1
|
Spealman P, de Santana C, De T, Gresham D. Multilevel gene expression changes in lineages containing adaptive copy number variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563336. [PMID: 37961325 PMCID: PMC10634702 DOI: 10.1101/2023.10.20.563336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Copy-number variants (CNVs) are an important class of recurrent variants that mediate adaptive evolution. While CNVs can increase the relative fitness of the organism, they can also incur a cost. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition, and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- conditions. We find CNV-amplified genes correlate with higher RNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of expression by the abundance of the preceding step we were able to identify widespread divergence in the efficiency of each step in the gene in the efficiency of each step in gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA binding sites for SSD1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which adaptive evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública - Universidade Estadual de Feira de Santana (UEFS), Bahia
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University
| |
Collapse
|
2
|
Jennings MD, Srivastava P, Kershaw CJ, Talavera D, Grant C, Pavitt G. Interaction of the La-related protein Slf1 with colliding ribosomes maintains translation of oxidative-stress responsive mRNAs. Nucleic Acids Res 2023; 51:5755-5773. [PMID: 37070186 PMCID: PMC10287931 DOI: 10.1093/nar/gkad272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
In response to oxidative stress cells reprogram gene expression to enhance levels of antioxidant enzymes and promote survival. In Saccharomyces cerevisiae the polysome-interacting La-related proteins (LARPs) Slf1 and Sro9 aid adaptation of protein synthesis during stress by undetermined means. To gain insight in their mechanisms of action in stress responses, we determined LARP mRNA binding positions in stressed and unstressed cells. Both proteins bind within coding regions of stress-regulated antioxidant enzyme and other highly translated mRNAs in both optimal and stressed conditions. LARP interaction sites are framed and enriched with ribosome footprints suggesting ribosome-LARP-mRNA complexes are identified. Although stress-induced translation of antioxidant enzyme mRNAs is attenuated in slf1Δ, these mRNAs remain on polysomes. Focusing further on Slf1, we find it binds to both monosomes and disomes following RNase treatment. slf1Δ reduces disome enrichment during stress and alters programmed ribosome frameshifting rates. We propose that Slf1 is a ribosome-associated translational modulator that stabilises stalled/collided ribosomes, prevents ribosome frameshifting and so promotes translation of a set of highly-translated mRNAs that together facilitate cell survival and adaptation to stress.
Collapse
Affiliation(s)
- Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Priya Srivastava
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
3
|
May GE, Akirtava C, Agar-Johnson M, Micic J, Woolford J, McManus J. Unraveling the influences of sequence and position on yeast uORF activity using massively parallel reporter systems and machine learning. eLife 2023; 12:e69611. [PMID: 37227054 PMCID: PMC10259493 DOI: 10.7554/elife.69611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/24/2023] [Indexed: 05/26/2023] Open
Abstract
Upstream open-reading frames (uORFs) are potent cis-acting regulators of mRNA translation and nonsense-mediated decay (NMD). While both AUG- and non-AUG initiated uORFs are ubiquitous in ribosome profiling studies, few uORFs have been experimentally tested. Consequently, the relative influences of sequence, structural, and positional features on uORF activity have not been determined. We quantified thousands of yeast uORFs using massively parallel reporter assays in wildtype and ∆upf1 yeast. While nearly all AUG uORFs were robust repressors, most non-AUG uORFs had relatively weak impacts on expression. Machine learning regression modeling revealed that both uORF sequences and locations within transcript leaders predict their effect on gene expression. Indeed, alternative transcription start sites highly influenced uORF activity. These results define the scope of natural uORF activity, identify features associated with translational repression and NMD, and suggest that the locations of uORFs in transcript leaders are nearly as predictive as uORF sequences.
