1
|
Hunter T, Chance L, Elphick CS, Hird SM. Archaeal diversity in the microbiomes of four wild bird species. Microbiol Spectr 2025; 13:e0287024. [PMID: 40130851 PMCID: PMC12053993 DOI: 10.1128/spectrum.02870-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Archaea are generally low-abundance members of the vertebrate microbiota that require specific PCR primers to be detected in metabarcoding studies, and the robust intraspecific sample size is necessary for well-supported conclusions about archaeal diversity. Using 16S rRNA gene amplicons generated using both Archaea-Specific and Universal primers, we investigated prokaryotic diversity in 110 fecal samples from four wild bird species from four different orders: Anna's Hummingbird (Calypte anna), Saltmarsh Sparrow (Ammospiza caudacuta), Ruddy Turnstone (Arenaria interpres), and Canada Goose (Branta canadensis). Our aim was to test the hypotheses that Archaea-Specific primers would offer higher resolution of archaeal diversity and that the four ecologically distinct host species would have distinct archaeal communities. Archaea-Specific primers resulted in increases in archaeal richness and detection of Archaea in all four birds compared to the Universal primers. The ammonia-oxidizing archaeal order Nitrososphaerales was detected in all four host species, and methanogenic orders were enriched in samples from Canada Geese. In Bacteria-Archaea co-occurrence networks, Archaea-Specific primers found many more significant interactions than the Universal primers alone. Methanogenic archaeal orders dominated the microbiota in Canada Geese and were found to a lesser extent in the other host species, suggesting an important functional role of methanogens in Canada Geese. Overall, this study advances our knowledge of the archaeal component of the microbiome in wild birds and provides insight into the potential functional roles Archaea play in studies of avian gastrointestinal microbiota. IMPORTANCE Archaea may be persistent members of host-associated microbiomes across diverse host taxa; their detection has been limited due to their low abundance and the inadequacy of Universal primers. Large-scale studies of Archaea in vertebrate microbiomes have historically had low intraspecific sample sizes for bird species and had conflicting results. This study demonstrates the improved capability of the Archaea-Specific primers to detect archaeal diversity in diverse avian host species compared to the widely used Universal primers. We also identified both shared and species-specific archaeal taxa across four ecologically distinct avian host species from four different orders with implications for functional importance. Future studies interested in comprehensively cataloging prokaryotic diversity in avian microbiomes using amplicon-based sequencing methods should include Archaea-Specific primers to adequately probe archaeal diversity.
Collapse
Affiliation(s)
- Trevor Hunter
- Molecular and Cell Biology Department, University of Connecticut, Storrs, Connecticut, USA
| | - Lauren Chance
- Molecular and Cell Biology Department, University of Connecticut, Storrs, Connecticut, USA
| | - Chris S. Elphick
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah M. Hird
- Molecular and Cell Biology Department, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
2
|
Aryee G, Luecke SM, Dahlen CR, Swanson KC, Amat S. Holistic View and Novel Perspective on Ruminal and Extra-Gastrointestinal Methanogens in Cattle. Microorganisms 2023; 11:2746. [PMID: 38004757 PMCID: PMC10673468 DOI: 10.3390/microorganisms11112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the extensive research conducted on ruminal methanogens and anti-methanogenic intervention strategies over the last 50 years, most of the currently researched enteric methane (CH4) abatement approaches have shown limited efficacy. This is largely because of the complex nature of animal production and the ruminal environment, host genetic variability of CH4 production, and an incomplete understanding of the role of the ruminal microbiome in enteric CH4 emissions. Recent sequencing-based studies suggest the presence of methanogenic archaea in extra-gastrointestinal tract tissues, including respiratory and reproductive tracts of cattle. While these sequencing data require further verification via culture-dependent methods, the consistent identification of methanogens with relatively greater frequency in the airway and urogenital tract of cattle, as well as increasing appreciation of the microbiome-gut-organ axis together highlight the potential interactions between ruminal and extra-gastrointestinal methanogenic communities. Thus, a traditional singular focus on ruminal methanogens may not be sufficient, and a holistic approach which takes into consideration of the transfer of methanogens between ruminal, extra-gastrointestinal, and environmental microbial communities is of necessity to develop more efficient and long-term ruminal CH4 mitigation strategies. In the present review, we provide a holistic survey of the methanogenic archaea present in different anatomical sites of cattle and discuss potential seeding sources of the ruminal methanogens.
Collapse
Affiliation(s)
- Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| |
Collapse
|
3
|
Khairunisa BH, Heryakusuma C, Ike K, Mukhopadhyay B, Susanti D. Evolving understanding of rumen methanogen ecophysiology. Front Microbiol 2023; 14:1296008. [PMID: 38029083 PMCID: PMC10658910 DOI: 10.3389/fmicb.2023.1296008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
Collapse
Affiliation(s)
| | - Christian Heryakusuma
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Kelechi Ike
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Biswarup Mukhopadhyay
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Dwi Susanti
- Microbial Discovery Research, BiomEdit, Greenfield, IN, United States
| |
Collapse
|
4
|
Shah AM, Bano I, Qazi IH, Matra M, Wanapat M. "The Yak"-A remarkable animal living in a harsh environment: An overview of its feeding, growth, production performance, and contribution to food security. Front Vet Sci 2023; 10:1086985. [PMID: 36814466 PMCID: PMC9940766 DOI: 10.3389/fvets.2023.1086985] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Yaks play an important role in the livelihood of the people of the Qinghai-Tibet Plateau (QTP) and contribute significantly to the economy of the different countries in the region. Yaks are commonly raised at high altitudes of ~ 3,000-5,400 m above sea level. They provide many important products, namely, milk, meat, fur, and manure, as well as social status, etc. Yaks were domesticated from wild yaks and are present in the remote mountains of the QTP region. In the summer season, when a higher quantity of pasture is available in the mountain region, yaks use their long tongues to graze the pasture and spend ~ 30-80% of their daytime grazing. The remaining time is spent walking, resting, and doing other activities. In the winter season, due to heavy snowfall in the mountains, pasture is scarce, and yaks face feeding issues due to pasture scarcity. Hence, the normal body weight of yaks is affected and growth retardation occurs, which consequently affects their production performance. In this review article, we have discussed the domestication of yaks, the feeding pattern of yaks, the difference between the normal and growth-retarded yaks, and also their microbial community and their influences. In addition, blood biochemistry, the compositions of the yaks' milk and meat, and reproduction are reported herein. Evidence suggested that yaks play an important role in the daily life of the people living on the QTP, who consume milk, meat, fur, use manure for fuel and land fertilizer purposes, and use the animals for transportation. Yaks' close association with the people's well-being and livelihood has been significant.
Collapse
Affiliation(s)
- Ali Mujtaba Shah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Iqra Bano
- Department of Veterinary Physiology and Biochemistry, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy, Histology, and Embryology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,*Correspondence: Metha Wanapat ✉
| |
Collapse
|
5
|
Rabapane KJ, Ijoma GN, Matambo TS. Insufficiency in functional genomics studies, data, and applications: A case study of bio-prospecting research in ruminant microbiome. Front Genet 2022; 13:946449. [PMID: 36118848 PMCID: PMC9472250 DOI: 10.3389/fgene.2022.946449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last two decades, biotechnology has advanced at a rapid pace, propelled by the incorporation of bio-products into various aspects of pharmaceuticals, industry, and the environment. These developments have sparked interest in the bioprospecting of microorganisms and their products in a variety of niche environments. Furthermore, the use of omics technologies has greatly aided our analyses of environmental samples by elucidating the microbial ecological framework, biochemical pathways, and bio-products. However, the more often overemphasis on taxonomic identification in most research publications, as well as the data associated with such studies, is detrimental to immediate industrial and commercial applications. This review identifies several factors that contribute to the complexity of sequence data analysis as potential barriers to the pragmatic application of functional genomics, utilizing recent research on ruminants to demonstrate these limitations in the hopes of broadening our horizons and drawing attention to this gap in bioprospecting studies for other niche environments as well. The review also aims to emphasize the importance of routinely incorporating functional genomics into environmental metagenomics analyses in order to improve solutions that drive rapid industrial biocatalysis developments from derived outputs with the aim of achieving potential benefits in energy-use reduction and environmental considerations for current and future applications.
