related to (i) phage structure/assembly, (ii) DNA replication/modification/regulation, (iii) phage lysis, and (iv) DNA packaging into the capsid. No genes associated with antibiotic resistance or integration into the host genome, markers of temperate bacteriophages, were annotated in the Salmonella phage KKP_3822 genome. Based on morphological features and whole-genome sequence analysis, the newly isolated Salmonella phage KKP_3822 shows the greatest similarity to representatives of tailed phages from the Caudoviricetes class, Demerecviridae family, and Epseptimavirus genus. Genome analysis confirmed the virulent nature of the Salmonella phage KKP_3822, making it a potential candidate for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Ciszewskiego 8 Str., 02-786 Warsaw, Poland
| | - Hanna Cieślak
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| |
Collapse
|
3
|
Li Y, Yu H, Xiong L, Wei Y, Li H, Ji X. Viral AMGs-driven pentose phosphate pathway in natural wetland. J Basic Microbiol 2024; 64:e2300569. [PMID: 38078780 DOI: 10.1002/jobm.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 02/13/2024]
Abstract
Viruses exist anywhere on earth where there is life, and among them, virus-encoded auxiliary metabolic genes (AMGs) can maintain ecosystem balance and play a major role in the global ecosystem. Although the function of AMGs has been widely reported, the genetic diversity of AMGs in natural ecosystems is still poorly understood. Exploring the genetic diversity of viral community-wide AMGs is essential to gain insight into the complex interactions between viruses and hosts. In this article, we studied the phylogenetic tree, principal co-ordinates analysis (PCoA), α diversity, and metabolic pathways of viral auxiliary metabolism genes involved in the pentose phosphate pathway (PPP) through metagenomics, and the changes of metabolites and genes of host bacteria were further studied by using Pseudomonas mandelii SW-3 and its lytic phage based on metabolic flow and AMGs expression. We found that the viral AMGs in the Napahai plateau wetland were created by a combination of various external forces, which contributed to the rich genetic diversity, uniqueness, and differences of the virus, which promoted the reproduction of offspring and better adaptation to the environment. Overall, this study systematically describes the genetic diversity of AMGs associated with the PPP in plateau wetland ecosystems and further expands the understanding of phage-host unique interactions.
Collapse
Affiliation(s)
- Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hang Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Yunnan International Joint Laboratory of Research and Development of Crop Safety Production on Heavy Metal Pollution Areas, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiuling Ji
- Yunnan International Joint Laboratory of Research and Development of Crop Safety Production on Heavy Metal Pollution Areas, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Li Y, Xiong L, Yu H, Zeng K, Wei Y, Li H, Zeng W, Ji X. Function and distribution of nitrogen-cycling microbial communities in the Napahai plateau wetland. Arch Microbiol 2023; 205:357. [PMID: 37872393 DOI: 10.1007/s00203-023-03695-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Nitrogen is an essential component of living organisms and a major nutrient that limits life on Earth. Until now, freely available nitrogen mainly comes from atmospheric nitrogen, but most organisms rely on bioavailable forms of nitrogen, which depends on the complex network of microorganisms with a wide variety of metabolic functions. Microbial-mediated nitrogen cycling contributes to the biogeochemical cycling of wetlands, but its specific microbial abundance, composition, and distribution need to be studied. Based on the metagenomic data, we described the composition and functional characteristics of microbial nitrogen cycle-related genes in the Napahai plateau wetland. Six nitrogen cycling pathways existed, such as dissimilatory nitrate reduction, denitrification, nitrogen fixation, nitrification, anammox, and nitrate assimilation. Most genes related to the nitrogen cycling in this region come from bacteria, mainly from Proteobacteria and Acidobacteria. Habitat types and nitrogen cycle-related genes largely explained the relative abundance of total nitrogen pathways. Phylogenetic trees were constructed based on nitrogen cycle-related genes from different habitats and sources, combined with PCoA analysis, most of them clustered separately, indicating richness and uniqueness. Some microbial groups seemed to be special or general in the nitrogen cycling. In conclusion, it suggested that microorganisms regulated the N cycling process, and may lead to N loss throughout the wetland, thus providing a basis for further elucidation of the microbial regulation of N cycling processes and the Earth's elemental cycles.