Collapse
Affiliation(s)
- Gemma E May
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Matthew Agar-Johnson
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jelena Micic
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - John Woolford
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
- Computational Biology Department, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
4
|
Treichel AJ, Bazzini AA. Casting CRISPR-Cas13d to fish for microprotein functions in animal development. iScience 2022; 25:105547. [PMID: 36444300 PMCID: PMC9700322 DOI: 10.1016/j.isci.2022.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein coding genes were originally identified with sequence-based definitions that included a 100-codon cutoff to avoid annotating irrelevant open reading frames. However, many active proteins contain less than 100 amino acids. Indeed, functional genetics, ribosome profiling, and proteomic profiling have identified many short, translated open reading frames, including those with biologically active peptide products (microproteins). Yet, functions for most of these peptide products remain unknown. Because microproteins often act as key signals or fine-tune processes, animal development has already revealed functions for a handful of microproteins and provides an ideal context to uncover additional microprotein functions. However, many mRNAs during early development are maternally provided and hinder targeted mutagenesis approaches to characterize developmental microprotein functions. The recently established, RNA-targeting CRISPR-Cas13d system in zebrafish overcomes this barrier and produces potent knockdown of targeted mRNA, including maternally provided mRNA, and enables flexible, efficient interrogation of microprotein functions in animal development.
Collapse
Affiliation(s)
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Identification and characterisation of sPEPs in Cryptococcus neoformans. Fungal Genet Biol 2022; 160:103688. [PMID: 35339703 DOI: 10.1016/j.fgb.2022.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Short open reading frame (sORF)-encoded peptides (sPEPs) have been found across a wide range of genomic locations in a variety of species. To date, their identification, validation, and characterisation in the human fungal pathogen Cryptococcus neoformans has been limited due to a lack of standardised protocols. We have developed an enrichment process that enables sPEP detection within a protein sample from this polysaccharide-encapsulated yeast, and implemented proteogenomics to provide insights into the validity of predicted and hypothetical sORFs annotated in the C. neoformans genome. Novel sORFs were discovered within the 5' and 3' UTRs of known transcripts as well as in "non-coding" RNAs. One novel candidate, dubbed NPB1, that resided in an RNA annotated as "non-coding", was chosen for characterisation. Through the creation of both specific point mutations and a full deletion allele, the function of the new sPEP, Npb1, was shown to resemble that of the bacterial trans-translation protein SmpB.
Collapse
|
6
|
Egorov AA, Alexandrov AI, Urakov VN, Makeeva DS, Edakin RO, Kushchenko AS, Gladyshev VN, Kulakovskiy IV, Dmitriev SE. A standard knockout procedure alters expression of adjacent loci at the translational level. Nucleic Acids Res 2021; 49:11134-11144. [PMID: 34606617 PMCID: PMC8565318 DOI: 10.1093/nar/gkab872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The Saccharomyces cerevisiae gene deletion collection is widely used for functional gene annotation and genetic interaction analyses. However, the standard G418-resistance cassette used to produce knockout mutants delivers strong regulatory elements into the target genetic loci. To date, its side effects on the expression of neighboring genes have never been systematically assessed. Here, using ribosome profiling data, RT-qPCR, and reporter expression, we investigated perturbations induced by the KanMX module. Our analysis revealed significant alterations in the transcription efficiency of neighboring genes and, more importantly, severe impairment of their mRNA translation, leading to changes in protein abundance. In the ‘head-to-head’ orientation of the deleted and neighboring genes, knockout often led to a shift of the transcription start site of the latter, introducing new uAUG codon(s) into the expanded 5′ untranslated region (5′ UTR). In the ‘tail-to-tail’ arrangement, knockout led to activation of alternative polyadenylation signals in the neighboring gene, thus altering its 3′ UTR. These events may explain the so-called neighboring gene effect (NGE), i.e. false genetic interactions of the deleted genes. We estimate that in as much as ∼1/5 of knockout strains the expression of neighboring genes may be substantially (>2-fold) deregulated at the level of translation.