Collapse
|
6
|
Liu Z, Wang K, Nan X, Cai M, Yang L, Xiong B, Zhao Y. Synergistic Effects of 3-Nitrooxypropanol with Fumarate in the Regulation of Propionate Formation and Methanogenesis in Dairy Cows In Vitro. Appl Environ Microbiol 2022; 88:e0190821. [PMID: 35080908 PMCID: PMC8939354 DOI: 10.1128/aem.01908-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022] Open
Abstract
3-Nitrooxypropanol (3-NOP) is effective at reducing ruminal methane emissions in ruminants. But it also causes a drastic increase in hydrogen accumulation, resulting in feed energy waste. Fumarate is a key precursor for propionate formation and plays an important role in rumen hydrogen metabolism. Therefore, this study examined the effects of 3-NOP combined with fumarate on volatile fatty acids, methanogenesis, and microbial community structures in dairy cows in vitro. The in vitro culture experiment was performed using a 2-by-2 factorial design, two 3-NOP levels (0 or 2 mg/g dry matter [DM]) and two fumarate levels (0 or 100 mg/g DM), including 3 runs with 4 treatments, 4 replicates, and 4 blanks containing only the inoculum. Rumen fluid was collected from three lactating Holstein cows with permanent ruminal fistulas. The combination of 3-NOP and fumarate reduced methane emissions by 11.48% without affecting dry matter degradability. The propionate concentration increased and the acetate/propionate ratio decreased significantly. In terms of bacteria, the combination of 3-NOP and fumarate reduced the abundances of Ruminococcus and Lachnospiraceae_NK3A20_group and increased the abundances of Prevotella and Succiniclasticum. For archaea, the combination of 3-NOP and fumarate significantly increased the abundances of Methanobrevibacter_sp._AbM4, while the abundance of operational taxonomic unit 581 (OTU581) (belonging to an uncultured_rumen_methanogen_g__Methanobrevibacter strain) was significantly decreased. These results indicated that the combination of 3-NOP and fumarate could alleviate the accumulation of hydrogen and enhance the inhibition of methanogenesis compared with 3-NOP only in dairy cows. IMPORTANCE The global problem of climate change and the greenhouse effect has become increasingly severe, and the abatement of greenhouse gases has received great attention from the international community. Methane produced by ruminants during digestion not only aggravates the greenhouse effect but also causes a waste of feed energy. As a methane inhibitor, 3-nitrooxypropanol can effectively reduce methane emissions from ruminants. However, when it inhibits methane emissions, the emission of hydrogen increases sharply, resulting in the waste of feed resources. Fumarate is a propionic acid precursor that can promote the metabolism of hydrogen to propionic acid in animals. Therefore, we studied the effects of the combined addition of 3-nitrooxypropanol and fumarate on methanogenesis, rumen fermentation, and rumen flora. It is of great significance to inhibit methane emission from ruminants and slow down the greenhouse effect.
Collapse
Affiliation(s)
- Zihao Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Cai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Effects of mineral or protein-energy supplementation and genetic group on metabolism parameters of young beef bulls grazing tropical grass during the rainy season. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Li Y, Lv J, Wang J, Zhou S, Zhang G, Wei B, Sun Y, Lan Y, Dou X, Zhang Y. Changes in Carbohydrate Composition in Fermented Total Mixed Ration and Its Effects on in vitro Methane Production and Microbiome. Front Microbiol 2021; 12:738334. [PMID: 34803954 PMCID: PMC8602888 DOI: 10.3389/fmicb.2021.738334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this experiment was to investigate the changes of carbohydrate composition in fermented total mixed diet and its effects on rumen fermentation, methane production, and rumen microbiome in vitro. The concentrate-to-forage ratio of the total mixed ration (TMR) was 4:6, and TMR was ensiled with lactic acid bacteria and fibrolytic enzymes. The results showed that different TMRs had different carbohydrate compositions and subfractions, fermentation characteristics, and bacterial community diversity. After fermentation, the fermented total mixed ration (FTMR) group had lower contents of neutral detergent fiber, acid detergent fiber, starch, non-fibrous carbohydrates, and carbohydrates. In addition, lactic acid content and relative abundance of Lactobacillus in the FTMR group were higher. Compared with the TMR group, the in vitro ammonia nitrogen and total volatile fatty acid concentrations and the molar proportion of propionate and butyrate were increased in the FTMR group. However, the ruminal pH, molar proportion of acetate, and methane production were significantly decreased in the FTMR group. Notably, we found that the relative abundance of ruminal bacteria was higher in FTMR than in TMR samples, including Prevotella, Coprococcus, and Oscillospira. At the same time, we found that the diversity of methanogens in the FTMR group was lower than that in the TMR group. The relative abundance of Methanobrevibacter significantly decreased, while the relative abundances of Methanoplanus and vadinCA11 increased. The relative abundances of Entodinium and Pichia significantly decreased in the FTMR group compared with the TMR group. These results suggest that FTMR can be used as an environmentally cleaner technology in animal farming due to its ability to improve ruminal fermentation, modulate the rumen microbiome, and reduce methane emissions.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Jingyi Lv
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Jihong Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Shuang Zhou
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Guangning Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Bingdong Wei
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yukun Sun
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yaxue Lan
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Xiujing Dou
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yonggen Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| |
Collapse
|
9
|
Thomas CM, Taib N, Gribaldo S, Borrel G. Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host adaptation in archaea and the evolution of methanogenesis. ISME COMMUNICATIONS 2021; 1:47. [PMID: 37938279 PMCID: PMC9723798 DOI: 10.1038/s43705-021-00050-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Other than the Methanobacteriales and Methanomassiliicoccales, the characteristics of archaea that inhabit the animal microbiome are largely unknown. Methanimicrococcus blatticola, a member of the Methanosarcinales, currently reunites two unique features within this order: it is a colonizer of the animal digestive tract and can only reduce methyl compounds with H2 for methanogenesis, a increasingly recognized metabolism in the archaea and whose origin remains debated. To understand the origin of these characteristics, we have carried out a large-scale comparative genomic analysis. We infer the loss of more than a thousand genes in M. blatticola, by far the largest genome reduction across all Methanosarcinales. These include numerous elements for sensing the environment and adapting to more stable gut conditions, as well as a significant remodeling of the cell surface components likely involved in host and gut microbiota interactions. Several of these modifications parallel those previously observed in phylogenetically distant archaea and bacteria from the animal microbiome, suggesting large-scale convergent mechanisms of adaptation to the gut. Strikingly, M. blatticola has lost almost all genes coding for the H4MPT methyl branch of the Wood-Ljungdahl pathway (to the exception of mer), a phenomenon never reported before in any member of Class I or Class II methanogens. The loss of this pathway illustrates one of the evolutionary processes that may have led to the emergence of methyl-reducing hydrogenotrophic methanogens, possibly linked to the colonization of organic-rich environments (including the animal gut) where both methyl compounds and hydrogen are abundant.
Collapse
Affiliation(s)
- Courtney M Thomas
- Department of Microbiology, UMR 2001, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Najwa Taib
- Department of Microbiology, UMR 2001, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
| | - Simonetta Gribaldo
- Department of Microbiology, UMR 2001, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
| | - Guillaume Borrel
- Department of Microbiology, UMR 2001, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France.
| |
Collapse
|
10
|
Malik PK, Trivedi S, Mohapatra A, Kolte AP, Sejian V, Bhatta R, Rahman H. Comparison of enteric methane yield and diversity of ruminal methanogens in cattle and buffaloes fed on the same diet. PLoS One 2021; 16:e0256048. [PMID: 34379691 PMCID: PMC8357158 DOI: 10.1371/journal.pone.0256048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
An in vivo study was conducted to compare the enteric methane emissions and diversity of ruminal methanogens in cattle and buffaloes kept in the same environment and fed on the same diet. Six cattle and six buffaloes were fed on a similar diet comprising Napier (Pennisetum purpureum) green grass and concentrate in 70:30. After 90 days of feeding, the daily enteric methane emissions were quantified by using the SF6 technique and ruminal fluid samples from animals were collected for the diversity analysis. The daily enteric methane emissions were significantly greater in cattle as compared to buffaloes; however, methane yields were not different between the two species. Methanogens were ranked at different taxonomic levels against the Rumen and Intestinal Methanogen-Database. The archaeal communities in both host species were dominated by the phylum Euryarchaeota; however, Crenarchaeota represented <1% of the total archaea. Methanogens affiliated with Methanobacteriales were most prominent and their proportion did not differ between the two hosts. Methanomicrobiales and Methanomassillicoccales constituted the second largest group of methanogens in cattle and buffaloes, respectively. Methanocellales (Methanocella arvoryza) were exclusively detected in the buffaloes. At the species level, Methanobrevibacter gottschalkii had the highest abundance (55-57%) in both the host species. The relative abundance of Methanobrevibacter wolinii between the two hosts differed significantly. Methanosarcinales, the acetoclastic methanogens were significantly greater in cattle than the buffaloes. It is concluded that the ruminal methane yield in cattle and buffaloes fed on the same diet did not differ. With the diet used in this study, there was a limited influence (<3.5%) of the host on the structure of the ruminal archaea community at the species level. Therefore, the methane mitigation strategies developed in either of the hosts should be effective in the other. Further studies are warranted to reveal the conjunctive effect of diet and geographical locations with the host on ruminal archaea community composition.
