1
|
Chaudhuri M, Darden C, Soto Gonzalez F, Singha UK, Quinones L, Tripathi A. Tim17 Updates: A Comprehensive Review of an Ancient Mitochondrial Protein Translocator. Biomolecules 2020; 10:E1643. [PMID: 33297490 PMCID: PMC7762337 DOI: 10.3390/biom10121643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The translocases of the mitochondrial outer and inner membranes, the TOM and TIMs, import hundreds of nucleus-encoded proteins into mitochondria. TOM and TIMs are multi-subunit protein complexes that work in cooperation with other complexes to import proteins in different sub-mitochondrial destinations. The overall architecture of these protein complexes is conserved among yeast/fungi, animals, and plants. Recent studies have revealed unique characteristics of this machinery, particularly in the eukaryotic supergroup Excavata. Despite multiple differences, homologues of Tim17, an essential component of one of the TIM complexes and a member of the Tim17/Tim22/Tim23 family, have been found in all eukaryotes. Here, we review the structure and function of Tim17 and Tim17-containing protein complexes in different eukaryotes, and then compare them to the single homologue of this protein found in Trypanosoma brucei, a unicellular parasitic protozoan.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, 1005 Dr. D.B. Todd, Jr., Blvd, Nashville, TN 37208, USA; (C.D.); (F.S.G.); (U.K.S.); (L.Q.); (A.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Mani J, Meisinger C, Schneider A. Peeping at TOMs-Diverse Entry Gates to Mitochondria Provide Insights into the Evolution of Eukaryotes. Mol Biol Evol 2015; 33:337-51. [PMID: 26474847 DOI: 10.1093/molbev/msv219] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential for eukaryotic life and more than 95% of their proteins are imported as precursors from the cytosol. The targeting signals for this posttranslational import are conserved in all eukaryotes. However, this conservation does not hold true for the protein translocase of the mitochondrial outer membrane that serves as entry gate for essentially all precursor proteins. Only two of its subunits, Tom40 and Tom22, are conserved and thus likely were present in the last eukaryotic common ancestor. Tom7 is found in representatives of all supergroups except the Excavates. This suggests that it was added to the core of the translocase after the Excavates segregated from all other eukaryotes. A comparative analysis of the biochemically and functionally characterized outer membrane translocases of yeast, plants, and trypanosomes, which represent three eukaryotic supergroups, shows that the receptors that recognize the conserved import signals differ strongly between the different systems. They present a remarkable example of convergent evolution at the molecular level. The structural diversity of the functionally conserved import receptors therefore provides insight into the early evolutionary history of mitochondria.
Collapse
Affiliation(s)
- Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Zhang X, Cui J, Nilsson D, Gunasekera K, Chanfon A, Song X, Wang H, Xu Y, Ochsenreiter T. The Trypanosoma brucei MitoCarta and its regulation and splicing pattern during development. Nucleic Acids Res 2010; 38:7378-87. [PMID: 20660476 PMCID: PMC2995047 DOI: 10.1093/nar/gkq618] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It has long been known that trypanosomes regulate mitochondrial biogenesis during the life cycle of the parasite; however, the mitochondrial protein inventory (MitoCarta) and its regulation remain unknown. We present a novel computational method for genome-wide prediction of mitochondrial proteins using a support vector machine-based classifier with ∼90% prediction accuracy. Using this method, we predicted the mitochondrial localization of 468 proteins with high confidence and have experimentally verified the localization of a subset of these proteins. We then applied a recently developed parallel sequencing technology to determine the expression profiles and the splicing patterns of a total of 1065 predicted MitoCarta transcripts during the development of the parasite, and showed that 435 of the transcripts significantly changed their expressions while 630 remain unchanged in any of the three life stages analyzed. Furthermore, we identified 298 alternatively splicing events, a small subset of which could lead to dual localization of the corresponding proteins.