Collapse
Affiliation(s)
- Artyom A Egorov
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,FRC of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119071, Russia
| | - Valery N Urakov
- FRC of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119071, Russia
| | - Desislava S Makeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia
| | - Roman O Edakin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Artem S Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan V Kulakovskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, 1 Olympic Ave, Sochi 354340, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
7
|
The role of upstream open reading frames in translation regulation in the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Parasitology 2021; 148:1277-1287. [PMID: 34099078 PMCID: PMC8383288 DOI: 10.1017/s0031182021000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During their complex life cycles, the Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii employ several layers of regulation of their gene expression. One such layer is mediated at the level of translation through upstream open reading frames (uORFs). As uORFs are found in the upstream regions of a majority of transcripts in both the parasites, it is essential that their roles in translational regulation be appreciated to a greater extent. This review provides a comprehensive summary of studies that show uORF-mediated gene regulation in these parasites and highlights examples of clinically and physiologically relevant genes, including var2csa in P. falciparum, and ApiAT1 in T. gondii, that exhibit uORF-mediated regulation. In addition to these examples, several studies that use bioinformatics, transcriptomics, proteomics and ribosome profiling also indicate the possibility of widespread translational regulation by uORFs. Further analysis of these genome-wide datasets, taking into account uORFs associated with each gene, will reveal novel genes involved in key biological pathways such as cell-cycle progression, stress-response and pathogenicity. The cumulative evidence from studies presented in this review suggests that uORFs will play crucial roles in regulating gene expression during clinical disease caused by these important human pathogens.
Collapse
|
8
|
Moro SG, Hermans C, Ruiz-Orera J, Albà MM. Impact of uORFs in mediating regulation of translation in stress conditions. BMC Mol Cell Biol 2021; 22:29. [PMID: 33992089 PMCID: PMC8126119 DOI: 10.1186/s12860-021-00363-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background A large fraction of genes contains upstream ORFs (uORFs) in the 5′ untranslated region (5’UTR). The translation of uORFs can inhibit the translation of the main coding sequence, for example by causing premature dissociation of the two ribosomal units or ribosome stalling. However, it is currently unknown if most uORFs are inhibitory or if this activity is restricted to specific cases. Here we interrogate ribosome profiling data from three different stress experiments in yeast to gain novel insights into this question. Results By comparing ribosome occupancies in different conditions and experiments we obtain strong evidence that, in comparison to primary coding sequences (CDS), which undergo translational arrest during stress, the translation of uORFs is mostly unaffected by changes in the environment. As a result, the relative abundance of uORF-encoded peptides increases during stress. In general, the changes in the translational efficiency of regions containing uORFs do not seem to affect downstream translation. The exception are uORFs found in a subset of genes that are significantly up-regulated at the level of translation during stress; these uORFs tend to be translated at lower levels in stress conditions than in optimal growth conditions, facilitating the translation of the CDS during stress. We find new examples of uORF-mediated regulation of translation, including the Gcn4 functional homologue fil1 and ubi4 genes in S. pombe. Conclusion We find evidence that the relative amount of uORF-encoded peptides increases during stress. The increased translation of uORFs is however uncoupled from the general CDS translational repression observed during stress. In a subset of genes that encode proteins that need to be rapidly synthesized upon stress uORFs act as translational switches. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00363-9.
Collapse
Affiliation(s)
- Simone G Moro
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cedric Hermans
- Bioinformatics Knowledge Center, Howest University of Applied Sciences, Bruges, Belgium
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
De Nijs Y, De Maeseneire SL, Soetaert WK. 5' untranslated regions: the next regulatory sequence in yeast synthetic biology. Biol Rev Camb Philos Soc 2019; 95:517-529. [PMID: 31863552 DOI: 10.1111/brv.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 01/10/2023]
Abstract
When developing industrial biotechnology processes, Saccharomyces cerevisiae (baker's yeast or brewer's yeast) is a popular choice as a microbial host. Many tools have been developed in the fields of synthetic biology and metabolic engineering to introduce heterologous pathways and tune their expression in yeast. Such tools mainly focus on controlling transcription, whereas post-transcriptional regulation is often overlooked. Herein we discuss regulatory elements found in the 5' untranslated region (UTR) and their influence on protein synthesis. We provide not only an overall picture, but also a set of design rules on how to engineer a 5' UTR. The reader is also referred to currently available models that allow gene expression to be tuned predictably using different 5' UTRs.