Collapse
Affiliation(s)
- P. K. Malik
- Bioenergetics and Environmental Science Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, Karnataka, India
| | - S. Trivedi
- Bioenergetics and Environmental Science Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, Karnataka, India
| | - A. Mohapatra
- Bioenergetics and Environmental Science Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, Karnataka, India
| | - A. P. Kolte
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, Karnataka, India
| | - V. Sejian
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, Karnataka, India
| | - R. Bhatta
- Bioenergetics and Environmental Science Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, Karnataka, India
| | - H. Rahman
- International Livestock Research Institute, South Asia Regional Office, New Delhi, India
| |
Collapse
|
11
|
Zhou J, Holmes DE, Tang HY, Lovley DR. Correlation of Key Physiological Properties of Methanosarcina Isolates with Environment of Origin. Appl Environ Microbiol 2021; 87:e0073121. [PMID: 33931421 PMCID: PMC8316034 DOI: 10.1128/aem.00731-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
It is known that the physiology of Methanosarcina species can differ significantly, but the ecological impact of these differences is unclear. We recovered two strains of Methanosarcina from two different ecosystems with a similar enrichment and isolation method. Both strains had the same ability to metabolize organic substrates and participate in direct interspecies electron transfer but also had major physiological differences. Strain DH-1, which was isolated from an anaerobic digester, used H2 as an electron donor. Genome analysis indicated that it lacks an Rnf complex and conserves energy from acetate metabolism via intracellular H2 cycling. In contrast, strain DH-2, a subsurface isolate, lacks hydrogenases required for H2 uptake and cycling and has an Rnf complex for energy conservation when growing on acetate. Further analysis of the genomes of previously described isolates, as well as phylogenetic and metagenomic data on uncultured Methanosarcina in anaerobic digesters and diverse soils and sediments, revealed a physiological dichotomy that corresponded with environment of origin. The physiology of type I Methanosarcina revolves around H2 production and consumption. In contrast, type II Methanosarcina species eschew H2 and have genes for an Rnf complex and the multiheme, membrane-bound c-type cytochrome MmcA, shown to be essential for extracellular electron transfer. The distribution of Methanosarcina species in diverse environments suggests that the type I H2-based physiology is well suited for high-energy environments, like anaerobic digesters, whereas type II Rnf/cytochrome-based physiology is an adaptation to the slower, steady-state carbon and electron fluxes common in organic-poor anaerobic soils and sediments. IMPORTANCE Biogenic methane is a significant greenhouse gas, and the conversion of organic wastes to methane is an important bioenergy process. Methanosarcina species play an important role in methane production in many methanogenic soils and sediments as well as anaerobic waste digesters. The studies reported here emphasize that the genus Methanosarcina is composed of two physiologically distinct groups. This is important to recognize when interpreting the role of Methanosarcina in methanogenic environments, especially regarding H2 metabolism. Furthermore, the finding that type I Methanosarcina species predominate in environments with high rates of carbon and electron flux and that type II Methanosarcina species predominate in lower-energy environments suggests that evaluating the relative abundance of type I and type II Methanosarcina may provide further insights into rates of carbon and electron flux in methanogenic environments.
Collapse
Affiliation(s)
- Jinjie Zhou
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Dawn E. Holmes
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
- Department of Physical and Biological Science, Western New England University, Springfield, Massachusetts, USA
| | - Hai-Yan Tang
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waster Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
12
|
Dalby FR, Hafner SD, Petersen SO, Vanderzaag A, Habtewold J, Dunfield K, Chantigny MH, Sommer SG. A mechanistic model of methane emission from animal slurry with a focus on microbial groups. PLoS One 2021; 16:e0252881. [PMID: 34111183 PMCID: PMC8191904 DOI: 10.1371/journal.pone.0252881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
Liquid manure (slurry) from livestock releases methane (CH4) that contributes significantly to global warming. Existing models for slurry CH4 production-used for mitigation and inventories-include effects of organic matter loading, temperature, and retention time but cannot predict important effects of management, or adequately capture essential temperature-driven dynamics. Here we present a new model that includes multiple methanogenic groups whose relative abundance shifts in response to changes in temperature or other environmental conditions. By default, the temperature responses of five groups correspond to those of four methanogenic species and one uncultured methanogen, although any number of groups could be defined. We argue that this simple mechanistic approach is able to describe both short- and long-term responses to temperature where other existing approaches fall short. The model is available in the open-source R package ABM (https://github.com/sashahafner/ABM) as a single flexible function that can include effects of slurry management (e.g., removal frequency and treatment methods) and changes in environmental conditions over time. Model simulations suggest that the reduction of CH4 emission by frequent emptying of slurry pits is due to washout of active methanogens. Application of the model to represent a full-scale slurry storage tank showed it can reproduce important trends, including a delayed response to temperature changes. However, the magnitude of predicted emission is uncertain, primarily as a result of sensitivity to the hydrolysis rate constant, due to a wide range in reported values. Results indicated that with additional work-particularly on the magnitude of hydrolysis rate-the model could be a tool for estimation of CH4 emissions for inventories.
Collapse
Affiliation(s)
- Frederik R. Dalby
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
- * E-mail: (SDH); (FRD); (SGS)
| | - Sasha D. Hafner
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
- Hafner Consulting LLC, Reston, Virginia, United States of America
- * E-mail: (SDH); (FRD); (SGS)
| | | | - Andrew Vanderzaag
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Jemaneh Habtewold
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Kari Dunfield
- School of Environmental Science, University of Guelph, Guelph, Canada
| | - Martin H. Chantigny
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, Canada
| | - Sven G. Sommer
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
- * E-mail: (SDH); (FRD); (SGS)
| |
Collapse
|
13
|
Ma J, Wang X, Zhou T, Hu R, Zou H, Wang Z, Tan C, Zhang X, Peng Q, Xue B, Wang L. Effects of cofD gene knock-out on the methanogenesis of Methanobrevibacter ruminantium. AMB Express 2021; 11:77. [PMID: 34047886 PMCID: PMC8163928 DOI: 10.1186/s13568-021-01236-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/15/2021] [Indexed: 11/10/2022] Open
Abstract
This study aimed to investigate the effects of cofD gene knock-out on the synthesis of coenzyme F420 and production of methane in Methanobrevibacter ruminantium (M. ruminantium). The experiment successfully constructed a cofD gene knock-out M. ruminantium via homologous recombination technology. The results showed that the logarithmic phase of mutant M. ruminantium (12 h) was lower than the wild-type (24 h). The maximum biomass and specific growth rate of mutant M. ruminantium were significantly lower (P < 0.05) than those of wild-type, and the maximum biomass of mutant M. ruminantium was approximately half of the wild-type; meanwhile, the proliferation was reduced. The synthesis amount of coenzyme F420 of M. ruminantium was significantly decreased (P < 0.05) after the cofD gene knock-out. Moreover, the maximum amount of H2 consumed and CH4 produced by mutant were 14 and 2% of wild-type M. ruminantium respectively. In conclusion, cofD gene knock-out induced the decreased growth rate and reproductive ability of M. ruminantium. Subsequently, the synthesis of coenzyme F420 was decreased. Ultimately, the production capacity of CH4 in M. ruminantium was reduced. Our research provides evidence that cofD gene plays an indispensable role in the regulation of coenzyme F420 synthesis and CH4 production in M. ruminantium.
Collapse
Affiliation(s)
- Jian Ma
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xueying Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ting Zhou
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Huawei Zou
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Cui Tan
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiangfei Zhang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Quanhui Peng
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bai Xue
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lizhi Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
14
|
Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. THE ISME JOURNAL 2021; 15:1108-1120. [PMID: 33262428 PMCID: PMC8114923 DOI: 10.1038/s41396-020-00837-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
Rumen microbiota play a key role in the digestion and utilization of plant materials by the ruminant species, which have important implications for greenhouse gas emission. Yet, little is known about the key taxa and potential gene functions involved in the digestion process. Here, we performed a genome-centric analysis of rumen microbiota attached to six different lignocellulosic biomasses in rumen-fistulated cattle. Our metagenome sequencing provided novel genomic insights into functional potential of 523 uncultured bacteria and 15 mostly uncultured archaea in the rumen. The assembled genomes belonged mainly to Bacteroidota, Firmicutes, Verrucomicrobiota, and Fibrobacterota and were enriched for genes related to the degradation of lignocellulosic polymers and the fermentation of degraded products into short chain volatile fatty acids. We also found a shift from copiotrophic to oligotrophic taxa during the course of rumen fermentation, potentially important for the digestion of recalcitrant lignocellulosic substrates in the physiochemically complex and varying environment of the rumen. Differential colonization of forages (the incubated lignocellulosic materials) by rumen microbiota suggests that taxonomic and metabolic diversification is an evolutionary adaptation to diverse lignocellulosic substrates constituting a major component of the cattle's diet. Our data also provide novel insights into the key role of unique microbial diversity and associated gene functions in the degradation of recalcitrant lignocellulosic materials in the rumen.
Collapse
Affiliation(s)
- Javad Gharechahi
- grid.411521.20000 0000 9975 294XHuman Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhad Vahidi
- grid.473705.20000 0001 0681 7351Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Mohammad Bahram
- grid.6341.00000 0000 8578 2742Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden ,grid.10939.320000 0001 0943 7661Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005 Tartu, Estonia
| | - Jian-Lin Han
- grid.419369.00000 0000 9378 4481Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya ,grid.410727.70000 0001 0526 1937CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193 Beijing, China
| | - Xue-Zhi Ding
- grid.410727.70000 0001 0526 1937Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), 730050 Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- grid.473705.20000 0001 0681 7351Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran ,grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| |
Collapse
|
15
|
Guindo CO, Davoust B, Drancourt M, Grine G. Diversity of Methanogens in Animals' Gut. Microorganisms 2020; 9:microorganisms9010013. [PMID: 33374535 PMCID: PMC7822204 DOI: 10.3390/microorganisms9010013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
Methanogens are members of anaerobe microbiota of the digestive tract of mammals, including humans. However, the sources, modes of acquisition, and dynamics of digestive tract methanogens remain poorly investigated. In this study, we aimed to expand the spectrum of animals that could be sources of methanogens for humans by exploring methanogen carriage in animals. We used real-time PCR, PCR-sequencing, and multispacer sequence typing to investigate the presence of methanogens in 407 fecal specimens collected from nine different mammalian species investigated here. While all the negative controls remained negative, we obtained by PCR-sequencing seven different species of methanogens, of which three (Methanobrevibacter smithii, Methanobrevibacter millerae and Methanomassiliicoccus luminyensis) are known to be part of the methanogens present in the human digestive tract. M. smithii was found in 24 cases, including 12/24 (50%) in pigs, 6/24 (25%) in dogs, 4/24 (16.66%) in cats, and 1/24 (4.16%) in both sheep and horses. Genotyping these 24 M. smithii revealed five different genotypes, all known in humans. Our results are fairly representative of the methanogen community present in the digestive tract of certain animals domesticated by humans, and other future studies must be done to try to cultivate methanogens here detected by molecular biology to better understand the dynamics of methanogens in animals and also the likely acquisition of methanogens in humans through direct contact with these animals or through consumption of the meat and/or milk of certain animals, in particular cows.