Collapse
Affiliation(s)
- Xiaobai Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sharma S, Singha UK, Chaudhuri M. Role of Tob55 on mitochondrial protein biogenesis in Trypanosoma brucei. Mol Biochem Parasitol 2010; 174:89-100. [PMID: 20659504 DOI: 10.1016/j.molbiopara.2010.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/02/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial outer membrane (MOM) proteins in parasitic protozoa like Trypanosoma brucei are poorly characterized. In fungi and higher eukaryotes, Tob55 is responsible for the assembly of β-barrel proteins in the MOM. Here we show that T. brucei Tob55 (TbTob55) has considerable similarity in its primary and secondary structure to Tob55 from other species. TbTob55 is localized in T. brucei MOM and is essential for procyclic cell survival. Induction of Tob55 RNAi decreased the level of the voltage-dependent anion channel (VDAC) within 48 h. Although the primary effect is on VDAC, induction of TbTob55 RNAi for 96 h or more also decreased the levels of other nucleus encoded mitochondrial proteins. In addition, the mitochondrial membrane potential was reduced at this later time point possibly due to a reduction in the level of the proteins involved in oxidative phosphorylation. However, mitochondrial structure was not altered due to depletion of Tob55. In vitro protein import of VDAC into mitochondria with a 50-60% reduction of TbTob55 was reduced about 40% in comparison to uninduced control. In addition, the import of presequence-containing proteins such as, cytochrome oxidase subunit 4 (COIV) and trypanosome alternative oxidase (TAO) was affected by about 20% under this condition. Depletion of VDAC levels by RNAi did not affect the import of either COIV or TAO. Furthermore, TbTob55 over expression increased the steady state level of VDAC as well as the level of the assembled protein complex of VDAC, suggesting that similar to other eukaryotes TbTob55 is involved in assembly of MOM β-barrel proteins and plays an indirect role in the biogenesis of mitochondrial preproteins destined for the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Shvetank Sharma
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | | | | |
Collapse
|
5
|
Downregulation of mitochondrial porin inhibits cell growth and alters respiratory phenotype in Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:1418-28. [PMID: 19617393 DOI: 10.1128/ec.00132-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Porin is the most abundant outer membrane (OM) protein of mitochondria. It forms the aqueous channel on the mitochondrial OM and mediates major metabolite flux between mitochondria and cytosol. Mitochondrial porin in Trypanosoma brucei, a unicellular parasitic protozoan and the causative agent of African trypanosomiasis, possesses a beta-barrel structure similar to the bacterial OM porin OmpA. T. brucei porin (TbPorin) is present as a monomer as well as an oligomer on the mitochondrial OM, and its expression is developmentally regulated. In spite of its distinct structure, the TbPorin function is similar to those of other eukaryotic porins. TbPorin RNA interference (RNAi) reduced cell growth in both procyclic and bloodstream forms. The depletion of TbPorin decreased ATP production by inhibiting metabolite flux through the OM. Additionally, the level of trypanosome alternative oxidase (TAO) decreased, whereas the levels of cytochrome-dependent respiratory complexes III and IV increased in TbPorin-depleted mitochondria. Furthermore, the depletion of TbPorin reduced cellular respiration via TAO, which is not coupled with oxidative phosphorylation, but increased the capacity for cyanide-sensitive respiration. Together, these data reveal that TbPorin knockdown reduced the mitochondrial ATP level, which in turn increased the capacity of the cytochrome-dependent respiratory pathway (CP), in an attempt to compensate for the mitochondrial energy crisis. However, a simultaneous decrease in the substrate-level phosphorylation due to TbPorin RNAi caused growth inhibition in the procyclic form. We also found that the expressions of TAO and CP proteins are coordinately regulated in T. brucei according to mitochondrial energy demand.
Collapse
|
6
|
Singha UK, Peprah E, Williams S, Walker R, Saha L, Chaudhuri M. Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei. Mol Biochem Parasitol 2008; 159:30-43. [PMID: 18325611 DOI: 10.1016/j.molbiopara.2008.01.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/26/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
Mitochondrial protein translocation machinery in the kinetoplastid parasites, like Trypanosoma brucei, has been characterized poorly. In T. brucei genome database, one homolog for a protein translocator of mitochondrial inner membrane (Tim) has been found, which is closely related to Tim17 from other species. The T. brucei Tim17 (TbTim17) has a molecular mass 16.2kDa and it possesses four characteristic transmembrane domains. The protein is localized in the mitochondrial inner membrane. The level of TbTim17 protein is 6-7-fold higher in the procyclic form that has a fully active mitochondrion, than in the mammalian bloodstream form of T. brucei, where many of the mitochondrial activities are suppressed. Knockdown of TbTim17 expression by RNAi caused a cessation of cell growth in the procyclic form and reduced growth rate in the bloodstream form. Depletion of TbTim17 decreased mitochondrial membrane potential more in the procyclic than bloodstream form. However, TbTim17 knockdown reduced the expression level of several nuclear encoded mitochondrial proteins in both the forms. Furthermore, import of presequence containing nuclear encoded mitochondrial proteins was significantly reduced in TbTim17 depleted mitochondria of the procyclic as well as the bloodstream form, confirming that TbTim17 is critical for mitochondrial protein import in both developmental forms. Together, these show that TbTim17 is the translocator of nuclear encoded mitochondrial proteins and its expression is regulated according to mitochondrial activities in T. brucei.