Collapse
Affiliation(s)
- Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hang Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weikun Zeng
- School of Medicine, Kunming University, Kunming, 650214, China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Li Y, Xiong L, Zeng K, Wei Y, Li H, Ji X. Microbial-driven carbon fixation in natural wetland. J Basic Microbiol 2023; 63:1115-1127. [PMID: 37440152 DOI: 10.1002/jobm.202300273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
With the development of global industrialization, carbon neutrality has become an issue that we must be paid attention to. Microorganisms not only have an important impact on the carbon chemical cycle between the Earth's biosphere and biogeography but also play a key role in maintaining the global organic carbon balance. Wetlands are the main reservoir of organic carbon in the mainland of China, and wetland carbon sinks are indispensable for China to achieve the goal of "dual carbon," and China has taken the consolidation and improvement of wetland carbon sink capacity as an important part of the carbon peaking action plan. As a unique low-latitude, high-altitude seasonal plateau wetland in China, Napahai shows high research value. However, the role of microbes in maintaining dissolved organic carbon balance in this area has not been reported. In the study, six carbon fixation genes, accA, aclB, acsA, acsB, cbbL, and rbcL, were analyzed based on metagenomics to elucidate the rich genetic diversity, uniqueness and differences in the Napahai plateau wetland. It was found that the microbial diversity in the Napahai plateau wetland was different from other habitats. In addition, the aclB gene, a rare taxon with high genetic diversity and rich species in the Napahai plateau wetland, played a key role in the microbial metabolic pathway. Finally, the construction of a metabolic pathway through the Kyoto encyclopedia for genes and genomes revealed the contribution of microbes to carbon fixation and the role of microbes in maintaining the organic carbon balance of the Napahai plateau wetland.
Collapse
Affiliation(s)
- Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Kun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Usman SS, Uba AI, Christina E. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics. Mol Biol Rep 2023; 50:7055-7067. [PMID: 37392288 DOI: 10.1007/s11033-023-08557-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India.
| |
Collapse
|
7
|
Zhang M, Hao Y, Yi Y, Liu S, Sun Q, Tan X, Tang S, Xiao X, Jian H. Unexplored diversity and ecological functions of transposable phages. THE ISME JOURNAL 2023; 17:1015-1028. [PMID: 37069234 PMCID: PMC10284936 DOI: 10.1038/s41396-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Phages are prevalent in diverse environments and play major ecological roles attributed to their tremendous diversity and abundance. Among these viruses, transposable phages (TBPs) are exceptional in terms of their unique lifestyle, especially their replicative transposition. Although several TBPs have been isolated and the life cycle of the representative phage Mu has been extensively studied, the diversity distribution and ecological functions of TBPs on the global scale remain unknown. Here, by mining TBPs from enormous microbial genomes and viromes, we established a TBP genome dataset (TBPGD), that expands the number of accessible TBP genomes 384-fold. TBPs are prevalent in diverse biomes and show great genetic diversity. Based on taxonomic evaluations, we propose the categorization of TBPs into four viral groups, including 11 candidate subfamilies. TBPs infect multiple bacterial phyla, and seem to infect a wider range of hosts than non-TBPs. Diverse auxiliary metabolic genes (AMGs) are identified in the TBP genomes, and genes related to glycoside hydrolases and pyrimidine deoxyribonucleotide biosynthesis are highly enriched. Finally, the influences of TBPs on their hosts are experimentally examined by using the marine bacterium Shewanella psychrophila WP2 and its infecting transposable phage SP2. Collectively, our findings greatly expand the genetic diversity of TBPs, and comprehensively reveal their potential influences in various ecosystems.
Collapse
Affiliation(s)
- Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|