Collapse
Affiliation(s)
- Cheick Oumar Guindo
- IHU Méditerranée Infection, 13005 Marseille, France; (C.O.G.); (M.D.)
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Bernard Davoust
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Michel Drancourt
- IHU Méditerranée Infection, 13005 Marseille, France; (C.O.G.); (M.D.)
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
| | - Ghiles Grine
- IRD, MEPHI, Aix-Marseille Université, 13005 Marseille, France;
- Faculty of Odontology, Aix-Marseille Université, 13005 Marseille, France
- Correspondence: ; Tel.: +33-(0)4-13-73-24-01; Fax: +33-(0)-13-73-24-02
| |
Collapse
|
16
|
Martinez-Fernandez G, Jiao J, Padmanabha J, Denman SE, McSweeney CS. Seasonal and Nutrient Supplement Responses in Rumen Microbiota Structure and Metabolites of Tropical Rangeland Cattle. Microorganisms 2020; 8:E1550. [PMID: 33049981 PMCID: PMC7600044 DOI: 10.3390/microorganisms8101550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 01/31/2023] Open
Abstract
This study aimed to characterize the rumen microbiota structure of cattle grazing in tropical rangelands throughout seasons and their responses in rumen ecology and productivity to a N-based supplement during the dry season. Twenty pregnant heifers grazing during the dry season of northern Australia were allocated to either N-supplemented or un-supplemented diets and monitored through the seasons. Rumen fluid, blood, and feces were analyzed before supplementation (mid-dry season), after two months supplementation (late-dry season), and post supplementation (wet season). Supplementation increased average daily weight gain (ADWG), rumen NH3-N, branched fatty acids, butyrate and acetic:propionic ratio, and decreased plasma δ15N. The supplement promoted bacterial populations involved in hemicellulose and pectin degradation and ammonia assimilation: Bacteroidales BS11, Cyanobacteria, and Prevotella spp. During the dry season, fibrolytic populations were promoted: the bacteria Fibrobacter, Cyanobacteria and Kiritimatiellaeota groups; the fungi Cyllamyces; and the protozoa Ostracodinium. The wet season increased the abundances of rumen protozoa and fungi populations, with increases of bacterial families Lachnospiraceae, Ruminococcaceae, and Muribaculaceae; the protozoa Entodinium and Eudiplodinium; the fungi Pecoramyces; and the archaea Methanosphera. In conclusion, the rumen microbiota of cattle grazing in a tropical grassland is distinctive from published studies that mainly describe ruminants consuming better quality diets.
Collapse
Affiliation(s)
| | - Jinzhen Jiao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
| | - Jagadish Padmanabha
- Agriculture and Food, CSIRO, St Lucia, QLD 4067, Australia; (G.M.-F.); (J.P.); (S.E.D.)
| | - Stuart E. Denman
- Agriculture and Food, CSIRO, St Lucia, QLD 4067, Australia; (G.M.-F.); (J.P.); (S.E.D.)
| | | |
Collapse
|
17
|
Systematic Analysis of Escherichia coli Isolates from Sheep and Cattle Suggests Adaption to the Rumen Niche. Appl Environ Microbiol 2020; 86:AEM.01417-20. [PMID: 32801187 DOI: 10.1128/aem.01417-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
The commonly used laboratory bacterium Escherichia coli normally does not produce and secrete cellulases due to its complex bilayer membrane structure and poor secretory apparatus. In our previous study, the cellulolytic E. coli strain ZH-4 with extracellular cellulase activity was found in the bovine rumen. In this study, we demonstrate that the secretion of cellulase is a common feature of E. coli isolates from the rumen of animals such as sheep and cattle. Physiological phenotype characterization of these E. coli isolates, together with genome, transcriptome, and comparative genomics analysis, suggests their adaption to the rumen niche. The higher growth rate of the isolated strains under aerobic conditions meets the competitive requirements of the strains in rumen microecosystem, while anaerobic accumulation of reduced H2 and succinate is hypothesized to be the results of adaptation to the rumen environment. Cellulase secretion increased significantly when the molecular chaperone genes ibpA and ibpB were overexpressed. This was also revealed by the transcriptomic data. A possible mechanism for cellulase secretion by E. coli isolates was proposed based on the transcriptomic data and molecular experiments.IMPORTANCE As an important intestinal microorganism, E. coli is present in the intestinal tract of animals and in many other environments. However, it normally does not produce and secret cellulases due to its complex bilayer membrane structure and poor secretory apparatus. Here, we proved that E. coli is widely present in the rumen of sheep and cattle. Systematic analysis of the isolates indicated that they have adapted to the rumen niche, with phenotypes that include secretion of cellulase and fermentative accumulation of succinate and H2 The finding that overexpression of small heat shock protein genes ibpA and ibpB could facilitate cellulase BcsZ secretion, which provides a possible insight into the protein secretion mechanism of rumen-colonizing E. coli.
Collapse
|
18
|
Muñoz-Tamayo R, Popova M, Tillier M, Morgavi DP, Morel JP, Fonty G, Morel-Desrosiers N. Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different-A modelling approach. PLoS One 2019; 14:e0226243. [PMID: 31826000 PMCID: PMC6905546 DOI: 10.1371/journal.pone.0226243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
Methanogenic archaea occupy a functionally important niche in the gut microbial ecosystem of mammals. Our purpose was to quantitatively characterize the dynamics of methanogenesis by integrating microbiology, thermodynamics and mathematical modelling. For that, in vitro growth experiments were performed with pure cultures of key methanogens from the human and ruminant gut, namely Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanobacterium formicium. Microcalorimetric experiments were performed to quantify the methanogenesis heat flux. We constructed an energetic-based mathematical model of methanogenesis. Our model captured efficiently the dynamics of methanogenesis with average concordance correlation coefficients of 0.95 for CO2, 0.98 for H2 and 0.97 for CH4. Together, experimental data and model enabled us to quantify metabolism kinetics and energetic patterns that were specific and distinct for each species despite their use of analogous methane-producing pathways. Then, we tested in silico the interactions between these methanogens under an in vivo simulation scenario using a theoretical modelling exercise. In silico simulations suggest that the classical competitive exclusion principle is inapplicable to gut ecosystems and that kinetic information alone cannot explain gut ecological aspects such as microbial coexistence. We suggest that ecological models of gut ecosystems require the integration of microbial kinetics with nonlinear behaviours related to spatial and temporal variations taking place in mammalian guts. Our work provides novel information on the thermodynamics and dynamics of methanogens. This understanding will be useful to construct new gut models with enhanced prediction capabilities and could have practical applications for promoting gut health in mammals and mitigating ruminant methane emissions.
Collapse
Affiliation(s)
- Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
- * E-mail:
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Maxence Tillier
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Diego P. Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | | | - Gérard Fonty
- Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| | | |
Collapse
|
19
|
Kameshwar AKS, Ramos LP, Qin W. Metadata Analysis Approaches for Understanding and Improving the Functional Involvement of Rumen Microbial Consortium in Digestion and Metabolism of Plant Biomass. J Genomics 2019; 7:31-45. [PMID: 31001361 PMCID: PMC6470328 DOI: 10.7150/jgen.32164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Rumen is one of the most complex gastro-intestinal system in ruminating animals. With bountiful of microorganisms supporting in breakdown and consumption of minerals and nutrients from the complex plant biomass. It is predicted that a table spoon of ruminal fluid can reside up to 150 billion microorganisms including various species of bacteria, fungi and protozoa. Several studies in the past have extensively explained about the structural and functional physiology of the rumen. Studies based on rumen and its microbiota has increased significantly in the last decade to understand and reveal applications of the rumen microbiota in food processing, pharmaceutical, biofuel and biorefining industries. Recent high-throughput meta-genomic and proteomic studies have revealed humongous information on rumen microbial diversity. In this study, we have extensively reviewed and reported present-day's progress in understanding the rumen microbial diversity. As of today, NCBI resides about 821,870 records based on rumen with approximately 889 genome sequencing studies. We have retrieved all the rumen-based records from NCBI and extensively catalogued the rumen microbial diversity and the corresponding genomic and proteomic studies respectively. Also, we have provided a brief inventory of metadata analysis software packages and reviewed the metadata analysis approaches for understanding the functional involvement of these microorganisms. Knowing and understanding the present progress on rumen microbiota and performing metadata analysis studies will significantly benefit the researchers in identifying the molecular mechanisms involved in plant biomass degradation. These studies are also necessary for developing highly efficient microorganisms and enzyme mixtures for enhancing the benefits of cattle-feedstock and biofuel industries.