Collapse
Affiliation(s)
- Ujjal K Singha
- Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | |
Collapse
|
7
|
Williams S, Saha L, Singha UK, Chaudhuri M. Trypanosoma brucei: differential requirement of membrane potential for import of proteins into mitochondria in two developmental stages. Exp Parasitol 2007; 118:420-33. [PMID: 18021773 DOI: 10.1016/j.exppara.2007.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/12/2007] [Accepted: 10/02/2007] [Indexed: 11/19/2022]
Abstract
Trypanosome alternative oxidase (TAO) and the cytochrome oxidase (COX) are two developmentally regulated terminal oxidases of the mitochondrial electron transport chain in Trypanosoma brucei. Here, we have compared the import of TAO and cytochrome oxidase subunit IV (COIV), two stage-specific nuclear encoded mitochondrial proteins, into the bloodstream and procyclic form mitochondria of T. brucei to understand the import processes in two different developmental stages. Under in vitro conditions TAO and COIV were imported and processed into isolated mitochondria from both the bloodstream and procyclic forms. With mitochondria isolated from the procyclic form, the import of TAO and COIV was dependent on the mitochondrial inner membrane potential (delta psi) and required protein(s) on the outer membrane. Import of these proteins also depended on the presence of both internal and external ATP. However, import of TAO and COIV into isolated mitochondria from the bloodstream form was not inhibited after the mitochondrial delta psi was dissipated by valinomycin, CCCP, or valinomycin and oligomycin in combination. In contrast, import of these proteins into bloodstream mitochondria was abolished after the hydrolysis of ATP by apyrase or removal of the ATP and ATP-generating system, suggesting that import is dependent on the presence of external ATP. Together, these data suggest that nuclear encoded proteins such as TAO and COIV are imported in the mitochondria of the bloodstream and the procyclic forms via different mechanism. Differential import conditions of nuclear encoded mitochondrial proteins of T. brucei possibly help it to adapt to different life forms.
Collapse
Affiliation(s)
- Shuntae Williams
- Department of Microbial Pathogenesis and Immune Response, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
8
|
Chaudhuri M, Ott RD, Saha L, Williams S, Hill GC. The trypanosome alternative oxidase exists as a monomer in Trypanosoma brucei mitochondria. Parasitol Res 2005; 96:178-83. [PMID: 15864649 DOI: 10.1007/s00436-005-1337-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/22/2005] [Indexed: 10/25/2022]
Abstract
The bloodstream forms of African trypanosomes solely depend on trypanosome alternative oxidase (TAO), for respiration. Similar to alternative oxidases (AOXs) found in plants and fungi, TAO is a membrane-bound diiron protein. Here, we investigated if TAO exists as a dimer like plant AOXs, or as a monomer like that of fungi. We have found that TAO forms a homo-dimer on a regular SDS-PAGE in the absence of any reducing agent and exists as a monomer under reducing condition. However, TAO does not form a dimer upon treatment of mitochondria with diamide. TAO was found as a higher molecular mass complex on a Blue-native gel after solubilization with digitonin. In the detergent soluble form, TAO activity was stimulated under reducing and inhibited under oxidizing condition. However, these conditions have no effect on the TAO activity in the mitochondria. Moreover, chemical cross-linking analysis revealed that TAO could not be cross-linked when present in the mitochondria. Together, it suggests that like certain other hydrophobic membrane proteins, TAO forms a dimer or oligomer when solubilized with detergents, and the TAO-dimer is SDS-resistant. However, it exists as a monomer in Trypanosoma brucei mitochondria.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, School of Medicine, Meharry Medical College, Nashville, TN, 37208, USA.
| | | | | | | | | |
Collapse
|