1
|
Kumar R, Thakur N, Kumar S, Singh B. Designing of moringa gum-zwitterionic copolymer structure through supra-molecular and covalent interactions for biomedical uses. Int J Biol Macromol 2025; 310:143211. [PMID: 40246100 DOI: 10.1016/j.ijbiomac.2025.143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Recently, functional materials derived from carbohydrate polymers have gained significant attention for their clinical uses due to their inherent bioactivity and biocompatibility. Therefore, the primary focus of the present research was to design bioactive moringa gum (MOGUM)-based hydrogels through covalent and supra-molecular interactions for use in biomedical applications. The copolymeric hydrogels were prepared by crosslinking of zwitterionic polymers of 2-(methacryloyloxy)ethyl] dimethyl-(3-sulfoproyl) ammonium hydroxide (MEDSAH) and carbopol (CP) onto gum for their applications in hydrogel wound dressings (HWDR) and drug delivery (DD). These copolymers were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), solid state 13C nuclear magnetic resonance (13C NMR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. Release of the encapsulated drug (minocycline) from hydrogels exhibited non-Fickian mechanism and the release profile was best described by zero order kinetic model. These HWDR were found to be blood compatible, mechanically stable, permeable to H2O and O2. The HWDR revealed muco-adhesiveness and required a detachment force 153.00 ± 6.00 mN for their separation from mucosal membrane. The antioxidant activity of dressing materials revealed 76.57 ± 1.91 % scavenging during the DPPH assay. The minocycline encapsulated HWDR elucidated antibacterial activity against P. aeruginosa, E. coli & S. aureus. These findings suggest that these hydrogels hold significant potential for application in DD systems.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Nistha Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Sushil Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India.
| |
Collapse
|
2
|
Singh J, Vishavnath, Sharma V, Singh B. Development of agar-alginate marine polysaccharides-based hydrogels for agricultural applications to reduce environmental hazards. Int J Biol Macromol 2025; 295:139659. [PMID: 39793803 DOI: 10.1016/j.ijbiomac.2025.139659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
In order to meet global food requirement, innovation in agricultural techniques and pesticide delivery system will be required for sustainable food supply with minimal harmful impact on environment. This article discusses the synthesis of hydrogels for use in controlled release formulations (CRFs) to increase agricultural output while reducing ecotoxicity and health risks. These hydrogels were designed by graft-copolymerization reaction of polyacrylamide and polyvinyl sulfonic acid onto agar-alginate marine polysaccharides. Copolymers were characterized by SEM, AFM, XRD, FTIR and 13C NMR. One gram of copolymeric hydrogels absorbed 14.80 ± 0.53 g of water. The glyphosate herbicide was released in a slow regulated manner over 72 h which is useful to avoid herbicide loss through leaching, evaporation and to reduce environmental hazards. The herbicide released via a non-Fickian diffusion mechanism and release profile was best described by the Korsmeyer-Peppas kinetic model. The release of herbicide from hydrogels occurred slowly and consistently in simulated soil conditions for a prolonged period. A soil adsorption studies of herbicide revealed a reduction in ground water ubiquity score (GUS) for glyphosate encapsulated hydrogels as compared to commercial formulations. Soil water retention was enhanced by the addition of hydrogel in the soil. The degradation of these CRFs can provide micronutrients (N and S) to improve soil quality and minimize the risk of water pollution by reducing the leaching of herbicides.