Collapse
Affiliation(s)
- Ayyappa Kumar Sista Kameshwar
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Universidade Federal do Paraná, P. O. Box 19032, Curitiba, Paraná, 81531-980, Brazil
| | - Luiz Pereira Ramos
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Universidade Federal do Paraná, P. O. Box 19032, Curitiba, Paraná, 81531-980, Brazil
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
20
|
Wang L, Liu K, Wang Z, Bai X, Peng Q, Jin L. Bacterial Community Diversity Associated With Different Utilization Efficiencies of Nitrogen in the Gastrointestinal Tract of Goats. Front Microbiol 2019; 10:239. [PMID: 30873128 PMCID: PMC6401623 DOI: 10.3389/fmicb.2019.00239] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to examine the association between bacterial community structure and the utilization efficiency of nitrogen (UEN) phenotypes by determining the bacterial community in the gastrointestinal tract (GIT) of goats that differ in UEN using high-throughput 16S rRNA gene sequencing. Thirty Nubian goats were selected as experimental animals, and their UEN was determined in a metabolic experiment. Subsequently, eight individuals were grouped into the high nitrogen utilization (HNU) phenotype, and seven were grouped into the low nitrogen utilization (LNU) phenotype. The bacterial 16S rRNA gene amplicons from the rumen, abomasum, jejunum, cecum and colon contents of these animals were sequenced using next-generation high-throughput sequencing technology. Two hundred thirty-nine genera belonging to 23 phyla in the rumen, 319 genera belonging to 30 phyla in the abomasum, 248 genera belonging to 36 phyla in the jejunum, 248 genera belonging to 25 phyla in the colon and 246 genera belonging to 23 phyla in the cecum were detected, with Bacteroidetes and Firmicutes predominating. In addition, a significant correlation was observed between the UEN and the genera Succiniclasticum, Bacteroides, Ruminobacter, Methanimicrococcus, Mogibacterium, Eubacterium_hallii_group and Ruminococcus_1 in the rumen; Bacteroidales_S24-7_group, Bacteroidales_RF16_group, Bacteroidales_UCG-001 and Anaerovibrio in the abomasum; Ruminococcus_2, Candidatus_Saccharimonas, Candidatus_Arthromitus and Coprococcus_1 in the jejunum; Erysipelotrichaceae_UCG-004, Akkermansia, Senegalimassilia, Candidatus_Soleaferrea and Methanocorpusculum in the colon; and Ruminococcaceae_UCG-002, Anaerovibrio and Ruminococcaceae_UCG-007 in the cecum. Furthermore, the real-time PCR results showed that the ruminal copies of Fibrobacter_succinogenes, Butyrivibrio_fibrisolvens, Ruminococcus_sp._HUN007, Prevotella ruminicola and Streptococcus bovis in the HNU animals were significantly higher than those in the LNU animals. This study suggests an association of GIT microbial communities as a factor that influences UEN in goats.
Collapse
Affiliation(s)
- Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
21
|
da Silva-Marques RP, Zervoudakis JT, Nakazato L, Hatamoto-Zervoudakis LK, da Silva Cabral L, do Nascimento Matos NB, da Silva MIL, Feliciano AL. Ruminal Microbial Populations and Fermentation Characteristics in Beef Cattle Grazing Tropical Forage in Dry Season and Supplemented with Different Protein Levels. Curr Microbiol 2019; 76:270-278. [PMID: 30721320 DOI: 10.1007/s00284-019-01631-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022]
Abstract
We tested the hypothesis that supplementation with protein improves fermentation parameters without damaging the rumen microbial populations of beef cattle grazing Urochloa brizantha cv. Marandu during the dry season. Four rumen-cannulated Nellore bulls (571 ± 31 kg of body weight) were used in a 4 × 4 Latin square design. The treatments were not supplemented with concentrate (only free-choice mineral salt ad libitum) and supplemented (supplements with low-LPSU, medium-MPS, and high protein supplement-HPS), supplying 155, 515, and 875 g/animal/day of crude protein (CP), respectively. The abundance of each target taxon was calculated as a fraction of the total 16S rRNA gene copies in the samples, using taxon-specific and domain bacteria primers. There was no difference (P > 0.05) across treatments for intakes of dry matter (DM), forage and neutral detergent fiber (NDF), digestibility of DM and NDF, and ruminal pH. Animals supplemented with concentrate had greater (P < 0.05) intakes and digestibility of CP, ether extract and non-fibrous carbohydrate contents of the substrates (EE + NFC), and ruminal ammonia nitrogen (RAN) compared to control. Bulls that received only mineral salt had lower proportions of Butyrivibrio fibrisolvens and had greater (P < 0.05) proportions of Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens, Methanogen archaea than bulls supplemented with concentrate. The MPS animals had greater (P < 0.05) intake and digestibility of CP, RAN concentration, and had lower (P < 0.05) proportions of Fibrobacter succinogenes, Ruminococcus flavefaciens, and Selenomonas ruminantium than LPSU animals. The HPS provided higher (P < 0.05) intake of CP, RAN and proportion of Ruminococcus albus when compared with MPS. In conclusion, supply of 515 g/animal/day of protein via supplement provides better ruminal conditions for the growth of cellulolytic bacteria of bulls on pasture during dry season.
Collapse
Affiliation(s)
| | | | - Luciano Nakazato
- Graduate Program in Veterinary Science, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, 78060-900, Brazil
| | | | - Luciano da Silva Cabral
- Graduate Program in Animal Science, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, 78060-900, Brazil
| | | | | | | |
Collapse
|
22
|
Effect of Feedstock Concentration on Biogas Production by Inoculating Rumen Microorganisms in Biomass Solid Waste. Appl Biochem Biotechnol 2017; 184:1219-1231. [PMID: 28983796 DOI: 10.1007/s12010-017-2615-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023]
Abstract
A methane production system with continuous stirred-tank reactor, rumen liquid as inoculate microorganisms, and paper mill excess sludge (PES) as feedstock was studied. The work mainly focused on revealing the effect of feedstock concentration on the biogas production, which was seldom reported previously for the current system. The optimal fermentation conditions were found as follows: pH = 7, T = 39 ± 1 °C, sludge retention time is 20 days, sludge with total solids (TS) are 1, 2, 3.5, 5, 10, and 13% in weight. Daily gas yields were measured, and biogas compositions were analyzed by gas chromatograph. Under such conditions, the optimum input TS was 10 wt%, and the biogas yield and volume gas productivity were 280.2 mL/g·TS and 1188.4 mL L-1·d-1, respectively. The proportions of CH4 and CO2 in the biogas were 65.1 and 34.2%. The CH4 yield reached 182.7 mL/g VS (volatile suspended solid), which was higher than previously reported values. The findings of this work have a significant effect on promoting the application of digesting PES by rumen microorganisms and further identified the technical parameter.
Collapse
|
23
|
Friedman N, Jami E, Mizrahi I. Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages. Environ Microbiol 2017; 19:3365-3373. [PMID: 28654196 PMCID: PMC6488025 DOI: 10.1111/1462-2920.13846] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
Abstract
Methanogenic archaea in the bovine rumen are responsible for the reduction of carbon molecules to methane, using various electron donors and driving the electron flow across the microbial food webs. Thus, methanogens play a key role in sustaining rumen metabolism and function. Research of rumen methanogenic archaea typically focuses on their composition and function in mature animals, while studies of early colonization and functional establishment remain scarce. Here, we investigated the metabolic potential and taxonomic composition of the methanogenic communities across different rumen developmental stages. We discovered that the methanogenesis process changes with age and that the early methanogenic community is characterized by a high activity of methylotrophic methanogenesis, likely performed by members of the order Methanosarcinales, exclusively found in young rumen. In contrast, higher hydrogenotrophic activity was observed in the mature rumen, where a higher proportion of exclusively hydrogenotrophic taxa are found. These findings suggest that environmental filtering acts on the archaeal communities and select for different methanogenic lineages during different growth stages, affecting the functionality of this ecosystem. This study provides a better understanding of the compositional and metabolic changes that occur in the rumen microbiome from its initial stages of colonization and throughout the animals' life.
Collapse
Affiliation(s)
- Nir Friedman
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Derech HaMaccabim 68, Rishon LeZion, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
24
|
Zhou Z, Fang L, Meng Q, Li S, Chai S, Liu S, Schonewille JT. Assessment of Ruminal Bacterial and Archaeal Community Structure in Yak ( Bos grunniens). Front Microbiol 2017; 8:179. [PMID: 28223980 PMCID: PMC5293774 DOI: 10.3389/fmicb.2017.00179] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the microbial community composition in the rumen of yaks under different feeding regimes. Microbial communities were assessed by sequencing bacterial and archaeal 16S ribosomal RNA gene fragments obtained from yaks (Bos grunniens) from Qinghai-Tibetan Plateau, China. Samples were obtained from 14 animals allocated to either pasture grazing (Graze), a grazing and supplementary feeding regime (GSF), or an indoor feeding regime (Feed). The predominant bacterial phyla across feeding regimes were Bacteroidetes (51.06%) and Firmicutes (32.73%). At genus level, 25 genera were shared across all samples. The relative abundance of Prevotella in the graze and GSF regime group were significantly higher than that in the feed regime group. Meanwhile, the relative abundance of Ruminococcus was lower in the graze group than the feed and GSF regime groups. The most abundant archaeal phylum was Euryarchaeota, which accounted for 99.67% of the sequences. Ten genera were detected across feeding regimes, seven genera were shared by all samples, and the most abundant was genus Methanobrevibacter (91.60%). The relative abundance of the most detected genera were similar across feeding regime groups. Our results suggest that the ruminal bacterial community structure differs across yak feeding regimes while the archaeal community structures are largely similar.