Collapse
Affiliation(s)
- Yatti De Nijs
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim K Soetaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
10
|
Lin Y, May GE, Kready H, Nazzaro L, Mao M, Spealman P, Creeger Y, McManus CJ. Impacts of uORF codon identity and position on translation regulation. Nucleic Acids Res 2019; 47:9358-9367. [PMID: 31392980 PMCID: PMC6755093 DOI: 10.1093/nar/gkz681] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023] Open
Abstract
Translation regulation plays an important role in eukaryotic gene expression. Upstream open reading frames (uORFs) are potent regulatory elements located in 5′ mRNA transcript leaders. Translation of uORFs usually inhibit the translation of downstream main open reading frames, but some enhance expression. While a minority of uORFs encode conserved functional peptides, the coding regions of most uORFs are not conserved. Thus, the importance of uORF coding sequences on their regulatory functions remains largely unknown. We investigated the impact of an uORF coding region on gene regulation by assaying the functions of thousands of variants in the yeast YAP1 uORF. Varying uORF codons resulted in a wide range of functions, including repressing and enhancing expression of the downstream ORF. The presence of rare codons resulted in the most inhibitory YAP1 uORF variants. Inhibitory functions of such uORFs were abrogated by overexpression of complementary tRNA. Finally, regression analysis of our results indicated that both codon identity and position impact uORF function. Our results support a model in which a uORF coding sequence impacts its regulatory functions by altering the speed of uORF translation.
Collapse
Affiliation(s)
- Yizhu Lin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hunter Kready
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Lauren Nazzaro
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mao Mao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Roche Sequencing Solutions, Santa Clara, CA 95050, USA
| | - Pieter Spealman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Yehuda Creeger
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Manjunath H, Zhang H, Rehfeld F, Han J, Chang TC, Mendell JT. Suppression of Ribosomal Pausing by eIF5A Is Necessary to Maintain the Fidelity of Start Codon Selection. Cell Rep 2019; 29:3134-3146.e6. [PMID: 31801078 PMCID: PMC6917043 DOI: 10.1016/j.celrep.2019.10.129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Sequences within 5' UTRs dictate the site and efficiency of translation initiation. In this study, an unbiased screen designed to interrogate the 5' UTR-mediated regulation of the growth-promoting gene MYC unexpectedly revealed the ribosomal pause relief factor eIF5A as a regulator of translation initiation codon selection. Depletion of eIF5A enhances upstream translation within 5' UTRs across yeast and human transcriptomes, including on the MYC transcript, where this results in increased production of an N-terminally extended protein. Furthermore, ribosome profiling experiments established that the function of eIF5A as a suppressor of ribosomal pausing at sites of suboptimal peptide bond formation is conserved in human cells. We present evidence that proximal ribosomal pausing on a transcript triggers enhanced use of upstream suboptimal or non-canonical initiation codons. Thus, we propose that eIF5A functions not only to maintain efficient translation elongation in eukaryotic cells but also to maintain the fidelity of translation initiation.
Collapse
Affiliation(s)
- Hema Manjunath
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8821, USA; Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-8821, USA
| | - Frederick Rehfeld
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
13
|
Decoene T, Peters G, De Maeseneire SL, De Mey M. Toward Predictable 5'UTRs in Saccharomyces cerevisiae: Development of a yUTR Calculator. ACS Synth Biol 2018; 7:622-634. [PMID: 29366325 DOI: 10.1021/acssynbio.7b00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fine-tuning biosynthetic pathways is crucial for the development of economic feasible microbial cell factories. Therefore, the use of computational models able to predictably design regulatory sequences for pathway engineering proves to be a valuable tool, especially for modifying genes at the translational level. In this study we developed a computational approach for the de novo design of 5'-untranslated regions (5'UTRs) in Saccharomyces cerevisiae with a predictive outcome on translation initiation rate. On the basis of existing data, a partial least-squares (PLS) regression model was trained and showed good performance on predicting protein abundances of an independent test set. This model was further used for the construction of a "yUTR calculator" that can design 5'UTR sequences with a diverse range of desired translation efficiencies. The predictive power of our yUTR calculator was confirmed in vivo by different representative case studies. As such, these results show the great potential of data driven approaches for reliable pathway engineering in S. cerevisiae.