Collapse
Affiliation(s)
- Jasvir Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Vishavnath
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Vikrant Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
3
|
Liu XC, Luo YM, Xu FY, Wu XL, Wei XA, Liu DB, Wang BB. Design and characterization of high-performance energetic hydrogels with enhanced mechanical and explosive properties. Sci Rep 2024; 14:30104. [PMID: 39627277 PMCID: PMC11615406 DOI: 10.1038/s41598-024-79737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Polymeric hydrogels, known for their excellent mechanical properties and pre-cross-linking flowability, provide a promising solution for recycling waste propellants, ensuring safety and maintaining explosive performance. This study developed a double cross-linked network energetic hydrogel that effectively combines mechanical strength with explosive capabilities. Using a Ford 4 Cup, temperature data logger, universal testing machine, and detonation performance tests, we examined the impacts of kinematic viscosity, cross-linking time, compressive strength, and explosive properties. The optimal kinematic viscosity for stabilizing hollow glass microspheres (GM) was found to be 129.7 mm2/s. Cross-linking time was negatively correlated with initiator, catalyst levels, and reaction temperature, but positively correlated with retarder content. Compressive strength increased with acrylamide (AM) content and showed an initial rise before decreasing with N,N'-methylenebisacrylamide (MBAA) content and reaction temperature. The maximum compressive strength was achieved with 5% MBAA (of AM mass fraction) at 40 °C. Detonation velocity and steel plate damage decreased with increasing AM content and initially increased then decreased with GM content. A balance of mechanical and explosive properties was achieved with 6% AM and 4% GM, resulting in a detonation velocity of 4536 m/s. This hydrogel shows significant potential for waste munitions management.
Collapse
Affiliation(s)
- Xi-Chen Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yi-Min Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Fei-Yang Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Xing-Liang Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Xiao-An Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Da-Bin Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| | - Bin-Bin Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| |
Collapse
|
4
|
Wang G, An S, Huang S, Alamgir, Wahab A, Ahmad Z, Suhail M, Iqbal MZ. Fabrication, optimization, and in vitro validation of penicillin-loaded hydrogels for controlled drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2682-2702. [PMID: 39155278 DOI: 10.1080/09205063.2024.2387953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Bacterial infections present a major global challenge. Penicillin, a widely used antibiotic known for its effectiveness and safety, is frequently prescribed. However, its short half-life necessitates multiple high-dose daily administrations, leading to severe side-effects. Therefore, this study aims to address these issues by developing hydrogels which control the release of penicillin and alleviate its adverse effects. Various combinations of aspartic acid and acrylamide were crosslinked by N', N'-methylene bisacrylamide through a free radical polymerization process to prepare aspartic acid/acrylamide (Asp/Am) hydrogels. The fabricated hydrogels underwent comprehensive characterization to assess physical properties and thermal stability. The soluble and insoluble fractions and porosity of the synthesized matrix were evaluated by sol-gel and porosity studies. Gel fraction was estimated at 88-96%, whereas sol fraction was found 12-4% and porosity found within the 63-78% range for fabricated hydrogel formulations. Maximum swelling and drug release were seen at pH 7.4, demonstrating a controlled drug release from hydrogel networks. The results showed that swelling, porosity, gel fraction, and drug release increased with higher concentrations of aspartic acid and acrylamide. However, integration of N', N'-methylene bisacrylamide exhibited the opposite effect on swelling and porosity, while increasing gel fraction. All formulations followed the Korsymer-Peppas model of kinetics with 'r' values within the range of 0.9740-0.9980. Furthermore, the cytotoxicity study indicated an effective and safe use of hydrogel because the cell viability was higher than 70%. Therefore, these prepared hydrogels show promise candidates for controlled release of Penicillin and are anticipated to be valuable in clinical applications.
Collapse
Affiliation(s)
- Guiyue Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Susu An
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Siru Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Alamgir
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Abdul Wahab
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zahoor Ahmad
- Institute of Advanced Ceramics & Fibers, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Muhammad Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Cao C, Yu Q, Yu Z, Tang K, Gan N. Phage-Modified Clear Hydrogel for Simultaneous Detection of Multiple Bacteria. Anal Chem 2024; 96:16007-16016. [PMID: 39331836 DOI: 10.1021/acs.analchem.4c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The proliferation speed of live foodborne pathogens is fast. A small number of pathogens will have a great impact on food and the environment if positive samples are not detected timely. In this study, transparent porous hydrogel stir bars, modified by two different phages (corresponding to two different bacteria (Escherichia coli and Hafnia sp)), have been developed for rapid detection of foodborne bacteria. A large number of samples can be analyzed simultaneously with a small animal live imager device to screen out the positive samples, while an adenosine triphosphate (ATP) bioluminescence sensor can be used to quantify the number of bacteria in the positive samples. The phage has good specificity and capture ability to bacteria, which makes the method highly sensitive. In addition, the use of multiple phages also enables the method to detect multiple bacteria simultaneously. The three-dimensional structure of the hydrogel allows it to modify more phages, and its transparent nature also allows the inside bioluminescence to be detected. Both can enhance the sensitivity of the detection. Finally, the reagents needed for bioluminescence, such as d-luciferin, can also be preencapsulated in the hydrogel, thus simplifying the detection step. Under the best conditions, the detection range of the method is 102-108 CFU·mL-1, and the limit of detection is 30 CFU·mL-1 within 11 min. The test results of actual samples show that there is no difference between using the method developed through this study and the traditional plate counting method, but the detection time is greatly shortened.