Collapse
Affiliation(s)
- Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Lei Fang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University Beijing, China
| | - Shatuo Chai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University Xining, China
| | - Shujie Liu
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University Xining, China
| | | |
Collapse
|
25
|
Guneratnam AJ, Ahern E, FitzGerald JA, Jackson SA, Xia A, Dobson ADW, Murphy JD. Study of the performance of a thermophilic biological methanation system. BIORESOURCE TECHNOLOGY 2017; 225:308-315. [PMID: 27898322 DOI: 10.1016/j.biortech.2016.11.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 05/07/2023]
Abstract
This study investigated the operation of ex-situ biological methanation at two thermophilic temperatures (55°C and 65°C). Methane composition of 85-88% was obtained and volumetric productivities of 0.45 and 0.4LCH4/Lreactor were observed at 55°C and 65°C after 24h respectively. It is postulated that at 55°C the process operated as a mixed culture as the residual organic substrates in the starting inoculum were still available. These were consumed prior to the assessment at 65°C; thus the methanogens were now dependent on gaseous substrates CO2 and H2. The experiment was repeated at 65°C with fresh inoculum (a mixed culture); methane composition and volumetric productivity of 92% and 0.46LCH4/Lreactor were achieved in 24h. Methanothermobacter species represent likely and resilient candidates for thermophilic biogas upgrading.
Collapse
Affiliation(s)
| | - Eoin Ahern
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland
| | - Jamie A FitzGerald
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland; School of Microbiology, University College Cork, Ireland
| | | | - Ao Xia
- Key Laboratory of Low-grade Energy Utilisation Technologies and Systems, Chongqing University, Chongqing 400044, China
| | | | - Jerry D Murphy
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland; School of Engineering, University College Cork, Ireland.
| |
Collapse
|
26
|
Pakpour S, Scott JA, Turvey SE, Brook JR, Takaro TK, Sears MR, Klironomos J. Presence of Archaea in the Indoor Environment and Their Relationships with Housing Characteristics. MICROBIAL ECOLOGY 2016; 72:305-312. [PMID: 27098176 DOI: 10.1007/s00248-016-0767-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Archaea are widespread and abundant in soils, oceans, or human and animal gastrointestinal (GI) tracts. However, very little is known about the presence of Archaea in indoor environments and factors that can regulate their abundances. Using a quantitative PCR approach, and targeting the archaeal and bacterial 16S rRNA genes in floor dust samples, we found that Archaea are a common part of the indoor microbiota, 5.01 ± 0.14 (log 16S rRNA gene copies/g dust, mean ± SE) in bedrooms and 5.58 ± 0.13 in common rooms, such as living rooms. Their abundance, however, was lower than bacteria: 9.20 ± 0.32 and 9.17 ± 0.32 in bedrooms and common rooms, respectively. In addition, by measuring a broad array of environmental factors, we obtained preliminary insights into how the abundance of total archaeal 16S rRNA gene copies in indoor environment would be associated with building characteristics and occupants' activities. Based on the results, Archaea are not equally distributed within houses, and the areas with greater input of outdoor microbiome and higher traffic and material heterogeneity tend to have a higher abundance of Archaea. Nevertheless, more research is needed to better understand causes and consequences of this microbial group in indoor environments.
Collapse
Affiliation(s)
- Sepideh Pakpour
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Child & Family Research Institute, BC Children's Hospital, Vancouver, BC, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Timothy K Takaro
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Malcolm R Sears
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - John Klironomos
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
27
|
Saminathan M, Sieo CC, Gan HM, Abdullah N, Wong CMVL, Ho YW. Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro , as determined by high-throughput sequencing. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Lambie SC, Kelly WJ, Leahy SC, Li D, Reilly K, McAllister TA, Valle ER, Attwood GT, Altermann E. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand Genomic Sci 2015; 10:57. [PMID: 26413197 PMCID: PMC4582637 DOI: 10.1186/s40793-015-0038-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 07/09/2015] [Indexed: 01/05/2023] Open
Abstract
Methanosarcina species are the most metabolically versatile of the methanogenic Archaea and can obtain energy for growth by producing methane via the hydrogenotrophic, acetoclastic or methylotrophic pathways. Methanosarcina barkeri CM1 was isolated from the rumen of a New Zealand Friesian cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 4.5 Mb chromosome has an average G + C content of 39 %, and encodes 3523 protein-coding genes, but has no plasmid or prophage sequences. The gene content is very similar to that of M. barkeri Fusaro which was isolated from freshwater sediment. CM1 has a full complement of genes for all three methanogenesis pathways, but its genome shows many differences from those of other sequenced rumen methanogens. Consequently strategies to mitigate ruminant methane need to include information on the different methanogens that occur in the rumen.
Collapse
Affiliation(s)
- Suzanne C Lambie
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - William J Kelly
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Sinead C Leahy
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand ; New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Kerri Reilly
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1 Canada
| | - Edith R Valle
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1 Canada
| | - Graeme T Attwood
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand ; New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand ; Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
| |
Collapse
|
29
|
Singh KM, Patel AK, Shah RK, Reddy B, Joshi CG. Potential functional gene diversity involved in methanogenesis and methanogenic community structure in Indian buffalo (Bubalus bubalis) rumen. J Appl Genet 2015; 56:411-26. [PMID: 25663664 DOI: 10.1007/s13353-015-0270-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/26/2014] [Accepted: 01/06/2015] [Indexed: 11/26/2022]
Abstract
Understanding the methanogen community structure and methanogenesis from Bubalus bubalis in India may be beneficial to methane mitigation. Our current understanding of the microbial processes leading to methane production is incomplete, and further advancement in the knowledge of methanogenesis pathways would provide means to manipulate its emission in the future. In the present study, we evaluated the methanogenic community structure in the rumen as well as their potential genes involved in methanogenesis. The taxonomic and metabolic profiles of methanogens were assessed by shotgun sequencing of rumen metagenome by Ion Torrent semiconductor sequencing. The buffalo rumen contained representative genera of all the families of methanogens. Members of Methanobacteriaceae were found to be dominant, followed by Methanosarcinaceae, Methanococcaceae, Methanocorpusculaceae, and Thermococcaceae. A total of 60 methanogenic genera were detected in buffalo rumen. Methanogens related to the genera Methanobrevibacter, Methanosarcina, Methanococcus, Methanocorpusculum, Methanothermobacter, and Methanosphaera were predominant, representing >70 % of total archaeal sequences. The metagenomic dataset indicated the presence of genes involved in the methanogenesis and acetogenesis pathways, and the main functional genes were those of key enzymes in the methanogenesis. Sequences related to CoB--CoM heterodisulfide reductase, methyl coenzyme M reductase, f420-dependent methylenetetrahydromethanopterin reductase, and formylmethanofuran dehydrogenase were predominant in rumen. In addition, methenyltetrahydrofolate cyclohydrolase, methylenetetrahydrofolate dehydrogenase, 5,10-methylenetetrahydrofolate reductase, and acetyl-coenzyme A synthetase were also recovered.
Collapse
Affiliation(s)
- Krishna M Singh
- Department of Animal Biotechnology, Anand Agricultural University, Anand, India,
| | | | | | | | | |
Collapse
|
30
|
Tomkins NW, Denman SE, Pilajun R, Wanapat M, McSweeney CS, Elliott R. Manipulating rumen fermentation and methanogenesis using an essential oil and monensin in beef cattle fed a tropical grass hay. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2014.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Kelly WJ, Leahy SC, Li D, Perry R, Lambie SC, Attwood GT, Altermann E. The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9. Stand Genomic Sci 2014; 9:15. [PMID: 25780506 PMCID: PMC4335013 DOI: 10.1186/1944-3277-9-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Methanobacterium formicicum BRM9 was isolated from the rumen of a New Zealand Friesan cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 2.45 Mb BRM9 chromosome has an average G + C content of 41%, and encodes 2,352 protein-coding genes. The genes involved in methanogenesis are comparable to those found in other members of the Methanobacteriaceae with the exception that there is no [Fe]-hydrogenase dehydrogenase (Hmd) which links the methenyl-H4MPT reduction directly with the oxidation of H2. Compared to the rumen Methanobrevibacter strains, BRM9 has a much larger complement of genes involved in determining oxidative stress response, signal transduction and nitrogen fixation. BRM9 also has genes for the biosynthesis of the compatible solute ectoine that has not been reported to be produced by methanogens. The BRM9 genome has a prophage and two CRISPR repeat regions. Comparison to the genomes of other Methanobacterium strains shows a core genome of ~1,350 coding sequences and 190 strain-specific genes in BRM9, most of which are hypothetical proteins or prophage related.
