1
|
Liao CY, Li G, Kang FP, Lin CF, Xie CK, Wu YD, Hu JF, Lin HY, Zhu SC, Huang XX, Lai JL, Chen LQ, Huang Y, Li QW, Huang L, Wang ZW, Tian YF, Chen S. Necroptosis enhances 'don't eat me' signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis. Nat Commun 2024; 15:6043. [PMID: 39025845 PMCID: PMC11258255 DOI: 10.1038/s41467-024-50450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.
Collapse
Affiliation(s)
- Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Feng-Ping Kang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Cheng-Ke Xie
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Yong-Ding Wu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Hong-Yi Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Shun-Cang Zhu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiao-Xiao Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | | | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Qiao-Wei Li
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China.
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China.
| |
Collapse
|
2
|
Wang G, Zhang Z, Tao M, Wei X, Zhou L. Identification of potential crucial genes and mechanisms associated with metastasis of medulloblastoma based on gene expression profile. Neurol Res 2023; 45:260-267. [PMID: 36215435 DOI: 10.1080/01616412.2022.2132457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Medulloblastoma is the most common malignant brain tumor in childhood. Although metastasis constitutes one of the poorest prognostic indicators in this disease, the mechanisms that drive metastasis have received less attention. The aim of our study is to provide valid biological information for the metastasis mechanism of medulloblastoma. METHODS Gene expression profile of GSE468 was downloaded from GEO database and was analyzed using limma R package. Function and enrichment analyses of DEGs were performed based on PANTHER database. PPI network construction, hub gene selection and module analysis were conducted in Cytoscape software. RESULTS Nine upregulated genes and 34 downregulated genes were selected as DEGs. The upregulated genes were mainly enriched in molecular function and cell component, which mainly included protein binding and nucleus respectively. A total of 120 enriched GO terms and 40 KEGG pathways were identified. The main enriched GO terms were the biological process such as apoptosis and MAPK activity. Besides, the enriched KEGG pathways also included MAPK signaling pathway. A PPI network was obtained, and JUN was identified as a hub gene. Also, we firstly investigated the role and regulatory mechanism of JUN in the metastasis of medulloblastoma. CONCLUSIONS Through the bioinformatics analysis of the gene microarray in GEO, we found some crucial genes and pathways associated with the metastasis of medulloblastoma.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengying Tao
- Department of Ophthalmology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Xin Wei
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| |
Collapse
|
3
|
Liao Y, Peng K, Li X, Ye Y, Liu P, Zeng Y. The adhesion protein of Mycoplasma genitalium inhibits urethral epithelial cell apoptosis through CypA-CD147 activating PI3K/ Akt/NF-κB pathway. Appl Microbiol Biotechnol 2022; 106:6657-6669. [PMID: 36066653 DOI: 10.1007/s00253-022-12146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
By interacting with the receptor on the host cells membrane, Mycoplasma genitalium, a prokaryotic bacterium primarily transmitted through sexual contact, can adhere to and even enter cells. The adhesion protein of M. genitalium (MgPa) plays a critical function in the adhering and subsequent invasion into host cells. Our prior studies verified that cyclophilin A (CypA) was the receptor of MgPa on human urethral epithelial cells (SV-HUC-1) membrane and could induce pro-inflammatory cytokines production through the CypA-CD147-ERK-NF-κB pathway. This research aims to understand how MgPa interacts with its membrane receptor CypA to cause apoptosis in host cells. We employed flow cytometry to see if MgPa prevents or enhances apoptosis of SV-HUC-1 cells. The apoptosis-related proteins such as Bax, caspase-3, and cleaved caspase-3 were assayed using Western blot. Results suggested that MgPa could inhibit the apoptosis of SV-HUC-1 cells. And we demonstrated that interference with the expression of CypA or CD147 significantly reversed the inhibitory effect of MgPa on SV-HUC-1 cells apoptosis, indicating that MgPa inhibited urothelial cells apoptosis through CypA/CD147. Furthermore, we discovered that MgPa regulates the PI3K/Akt/NF-κB pathway through CypA/CD147 to inhibit SV-HUC-1 cells apoptosis. Ultimately, the inhibitory effect of MgPa on the apoptosis of the urothelial epithelial cells extracted from CypA-knockout mice was validated by Annexin V/PI assay. The results corroborated that MgPa could also inhibit mouse urothelial epithelial cells apoptosis. In summary, we demonstrated that MgPa could inhibit SV-HUC-1 cells apoptosis via regulating the PI3K/Akt/NF-κB pathway through CypA/CD147, providing experimental evidence for elucidating the survival strategies of M. genitalium in host cells. KEY POINTS: • M. genitalium protein of adhesion inhibited human urethral epithelial cells apoptosis through CypA-CD147 activating the signal pathway of PI3K/Akt/NF-κB • The knockdown of CypA and CD147 could downregulate the M. genitalium -activated PI3K/Akt/NF-κB pathway in SV-HUC-1 cells • MgPa could inhibit the apoptosis of normal C57BL mouse primary urethral epithelial cells, but not for CypA-knockout C57BL mouse primary urethral epithelial cells.