Collapse
Affiliation(s)
- Cong Cao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Qianfeng Yu
- School of Public Health, Ningbo Univesity, Ningbo 315211, China
| | - Zhenzhong Yu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Keqi Tang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510315, China
| |
Collapse
|
6
|
Lu Q, Liu W, Chen D, Yu D, Song Z, Wang H, Li G, Liu X, Ge S. Hydrophobic association-improved multi-functional hydrogels with liquid metal droplets stabilized by xanthan gum and PEDOT:PSS for strain sensors. Int J Biol Macromol 2024; 271:132494. [PMID: 38788874 DOI: 10.1016/j.ijbiomac.2024.132494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The synthesis of liquid metal-infused hydrogels, typically constituted by polyacrylamide networks crosslinked through covalent bonds, often encounters a conundrum: they exhibit restricted extensibility and a diminished capacity for self-repair, owing to the inherently irreversible nature of the covalent linkages. This study introduces a hydrophobically associated hydrogel embedding gallium (Ga)-droplets, realized through the in situ free radical copolymerization of hydrophobic hexadecyl methacrylate (HMA) and hydrophilic acrylamide (AM) in a milieu containing xanthan gum (XG) and PEDOT:PSS, which co-stabilizes the Ga-droplets. The Ga-droplets, synergistically functioning as conductive agents alongside PEDOT:PSS, also expedite the hydrogel's formation. The resultant XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel is distinguished by its remarkable extensibility (2950 %), exceptional toughness (3.28 MJ/m3), superior adherence to hydrophobic, smooth substrates, and an innate ability for hydrophobic-driven self-healing. As a strain sensing medium, this hydrogel-based sensor exhibits heightened sensitivity (gauge factor = 12.66), low detection threshold (0.1 %), and robust durability (>500 cycles). Furthermore, the inclusion of glycerol endows the XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel with anti-freezing properties without compromising its mechanical integrity and sensing acumen. This sensor adeptly captures a spectrum of human movements, from the nuanced radial pulse to extensive joint articulations. This research heralds a novel approach for fabricating multifaceted PAM-based hydrogels with toughness and superior sensing capabilities.
Collapse
Affiliation(s)
- Qishu Lu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
| | - Duo Chen
- Department of Optoelectronic Science and Technology, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| |
Collapse
|
7
|
Iacob BC, Bodoki AE, Da Costa Carvalho DF, Serpa Paulino AA, Barbu-Tudoran L, Bodoki E. Unlocking New Avenues: Solid-State Synthesis of Molecularly Imprinted Polymers. Int J Mol Sci 2024; 25:5504. [PMID: 38791542 PMCID: PMC11122393 DOI: 10.3390/ijms25105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Molecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported. The successful synthesis of the imprinted polymer was functionally demonstrated by measuring its template rebinding capacity and the selectivity of the molecular recognition process in comparison with the ones obtained by the conventional, non-covalent molecular imprinting process in liquid media. The results demonstrated similar binding capacities towards the template molecule and superior chemoselectivity compared to the solution-based MIP synthesis method. The adoption of green chemistry principles with all their inherent advantages in the synthesis of MIPs may not only be able to alleviate the potential environmental and health concerns associated with their analytical (e.g., selective adsorbents) and biomedical (e.g., drug carriers or reservoirs) applications, but might also offer a conceptual change in molecular imprinting technology.