Collapse
Affiliation(s)
- Thomas Decoene
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Gert Peters
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Sofie L. De Maeseneire
- Centre
for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Spealman P, Naik AW, May GE, Kuersten S, Freeberg L, Murphy RF, McManus J. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Res 2017; 28:214-222. [PMID: 29254944 PMCID: PMC5793785 DOI: 10.1101/gr.221507.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Upstream open reading frames (uORFs), located in transcript leaders (5' UTRs), are potent cis-acting regulators of translation and mRNA turnover. Recent genome-wide ribosome profiling studies suggest that thousands of uORFs initiate with non-AUG start codons. Although intriguing, these non-AUG uORF predictions have been made without statistical control or validation; thus, the importance of these elements remains to be demonstrated. To address this, we took a comparative genomics approach to study AUG and non-AUG uORFs. We mapped transcription leaders in multiple Saccharomyces yeast species and applied a novel machine learning algorithm (uORF-seqr) to ribosome profiling data to identify statistically significant uORFs. We found that AUG and non-AUG uORFs are both frequently found in Saccharomyces yeasts. Although most non-AUG uORFs are found in only one species, hundreds have either conserved sequence or position within Saccharomyces uORFs initiating with UUG are particularly common and are shared between species at rates similar to that of AUG uORFs. However, non-AUG uORFs are translated less efficiently than AUG-uORFs and are less subject to removal via alternative transcription initiation under normal growth conditions. These results suggest that a subset of non-AUG uORFs may play important roles in regulating gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Armaghan W Naik
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | - Robert F Murphy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
15
|
Taggart J, MacDiarmid CW, Haws S, Eide DJ. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae. Mol Microbiol 2017; 106:678-689. [PMID: 28963784 DOI: 10.1111/mmi.13851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
Maintaining zinc homeostasis is an important property of all organisms. In the yeast Saccharomyces cerevisiae, the Zap1 transcriptional activator is a central player in this process. In response to zinc deficiency, Zap1 activates transcription of many genes and consequently increases accumulation of their encoded proteins. In this report, we describe a new mechanism of Zap1-mediated regulation whereby increased transcription of certain target genes results in reduced protein expression. Transcription of the Zap1-responsive genes RTC4 and RAD27 increases markedly in zinc-deficient cells but, surprisingly, their protein levels decrease. We examined the underlying mechanism further for RTC4 and found that this unusual regulation results from altered transcription start site selection. In zinc-replete cells, RTC4 transcription begins near the protein-coding region and the resulting short transcript leader allows for efficient translation. In zinc-deficient cells, RTC4 RNA with longer transcript leaders are expressed that are not efficiently translated due to the presence of multiple small open reading frames upstream of the coding region. This regulation requires a potential Zap1 binding site located farther upstream of the promoter. Thus, we present evidence for a new mechanism of Zap1-mediated gene regulation and another way that this activator protein can repress protein expression.
Collapse
Affiliation(s)
- Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer Haws
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
|
17
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
18
|
Sagor GHM, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, Muramoto K, Kusano T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1116-26. [PMID: 26402509 PMCID: PMC11388862 DOI: 10.1111/pbi.12480] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 05/19/2023]
Abstract
Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Thomas Berberich
- Laboratory Center, Biodiversity and Climate Research Center, Frankfurt am Main, Germany
| | - Shun Tanaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Manabu Nishiyama
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Seiji Kojima
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Koji Muramoto
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| |
Collapse
|
19
|
Nakahigashi K, Takai Y, Kimura M, Abe N, Nakayashiki T, Shiwa Y, Yoshikawa H, Wanner BL, Ishihama Y, Mori H. Comprehensive identification of translation start sites by tetracycline-inhibited ribosome profiling. DNA Res 2016; 23:193-201. [PMID: 27013550 PMCID: PMC4909307 DOI: 10.1093/dnares/dsw008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/06/2016] [Indexed: 01/12/2023] Open
Abstract
Tetracycline-inhibited ribosome profiling (TetRP) provides a powerful new experimental tool for comprehensive genome-wide identification of translation initiation sites in bacteria. We validated TetRP by confirming the translation start sites of protein-coding genes in accordance with the 2006 version of Escherichia coli K-12 annotation record (GenBank U00096.2) and found ∼150 new start sites within 60 nucleotides of the annotated site. This analysis revealed 72 per cent of the genes whose initiation site annotations were changed from the 2006 GenBank record to the newer 2014 annotation record (GenBank U00096.3), indicating a high sensitivity. Also, results from reporter fusion and proteomics of N-terminally enriched peptides showed high specificity of the TetRP results. In addition, we discovered over 300 translation start sites within non-coding, intergenic regions of the genome, using a threshold that retains ∼2,000 known coding genes. While some appear to correspond to pseudogenes, others may encode small peptides or have previously unforeseen roles. In summary, we showed that ribosome profiling upon translation inhibition by tetracycline offers a simple, reliable and comprehensive experimental tool for precise annotation of translation start sites of expressed genes in bacteria.