Collapse
Affiliation(s)
- Yating Liao
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
- Center of Medical Laboratory, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 423000, China
| | - Kailan Peng
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Xia Li
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Peng Liu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China.
| |
Collapse
|
4
|
Tu W, Gong J, Tian D, Wang Z. Hepatitis B Virus X Protein Induces SATB1 Expression Through Activation of ERK and p38MAPK Pathways to Suppress Anoikis. Dig Dis Sci 2019; 64:3203-3214. [PMID: 31147803 DOI: 10.1007/s10620-019-05681-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously reported that there were potentially certain correlations between the high expression of SATB1 and the HBV infection in human hepatocellular carcinoma tissues, and SATB1 promoted tumor growth and metastasis in liver cancer. Hepatitis B virus (HBV) infection is internationally recognized as a contributing factor to metastasis in liver cancer. The anoikis prevention of detached malignant cancer cells is the precondition for metastasis. AIMS Our studies aimed to explore the relationship between HBV infection, SATB1 and liver cancer cell anoikis and their specific regulatory mechanisms in HBV-associated liver cancer. METHODS HepG2 cell was transiently transfected with pBlue-HBV and seven types of HBV-encoded protein plasmids. Anoikis assay and soft agarose colony formation experiment were analyzed in HepG2.2.15-SATB1 siRNA cells, HBx-overexpressing cells and HepG2-HBx-SATB1 siRNA cells. The inhibitors of signaling molecules were used to treat of HepG2-HBx cells, and then, the SATB1 expression and phosphorylation levels of signaling molecules were evaluated. RESULTS Our data show that the high expression of SATB1 and enhanced anoikis resistance were observed in HBV stably expressing cell line HepG2.2.15 and high metastatic potential cell line SK-HEP-1. HBV can induce SATB1 expression and suppress anoikis of unattached liver cancer cells. Moreover, SATB1 expression and anoikis resistance were mainly regulated by HBV-encoded viral protein HBx through the activation of ERK and p38 MAPK signaling pathways to promote metastasis of liver cancer. CONCLUSION These data suggest that the HBV-encoded HBx and SATB1 may play an important role in promoting anoikis resistance and metastasis in HBV-associated liver cancer.