Collapse
Affiliation(s)
- William J Kelly
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Sinead C Leahy
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Rechelle Perry
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Suzanne C Lambie
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Graeme T Attwood
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
32
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 2014; 8:250-61. [DOI: 10.1017/s1751731113002085] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
34
|
Saengkerdsub S, Ricke SC. Ecology and characteristics of methanogenic archaea in animals and humans. Crit Rev Microbiol 2013; 40:97-116. [PMID: 23425063 DOI: 10.3109/1040841x.2013.763220] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, the molecular techniques used in animal-based-methanogen studies will be discussed along with how methanogens interact not only with other microorganisms but with their animal hosts as well. These methods not only indicate the diversity and levels of methanogens, but also provide insight on their ecological functions. Most molecular techniques have been based on either 16S rRNA genes or methyl-coenzyme M reductase, a ubiquitous enzyme in methanogens. The most predominant methanogens in animals belong to the genus Methanobrevibacter. Besides methanogens contributing to overall H2 balance, methanogens also have mutual interactions with other bacteria. In addition to shared metabolic synergism, the host animal retrieves additional energy from the diet when methanogens are co-colonized with other normal flora. By comparing genes in methanogens with other bacteria, possible gene transfer between methanogens and other bacteria in the same environments appears to occur. Finally, diets in conjunction with the genetics of methanogens and hosts may represent the biological framework that dictate the extent of methanogen prevalence in these ecosystems. In addition, host evolution including the immune system could serve as an additional selective pressure for methanogen colonization.
Collapse
Affiliation(s)
- Suwat Saengkerdsub
- Department of Food Science, Center for Food Safety, University of Arkansas , Fayetteville, AR , USA , and
| | | |
Collapse
|
35
|
Kong Y, Xia Y, Seviour R, Forster R, McAllister TA. Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw. FEMS Microbiol Ecol 2013; 84:302-15. [PMID: 23278338 DOI: 10.1111/1574-6941.12062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
It is clear that methanogens are responsible for ruminal methane emissions, but quantitative information about the composition of the methanogenic community in the bovine rumen is still limited. The diversity and composition of rumen methanogens in cows fed either alfalfa hay or triticale straw were examined using a full-cycle rRNA approach. Quantitative fluorescence in situ hybridization undertaken applying oligonucleotide probes designed here identified five major methanogenic populations or groups in these animals: the Methanobrevibacter TMS group (consisting of Methanobrevibacter thaueri, Methanobrevibacter millerae and Methanobrevibacter smithii), Methanbrevibacter ruminantium-, Methanosphaera stadtmanae-, Methanomicrobium mobile-, and Methanimicrococcus-related methanogens. The TMS- and M. ruminantium-related methanogens accounted for on average 46% and 41% of the total methanogenic cells in liquid (Liq) and solid (Sol) phases of the rumen contents, respectively. Other prominent methanogens in the Liq and Sol phases included members of M. stadtmanae (15% and 33%), M. mobile (17% and 12%), and Methanimicrococcus (23% and 9%). The relative abundances of these methanogens in the community varied among individual animals and across diets. No clear differences in community composition could be observed with dietary change using cloning techniques. This study extends the known biodiversity levels of the methanogenic communities in the rumen of cows.
Collapse
Affiliation(s)
- Yunhong Kong
- Department of Biological Science and Technology, Kunming University, Kunming, China
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Biswas S, Rolain JM. Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J Microbiol Methods 2013; 92:14-24. [DOI: 10.1016/j.mimet.2012.10.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 01/22/2023]
|
38
|
Huang XD, Tan HY, Long R, Liang JB, Wright ADG. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China. BMC Microbiol 2012; 12:237. [PMID: 23078429 PMCID: PMC3502369 DOI: 10.1186/1471-2180-12-237] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from "energy-saving" animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. RESULTS Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. CONCLUSION This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle, this may also help to explain why yak produce less methane than cattle.
Collapse
Affiliation(s)
- Xiao Dan Huang
- International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Poulsen M, Jensen BB, Engberg RM. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid. Anaerobe 2011; 18:83-90. [PMID: 22193552 DOI: 10.1016/j.anaerobe.2011.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/08/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P < 0.001) and vice versa for butyric acid production from pectin and inulin (P < 0.001). Total propionic acid production was unaffected by the carbohydrate source (P = 0.791). Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P < 0.001). Principle component analysis of T-RFLP patterns revealed that both pectin and pH 5.5 resulted in pronounced changes in the microbial community composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid.
Collapse
Affiliation(s)
- Morten Poulsen
- Section for Immunology and Microbiology, Department of Animal Science, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, P.O. BOX 50, 8830 Tjele, Denmark.
| | | | | |
Collapse
|
41
|
Chaudhary PP, Sirohi SK, Saxena J. Diversity analysis of methanogens in rumen of Bubalus bubalis by 16S riboprinting and sequence analysis. Gene 2011; 493:13-7. [PMID: 22155312 DOI: 10.1016/j.gene.2011.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/15/2011] [Indexed: 10/14/2022]
Abstract
The molecular diversity of rumen methanogens was investigated by 16S rDNA gene library prepared from the rumen contents obtained from Murrah buffaloes in India. Genomic DNA was isolated from adult male fistulated buffaloes and PCR conditions were set up using specific primers. Amplified product was cloned into a suitable vector, and the positive clones were selected assuming based on blue-white screening and sequenced. Positive clones were reamplified and the resulting PCR products were further subjected to Amplified Ribosomal DNA Restriction Analysis (ARDRA) by using HaeIII enzyme. A total of 108 clones were examined, and the analysis revealed 16 phylotypes. Out of sixteen phylotypes, nine phylotypes belong to the uncultured group of methanogens, and the rest of seven phylotypes belong to the order Methanomicrobiales, Methanococcales and Methanobacteriales. Out of the 108 rDNA clones, 66 clones which constitute 61.1% of the total clone representing 9 phylotypes, show less than 97% sequence similarity with any of the cultured strain of methanogens. The second largest group of clones (24 clones) represented by four phylotypes show a sequence similarity ranging from 91% to 99% with Methanomicrobium mobile strain of methanogens. The third group of 16S rDNA clones clustered along with M. burtonii strain of methanogens. This group consists of 6 clones and constitutes about 5.5% of the total clones and represented by only single phylotype. Fourth and fifth clusters of 16S rDNA clones consist of 5 and 7 clones respectively, and these were matched with Methanobrevibacter gottschalkii and Methanobrevibacter rumanatium strain of methanogens and constitute about 4.6% and 6.4% of the total clones.
Collapse
Affiliation(s)
- Prem Prashant Chaudhary
- Nutrition Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal-132001, Haryana, India
| | | | | |
Collapse
|
42
|
Dridi B, Raoult D, Drancourt M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. APMIS 2011; 120:85-91. [PMID: 22229263 DOI: 10.1111/j.1600-0463.2011.02833.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) identification of Archaea has been limited to some environmental extremophiles belonging to distant taxa. We developed a specific protocol for MALDI-TOF-MS identification of Archaea and applied it to seven environmental human-associated Methanobrevibacter smithii, Methanobrevibacter oralis, Methanosphaera stadtmanae, and the recently described Methanomassiliicoccus luminyensi Archaea. After mechanical lyse, we observed a unique protein profile for each organisms comprising 7-24 peaks ranging from 3,015 to 10,632 Da with a high quality score of 7.38 ± 1.26. Profiles were reproducible over successive experiments performed at 1, 2, and 3-week growth durations and unambiguously distinguished the Archaea from all of the 3,995 bacterial spectra in the Brüker database. After the incorporation of the determined profiles into a local database, archaeal isolates were blindly identified within 10 min with an identification score of 1.9-2.3. The MALDI-TOF-MS-based clustering of these archaeal organisms was consistent with their 16S rDNA sequence-based phylogeny. These data prove that MALDI-TOF-MS profiling could be used as a first-line technique for the identification of human Archaea. In complement to previous reports for animal cells, Bacteria and giant viruses, MALDI-TOF-MS therefore appears as a universal method for the identification of living unicellular and multicellular organisms.
Collapse
Affiliation(s)
- Bédis Dridi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix-Marseille Université, France
| | | | | |
Collapse
|
43
|
Zhou M, Chung YH, Beauchemin KA, Holtshausen L, Oba M, McAllister TA, Guan LL. Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J Appl Microbiol 2011; 111:1148-58. [PMID: 21848695 DOI: 10.1111/j.1365-2672.2011.05126.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS To investigate the relationship between ruminal methanogen community and host enteric methane (CH(4) ) production in lactating dairy cows fed diets supplemented with an exogenous fibrolytic enzyme additive. METHODS AND RESULTS Ecology of ruminal methanogens from dairy cows fed with or without exogenous fibrolytic enzymes was examined using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses and quantitative real-time PCR (qRT-PCR). The density of methanogens was not affected by the enzyme additive or sampling times, and no relationship was observed between the total methanogen population and CH(4) yield (as g per head per day or g kg(-1) DMI). The PCR-DGGE profiles consisted of 26 distinctive bands, with two bands similar to Methanogenic archaeon CH1270 negatively correlated, and one band similar to Methanobrevibacter gottschalkii strain HO positively correlated, with CH(4) yield. Three bands similar to Methanogenic archaeon CH1270 or Methanobrevibacter smithii ATCC 35061 appeared after enzyme was added. CONCLUSIONS Supplementing a dairy cow diet with an exogenous fibrolytic enzyme additive increased CH(4) yield and altered the composition of the rumen methanogen community, but not the overall density of methanogens. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to identify the correlation between methanogen ecology and host CH(4) yield from lactating dairy cows.