Collapse
Affiliation(s)
- Kenji Nakahigashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Yuki Takai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Michiko Kimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nozomi Abe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Toru Nakayashiki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo 156-8502, Japan Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Barry L Wanner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
20
|
Sheshukova EV, Shindyapina AV, Komarova TV, Dorokhov YL. “Matreshka” genes with alternative reading frames. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Liu Y, Stuparevic I, Xie B, Becker E, Law MJ, Primig M. The conserved histone deacetylase Rpd3 and the DNA binding regulator Ume6 repressBOI1's meiotic transcript isoform during vegetative growth inSaccharomyces cerevisiae. Mol Microbiol 2015; 96:861-74. [DOI: 10.1111/mmi.12976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Yuchen Liu
- Inserm U1085 IRSET; Inserm; 35042 Rennes France
| | | | | | - Emmanuelle Becker
- Inserm U1085 IRSET; Inserm; 35042 Rennes France
- Departement des sciences de la vie et de l'environnement; Université de Rennes 1; 35042 Rennes France
| | - Michael J. Law
- School of Osteopathic Medicine; Rowan University; Stratford NJ 08084 USA
| | | |
Collapse
|
22
|
Wang X, Liu Q, Zhang B. Leveraging the complementary nature of RNA-Seq and shotgun proteomics data. Proteomics 2014; 14:2676-87. [PMID: 25266668 DOI: 10.1002/pmic.201400184] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/22/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
RNA sequencing (RNA-Seq) and MS-based shotgun proteomics are powerful high-throughput technologies for identifying and quantifying RNA transcripts and proteins, respectively. With the increasing affordability of these technologies, many projects have started to apply both to the same samples to achieve a more comprehensive understanding of biological systems. A major analytical challenge for such integrative projects is how to effectively leverage the complementary nature of RNA-Seq and shotgun proteomics data. RNA-Seq provides comprehensive information on mRNA abundance, alternative splicing, nucleotide variation, and structure alteration. Sample-specific protein databases derived from RNA-Seq data can better approximate the real protein pools in cell and tissue samples and thus improve protein identification. Meanwhile, proteomics data provide essential confirmation of the validity and functional relevance of novel findings from RNA-Seq data. At the quantitative level, mRNA and protein levels are only modestly correlated, suggesting strong involvement of posttranscriptional regulation in controlling gene expression. Here, we review recent studies at the interface of RNA-Seq and proteomics data. We discuss goals, accomplishments, and challenges in RNA-Seq-based proteogenomics. We also examine the current status and future potential of parallel transcriptome and proteome quantification in revealing posttranscriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN
| | | | | |
Collapse
|
23
|
Hu W, Wang T, Yang Y, Zheng S. CPuORF correlates with miRNA responsive elements on protein evolutionary rates. Biochem Biophys Res Commun 2014; 452:66-71. [PMID: 25148940 DOI: 10.1016/j.bbrc.2014.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
miRNA is increasingly being recognized as a key regulator of metabolism in animals. A wealth of evidence has suggested that miRNA mainly binds 3' UTR of mRNA and modulates the cell activities via repressing the mRNA translation. However, as the translation initiates at 5' UTR, cis elements like upstream open reading frame (uORF) resided in 5' UTR may also affect the translation efficiency or elongation. In this study, we performed a systematic analysis of miRNA responsive elements (MREs) and uORF of the same transcript in three model organisms (human, mouse, and Drosophila). Intriguingly, we found that the 3' UTR length grew with the complexity of species (human>mouse>Drosophila), in sharp contrast with the invariability of 5' UTR. Additionally, MRE number correlated well with the 3' UTR length, while uORF number showed a weak correlation with the 5' UTR length. Further, we found that human genes with conserved peptide upstream open reading frame (CPuORF) tend to have more MREs and lower evolutionary rates, which provides new insights into the correlation between UTR properties and translational control in animals.