Collapse
Affiliation(s)
- Wei Tu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jin Gong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
5
|
Abstract
This study aims to examine the expression of p53, p16, and murine double minute 2 (MDM2) protein in normal endometrium and endometriosis, in order to discuss the role of p53, p16, and MDM2 protein and apoptosis in the pathogenesis and development of endometriosis, and provide a theoretical basis for clinical diagnosis and treatment.The immunohistochemical streptavidin-biotin peroxidase method was used to detect the expression of p53, p16, and MDM2 in tissue samples obtained from 30 women with pathologically confirmed ovarian endometriosis and 29 women with pathologically confirmed normal endometrium. The relationship between p53, p16, and MDM2 expression and apoptosis was analyzed.In normal endometrium, the positive rate of p53 in the secretory phase was higher than that in the proliferative phase (P < .05). Furthermore, the positive rate of p53 in normal endometrium was higher than that in ovarian endometriosis (P < .05). There was a significant difference between normal endometrium and ovarian endometriosis.The positive rate of p16 in normal endometrium was higher than that in ovarian endometriosis (P < .05). Furthermore, there was a significant difference between normal endometrium and ovarian endometriosis. The positive rate of MDM2 in normal endometrium was lower than that in ovarian endometriosis (P < .05).In ovarian endometriosis, the expression of p53 and p16 was positively correlated with each other (r = 0.611, P < .01). However, the expression of p53 and MDM2 was negatively correlated with each other (r = -0.541, P < .01). Furthermore, the expression of p16 and MDM2 might not be relevant in the endometriosis (r = 0.404, P > .05).As important apoptosis regulatory genes, p53, p16, and MDM2 might be involved in the pathogenesis and development of endometriosis.
Collapse
Affiliation(s)
- Lin Sang
- Department of Obstetrics and Gynaecology, The Second People's Hospital of Hefei City Affiliated to Anhui Medical University, Hefei, China
| | - Qian-Jin Fang
- Department of Obstetrics and Gynaecology, The Second People's Hospital of Hefei City Affiliated to Anhui Medical University, Hefei, China
| | - Xing-Bo Zhao
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| |
Collapse
|
6
|
Lu H, Wu S, Chen H, Huang Y, Qiu G, Liu L, Li Y. Crizotinib induces apoptosis of lung cancer cells through JAK-STAT pathway. Oncol Lett 2018; 16:5992-5996. [PMID: 30333870 PMCID: PMC6176410 DOI: 10.3892/ol.2018.9387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/17/2018] [Indexed: 01/07/2023] Open
Abstract
Effect of crizotinib on apoptosis of lung cancer cells was investigated. Human non-small cell lung adenocarcinoma H2228 cells were cultured in the presence of 0, 20, 40, 80, 160 and 320 nmol/l of crizotinib for 3 days, respectively. The inhibition rate of cell proliferation was measured by MTT assay, and half maximal inhibitory concentration (IC50) was calculated. Cell apoptosis was detected by flow cytometry. Transwell assay was performed to detect cell migration. Expression of Janus protein tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) proteins was detected by western blot analysis. Crizotinib significantly inhibited the proliferation of human lung cancer H2228 cells, and the inhibitory effect was enhanced with the increase of the concentration of crizotinib (p<0.01). The IC50 value was 311.26 nnol/l. According to IC50 value, concentration of crizotinib at 300 nmol/l was selected for the study. It was found that crizotinib at 300 nmol/l significantly promoted cell apoptosis (p<0.01) and inhibited cell migration (p<0.01). Compared with pretreatment levels, crizotinib downregulated the expression of JAK and STAT (p<0.01) on the 1st day of treatment, but with the prolongation of time, no further significant difference was observed on the 1st, 2nd or 3rd day in the level of JAK protein (p=0.47); there were no statistically significant differences in the level of STAT protein (p=0.91). Crizotinib can inhibit the migration and promote cell apoptosis of human lung cancer cell line H2228 by regulating the expression of JAK and STAT proteins in JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Hongmin Lu
- Department of Medical Oncology, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China
| | - Shibo Wu
- Department of Respiratory Medicine, Li Huili Hospital, Ningbo Medical Center, Ningbo, Zhejiang 315041, P.R. China
| | - Huafei Chen
- Department of Thoracic Surgery, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Ying Huang
- Department of Respiratory Medicine, The First Hospital Affiliated to AMU (Southwest Hospital), Chongqing 400038, P.R. China
| | - Guoqin Qiu
- Department of Thoracic Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lingxiang Liu
- Department of Oncology, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Yong Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|