Collapse
Affiliation(s)
- M Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Hook SE, Steele MA, Northwood KS, Wright ADG, McBride BW. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. MICROBIAL ECOLOGY 2011; 62:94-105. [PMID: 21625972 DOI: 10.1007/s00248-011-9881-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/12/2011] [Indexed: 05/30/2023]
Abstract
Non-lactating dairy cattle were transitioned to a high-concentrate diet to investigate the effect of ruminal pH suppression, commonly found in dairy cattle, on the density, diversity, and community structure of rumen methanogens, as well as the density of rumen protozoa. Four ruminally cannulated cows were fed a hay diet and transitioned to a 65% grain and 35% hay diet. The cattle were maintained on an high-concentrate diet for 3 weeks before the transition back to an hay diet, which was fed for an additional 3 weeks. Rumen fluid and solids and fecal samples were obtained prior to feeding during weeks 0 (hay), 1, and 3 (high-concentrate), and 4 and 6 (hay). Subacute ruminal acidosis was induced during week 1. During week 3 of the experiment, there was a significant increase in the number of protozoa present in the rumen fluid (P=0.049) and rumen solids (P=0.004), and a significant reduction in protozoa in the rumen fluid in week 6 (P=0.003). No significant effect of diet on density of rumen methanogens was found in any samples, as determined by real-time PCR. Clone libraries were constructed for weeks 0, 3, and 6, and the methanogen diversity of week 3 was found to differ from week 6. Week 3 was also found to have a significantly altered methanogen community structure, compared to the other weeks. Twenty-two unique 16S rRNA phylotypes were identified, three of which were found only during high-concentrate feeding, three were found during both phases of hay feeding, and seven were found in all three clone libraries. The genus Methanobrevibacter comprised 99% of the clones present. The rumen fluid at weeks 0, 3, and 6 of all the animals was found to contain a type A protozoal population. Ultimately, high-concentrate feeding did not significantly affect the density of rumen methanogens, but did alter methanogen diversity and community structure, as well as protozoal density within the rumen of nonlactating dairy cattle. Therefore, it may be necessary to monitor the rumen methanogen and protozoal communities of dairy cattle susceptible to depressed pH when methane abatement strategies are being investigated.
Collapse
Affiliation(s)
- Sarah E Hook
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | | | | | | | |
Collapse
|
45
|
Gu MJ, Alam MJ, Kim SH, Jeon CO, Chang MB, Oh YK, Lee SC, Lee SS. Analysis of methanogenic archaeal communities of rumen fluid and rumen particles from Korean black goats. Anim Sci J 2011; 82:663-72. [PMID: 21951902 DOI: 10.1111/j.1740-0929.2011.00890.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular diversity of methanogens in the rumen of Korean black goats was investigated with 16S rRNA gene clone libraries using methanogen-specific primers. The libraries were composed of rumen fluid-associated methanogens (FAM) and rumen particle-associated methanogens (PAM) from rumen-fistulated Korean black goats. Among the 141 clones of the FAM library, the sequences were mostly related to two phyla, the Methanobacteriaceae family (77.3%) and the Thermoplasmatales family (22.7%); and among the 68 clones of the PAM library, sequences were also mainly clustered in the two phyla, the Thermoplasmatales family (63.24%) and the Methanobacteriaceae family (35.29%). Most of the sequenced clones in the two libraries were closely related to uncultured methanogenic archaeon. Quantitative real-time PCR revealed that PAM (8.97 log 10) had significantly higher (P < 0.01) density of methanogens by the methanogenic 16S rRNA gene copies than FAM (7.57 log 10). The two clone libraries also showed difference in Shannon index (FAM library 1.70 and PAM library 1.59) and Chao 1 estimator (FAM library 18 and PAM library 17 operational taxonomic units). Apparent differences found in the microbial community from the two 16S rRNA gene libraries could be a result of such factors as the chemical and physical nature of the target material surface, types or component of diets, the interaction between the methanogens and other microbes, and age of the experimental goats.
Collapse
Affiliation(s)
- Min-Jung Gu
- Department of Animal Science and Technology, College of Bio industry Science, Sunchon National University
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wright ADG, Klieve AV. Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Zhou M, McAllister T, Guan L. Molecular identification of rumen methanogens: Technologies, advances and prospects. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
|
49
|
Singh KM, Tripathi AK, Pandya PR, Parnerkar S, Rank DN, Kothari RK, Joshi CG. Methanogen diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis. Res Vet Sci 2011; 92:451-5. [PMID: 21507441 DOI: 10.1016/j.rvsc.2011.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 03/19/2011] [Accepted: 03/21/2011] [Indexed: 11/25/2022]
Abstract
The methanogenic communities in buffalo rumen were characterized using a culture-independent approach of a pooled sample of rumen fluid from three adult Surti buffaloes. Buffalo rumen is likely to include species of various methanogens, so 16S rDNA sequences were amplified and cloned from the sample. A total of 171 clones were sequenced to examine 16S rDNA sequence similarity. About 52.63% sequences (90 clones) had ≥ 90% similarity, whereas, 46.78% of the sequences (81 clones) were 75-89% similar to 16S rDNA database sequences, respectively. Phylogenetic analyses were also used to infer the makeup of methanogenic communities in the rumen of Surti buffalo. As a result, we distinguished 23 operational taxonomic units (OTUs) based on unique 16S rDNA sequences: 12 OTUs (52.17%) affiliated to Methanomicrobiales order, 10 OTUs (43.47%) of the order Methanobacteriales and one OTU (4.34%) of Methanosarcina barkeri like clone, respectively. In addition, the population of Methanomicrobiales and Methabacteriales orders were also observed, accounting 4% and 2.17% of total archea. This study has revealed the largest assortment of hydrogenotrophic methanogens phylotypes ever identified from rumen of Surti buffaloes.
Collapse
Affiliation(s)
- K M Singh
- Department of Animal Biotechnology, College of Veterinary Science and A.H., Anand Agricultural University, Anand 388 001, Gujarat, India.
| | | | | | | | | | | | | |
Collapse
|
50
|
Singh K, Pandya P, Parnerkar S, Tripathi A, Rank D, Kothari R, Joshi C. Molecular identification of methanogenic archaea from surti buffaloes (bubalus bubalis), reveals more hydrogenotrophic methanogens phylotypes. Braz J Microbiol 2011; 42:132-9. [PMID: 24031614 PMCID: PMC3768915 DOI: 10.1590/s1517-83822011000100017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 05/12/2010] [Accepted: 08/26/2010] [Indexed: 11/22/2022] Open
Abstract
Methane emissions from ruminant livestock are considered to be one of the more potent forms of greenhouses gases contributing to global warming. Many strategies to reduce emissions are targeting the methanogens that inhabit the rumen, but such an approach can only be successful if it targets all the major groups of ruminant methanogens. Therefore, a thorough knowledge of the diversity of these microbes in breeds of buffaloes, as well as in response to geographical location and different diets, is required. Therefore, molecular diversity of rumen methanogens in Surti buffaloes was investigated using 16S rRNA gene libraries prepared from pooled rumen contents from three Surti buffaloes. A total of 171 clones were identified revealing 23 different sequences (phylotypes). Of these 23 sequences, twelve sequences (12 OTUs, 83 clones) and 10 sequences (10 OTUs, 83 clones) were similar to methanogens belonging to the orders Methanomicrobiales and Methanobacteriales, and the remaining 1 phylotype (5 clones) were similar to Methanosarcina barkeri. These unique sequences clustered within a distinct and strongly supported phylogenetic group. Further studies and effective strategies can be made to inhibit the growth of Methanomicrobiales and Methanobacteriales phylotypes to reduce the methane emission from rumen and thus help in preventing global warming.
Collapse
Affiliation(s)
- K.M. Singh
- Department of Animal Biotechnology, College of Veterinary Science and A.H., Anand Agricultural University, Anand (388 001), Gujarat, India
| | - P.R. Pandya
- Animal Nutrition Research Station, College of Veterinary Science and A.H., Anand Agricultural University, Anand (388 001), Gujarat, India
| | - S. Parnerkar
- Animal Nutrition Research Station, College of Veterinary Science and A.H., Anand Agricultural University, Anand (388 001), Gujarat, India
| | - A.K. Tripathi
- Department of Animal Biotechnology, College of Veterinary Science and A.H., Anand Agricultural University, Anand (388 001), Gujarat, India
| | - D.N. Rank
- Department of Animal Genetics & Breeding, College of Veterinary Science and A.H., Anand Agricultural University, Anand (388 001), Gujarat, India
| | - R.K. Kothari
- Department of Microbiology, Christ College, Rajkot, Gujarat, India
| | - C.G. Joshi
- Department of Animal Biotechnology, College of Veterinary Science and A.H., Anand Agricultural University, Anand (388 001), Gujarat, India
| |
Collapse
|