Collapse
Affiliation(s)
- Wangxiong Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingzhang Wang
- Zhejiang Institute of Microbiology, Hangzhou, Zhejiang 310012, China
| | - Yanmei Yang
- Key Laboratory of Reproductive and Genetics, Ministry of Education, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Shu Zheng
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
24
|
Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 2014; 15:193-204. [PMID: 24514441 DOI: 10.1038/nrg3520] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Short open reading frames (sORFs) are a common feature of all genomes, but their coding potential has mostly been disregarded, partly because of the difficulty in determining whether these sequences are translated. Recent innovations in computing, proteomics and high-throughput analyses of translation start sites have begun to address this challenge and have identified hundreds of putative coding sORFs. The translation of some of these has been confirmed, although the contribution of their peptide products to cellular functions remains largely unknown. This Review examines this hitherto overlooked component of the proteome and considers potential roles for sORF-encoded peptides.
Collapse
|
25
|
New universal rules of eukaryotic translation initiation fidelity. PLoS Comput Biol 2013; 9:e1003136. [PMID: 23874179 PMCID: PMC3708879 DOI: 10.1371/journal.pcbi.1003136] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/28/2013] [Indexed: 11/26/2022] Open
Abstract
The accepted model of eukaryotic translation initiation begins with the scanning of the transcript by the pre-initiation complex from the 5′end until an ATG codon with a specific nucleotide (nt) context surrounding it is recognized (Kozak rule). According to this model, ATG codons upstream to the beginning of the ORF should affect translation. We perform for the first time, a genome-wide statistical analysis, uncovering a new, more comprehensive and quantitative, set of initiation rules for improving the cost of translation and its efficiency. Analyzing dozens of eukaryotic genomes, we find that in all frames there is a universal trend of selection for low numbers of ATG codons; specifically, 16–27 codons upstream, but also 5–11 codons downstream of the START ATG, include less ATG codons than expected. We further suggest that there is selection for anti optimal ATG contexts in the vicinity of the START ATG. Thus, the efficiency and fidelity of translation initiation is encoded in the 5′UTR as required by the scanning model, but also at the beginning of the ORF. The observed nt patterns suggest that in all the analyzed organisms the pre-initiation complex often misses the START ATG of the ORF, and may start translation from an alternative initiation start-site. Thus, to prevent the translation of undesired proteins, there is selection for nucleotide sequences with low affinity to the pre-initiation complex near the beginning of the ORF. With the new suggested rules we were able to obtain a twice higher correlation with ribosomal density and protein levels in comparison to the Kozak rule alone (e.g. for protein levels r = 0.7 vs. r = 0.31; p<10−12). Gene translation is an important step of the intra-cellular protein synthesis, which is a central process in all living organisms. Thus, understanding how translation efficiency is encoded in transcripts has ramifications to every biomedical discipline. The aim of the current study is to decipher the way translation initiation fidelity is encoded in eukaryotic transcripts, and how evolution shapes the beginning of transcripts. Based on the genomes of dozens of organisms we were able to derive a new, more precise, set of rules related to this process, facilitating a high resolution view of the mechanisms aiding translation initiation fidelity. Among others, we show that there is a universal trend of selection for low numbers of ATG codons upstream, but also in the 5–11 codons downstream of the START ATG, presumably to prevent translation of alternative ORFs over the main one. With the new suggested rules we were able to obtain a twice higher correlation with ribosomal density and protein levels in comparison to the previous translation initiation efficiency rule.