Collapse
Affiliation(s)
- Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Andreea Elena Bodoki
- Inorganic Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 12 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Diogo Filipe Da Costa Carvalho
- Instituto Politécnico de Lisboa, Escola Superior de Tecnologia da Saúde de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal; (D.F.D.C.C.); (A.A.S.P.)
| | - Antonio Augusto Serpa Paulino
- Instituto Politécnico de Lisboa, Escola Superior de Tecnologia da Saúde de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal; (D.F.D.C.C.); (A.A.S.P.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
8
|
Kapoor DU, Garg R, Gaur M, Pareek A, Prajapati BG, Castro GR, Suttiruengwong S, Sriamornsak P. Pectin hydrogels for controlled drug release: Recent developments and future prospects. Saudi Pharm J 2024; 32:102002. [PMID: 38439951 PMCID: PMC10910345 DOI: 10.1016/j.jsps.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.
Collapse
Affiliation(s)
- Devesh U. Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| | - Rahul Garg
- Department of Pharmacy, Asian College of Pharmacy, Udaipur, Rajasthan 313001, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302020, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Bhupendra G. Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat 384012, India
| | - Guillermo R. Castro
- Nanomedicine Research Unit, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo 09210-580, Brazil
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
9
|
Abu Elella MH, Aamer N, Abdallah HM, López-Maldonado EA, Mohamed YMA, El Nazer HA, Mohamed RR. Novel high-efficient adsorbent based on modified gelatin/montmorillonite nanocomposite for removal of malachite green dye. Sci Rep 2024; 14:1228. [PMID: 38216651 PMCID: PMC10786822 DOI: 10.1038/s41598-024-51321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Shortage of drinking water has gained potential interest over the last few decades. Discharged industrial effluent, including various toxic pollutants, to water surfaces is one of the most serious environmental issues. The adsorption technique has become a widely studied method for the removal of toxic pollutants, specifically synthetic dyes, from wastewater due to its cost-effectiveness, high selectivity, and ease of operation. In this study, a novel gelatin-crosslinked-poly(acrylamide-co-itaconic acid)/montmorillonite (MMT) nanoclay nanocomposites-based adsorbent has been prepared for removing malachite green (MG) dye from an aqueous solution. Modified gelatin nanocomposites were synthesized using a free-radical polymerization technique in the presence and absence of MMT. Various analytical instrumentation: including FTIR, FESEM, XRD, and TEM techniques were used to elucidate the chemical structure and surface morphology of the prepared samples. Using a batch adsorption experiment, Langmuir isotherm model showed that the prepared modified gelatin nanocomposite had a maximum adsorption capacity of 950.5 mg/g using 350 mg/L of MG dye at pH 9 within 45 min. Furthermore, the regeneration study showed good recyclability for the obtained nanocomposite through four consecutive reusable cycles. Therefore, the fabricated gelatin nanocomposite is an attractive adsorbent for MG dye elimination from aqueous solutions.
Collapse
Affiliation(s)
| | - Nema Aamer
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki , Giza, 12622, Egypt
| | - Eduardo A López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP: 22390, Tijuana, Baja California, Mexico
| | - Yasser M A Mohamed
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Hossam A El Nazer
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
10
|
Yu C, Naeem A, Liu Y, Guan Y. Ellagic Acid Inclusion Complex-Loaded Hydrogels as an Efficient Controlled Release System: Design, Fabrication and In Vitro Evaluation. J Funct Biomater 2023; 14:jfb14050278. [PMID: 37233388 DOI: 10.3390/jfb14050278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Oxidants play a crucial role in the development of oxidative stress, which is linked to disease progression. Ellagic acid is an effective antioxidant with applications in the treatment and prevention of several diseases, since it neutralizes free radicals and reduces oxidative stress. However, it has limited application due to its poor solubility and oral bioavailability. Since ellagic acid is hydrophobic, it is difficult to load it directly into hydrogels for controlled release applications. Therefore, the purpose of this study was to first prepare inclusion complexes of ellagic acid (EA) with hydroxypropyl-β-cyclodextrin and then load them into carbopol-934-grafted-2-acrylamido-2-methyl-1-propane sulfonic acid (CP-g-AMPS) hydrogels for orally controlled drug delivery. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to validate ellagic acid inclusion complexes and hydrogels. There was slightly higher swelling and drug release at pH 1.2 (42.20% and 92.13%) than at pH 7.4 (31.61% and 77.28%), respectively. Hydrogels had high porosity (88.90%) and biodegradation (9.2% per week in phosphate-buffered saline). Hydrogels were tested for their antioxidant properties in vitro against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Additionally, the antibacterial activity of hydrogels was demonstrated against Gram-positive bacterial strains (Staphylococcus aureus and Escherichia coli) and Gram-negative bacterial strains (Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, 1688 Meiling Road, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, 1688 Meiling Road, Nanchang 330006, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
11
|
Study of Hydroxypropyl β-Cyclodextrin and Puerarin Inclusion Complexes Encapsulated in Sodium Alginate-Grafted 2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid Hydrogels for Oral Controlled Drug Delivery. Gels 2023; 9:gels9030246. [PMID: 36975695 PMCID: PMC10048200 DOI: 10.3390/gels9030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Puerarin has been reported to have anti-inflammatory, antioxidant, immunity enhancement, neuroprotective, cardioprotective, antitumor, and antimicrobial effects. However, due to its poor pharmacokinetic profile (low oral bioavailability, rapid systemic clearance, and short half-life) and physicochemical properties (e.g., low aqueous solubility and poor stability) its therapeutic efficacy is limited. The hydrophobic nature of puerarin makes it difficult to load into hydrogels. Hence, hydroxypropyl-β-cyclodextrin (HP-βCD)-puerarin inclusion complexes (PIC) were first prepared to enhance solubility and stability; then, they were incorporated into sodium alginate-grafted 2-acrylamido-2-methyl-1-propane sulfonic acid (SA-g-AMPS) hydrogels for controlled drug release in order to increase bioavailability. The puerarin inclusion complexes and hydrogels were evaluated via FTIR, TGA, SEM, XRD, and DSC. Swelling ratio and drug release were both highest at pH 1.2 (36.38% swelling ratio and 86.17% drug release) versus pH 7.4 (27.50% swelling ratio and 73.25% drug release) after 48 h. The hydrogels exhibited high porosity (85%) and biodegradability (10% in 1 week in phosphate buffer saline). In addition, the in vitro antioxidative activity (DPPH (71%), ABTS (75%), and antibacterial activity (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) indicated the puerarin inclusion complex-loaded hydrogels had antioxidative and antibacterial capabilities. This study provides a basis for the successful encapsulation of hydrophobic drugs inside hydrogels for controlled drug release and other purposes.
Collapse
|
12
|
Qaiser R, Pervaiz F, Shoukat H, Yasin H, Hanan H, Murtaza G. Mucoadhesive chitosan/polyvinylpyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) based hydrogels of captopril with adjustable properties as sustained release carrier: Formulation design and toxicological evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Singh B, Sharma V, Ram K. Design of moxifloxacin encapsulated network hydrogel wound dressings: Evaluation of polymer‐drug, polymer‐blood, and polymer‐bio membrane interactions. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baljit Singh
- Department of Chemistry Himachal Pradesh University Shimla India
| | - Vikrant Sharma
- Department of Chemistry Himachal Pradesh University Shimla India
| | - Kaka Ram
- Department of Chemistry Himachal Pradesh University Shimla India
| |
Collapse
|
14
|
Recent Reports on Polysaccharide-Based Materials for Drug Delivery. Polymers (Basel) 2022; 14:polym14194189. [PMID: 36236137 PMCID: PMC9572459 DOI: 10.3390/polym14194189] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides constitute one of the most important families of biopolymers. Natural polysaccharide-based drug delivery systems are of constant interest to the scientific community due to their unique properties: biocompatibility, non-toxicity, biodegradability, and high availability. These promising biomaterials protect sensitive active agents and provide their controlled release in targeted sites. The application of natural polysaccharides as drug delivery systems is also intensively developed by Polish scientists. The present review focuses on case studies from the last few years authored or co-authored by research centers in Poland. A particular emphasis was placed on the diversity of the formulations in terms of the active substance carried, the drug delivery route, the composition of the material, and its preparation method.
Collapse
|
15
|
Formulation and evaluation of polyethylene glycol/Xanthan gum-co-poly (Acrylic acid) interpenetrating network for controlled release of venlafaxine. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|