Collapse
|
26
|
Deciphering the rules by which 5'-UTR sequences affect protein expression in yeast. Proc Natl Acad Sci U S A 2013; 110:E2792-801. [PMID: 23832786 DOI: 10.1073/pnas.1222534110] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The 5'-untranslated region (5'-UTR) of mRNAs contains elements that affect expression, yet the rules by which these regions exert their effect are poorly understood. Here, we studied the impact of 5'-UTR sequences on protein levels in yeast, by constructing a large-scale library of mutants that differ only in the 10 bp preceding the translational start site of a fluorescent reporter. Using a high-throughput sequencing strategy, we obtained highly accurate measurements of protein abundance for over 2,000 unique sequence variants. The resulting pool spanned an approximately sevenfold range of protein levels, demonstrating the powerful consequences of sequence manipulations of even 1-10 nucleotides immediately upstream of the start codon. We devised computational models that predicted over 70% of the measured expression variability in held-out sequence variants. Notably, a combined model of the most prominent features successfully explained protein abundance in an additional, independently constructed library, whose nucleotide composition differed greatly from the library used to parameterize the model. Our analysis reveals the dominant contribution of the start codon context at positions -3 to -1, mRNA secondary structure, and out-of-frame upstream AUGs (uAUGs) to phenotypic diversity, thereby advancing our understanding of how protein levels are modulated by 5'-UTR sequences, and paving the way toward predictably tuning protein expression through manipulations of 5'-UTRs.
Collapse
|
27
|
Arribere JA, Gilbert WV. Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Res 2013; 23:977-87. [PMID: 23580730 PMCID: PMC3668365 DOI: 10.1101/gr.150342.112] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcript leaders (TLs) can have profound effects on mRNA translation and stability. To map TL boundaries genome-wide, we developed TL-sequencing (TL-seq), a technique combining enzymatic capture of m7G-capped mRNA 5′ ends with high-throughput sequencing. TL-seq identified mRNA start sites for the majority of yeast genes and revealed many examples of intragenic TL heterogeneity. Surprisingly, TL-seq identified transcription initiation sites within 6% of protein-coding regions, and these sites were concentrated near the 5′ ends of ORFs. Furthermore, ribosome density analysis showed these truncated mRNAs are translated. Translation-associated TL-seq (TATL-seq), which combines TL-seq with polysome fractionation, enabled annotation of TLs, and simultaneously assayed their function in translation. Using TATL-seq to address relationships between TL features and translation of the downstream ORF, we observed that upstream AUGs (uAUGs), and no other upstream codons, were associated with poor translation and nonsense-mediated mRNA decay (NMD). We also identified hundreds of genes with very short TLs, and demonstrated that short TLs were associated with poor translation initiation at the annotated start codon and increased initiation at downstream AUGs. This frequently resulted in out-of-frame translation and subsequent termination at premature termination codons, culminating in NMD of the transcript. Unlike previous approaches, our technique enabled observation of alternative TL variants for hundreds of genes and revealed significant differences in translation in genes with distinct TL isoforms. TL-seq and TATL-seq are useful tools for annotation and functional characterization of TLs, and can be applied to any eukaryotic system to investigate TL-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Joshua A Arribere
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
28
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
29
|
Extensive transcript diversity and novel upstream open reading frame regulation in yeast. G3-GENES GENOMES GENETICS 2013; 3:343-52. [PMID: 23390610 PMCID: PMC3564994 DOI: 10.1534/g3.112.003640] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/15/2012] [Indexed: 12/20/2022]
Abstract
To understand the diversity of transcripts in yeast (Saccharomyces cerevisiae) we analyzed the transcriptional landscapes for cells grown under 18 different environmental conditions. Each sample was analyzed using RNA-sequencing, and a total of 670,446,084 uniquely mapped reads and 377,263 poly-adenylated end tags were produced. Consistent with previous studies, we find that the majority of yeast genes are expressed under one or more different conditions. By directly comparing the 5′ and 3′ ends of the transcribed regions, we find extensive differences in transcript ends across many conditions, especially those of stationary phase, growth in grape juice, and salt stimulation, suggesting differential choice of transcription start and stop sites is pervasive in yeast. Relative to the exponential growth condition (i.e., YPAD), transcripts differing at the 5′ ends and 3′ ends are predicted to differ in their annotated start codon in 21 genes and their annotated stop codon in 63 genes. Many (431) upstream open reading frames (uORFs) are found in alternate 5′ ends and are significantly enriched in transcripts produced during the salt response. Mutational analysis of five genes with uORFs revealed that two sets of uORFs increase the expression of a reporter construct, indicating a role in activation which had not been reported previously, whereas two other uORFs decreased expression. In addition, RNA binding protein motifs are statistically enriched for alternate ends under many conditions. Overall, these results demonstrate enormous diversity of transcript ends, and that this heterogeneity is regulated under different environmental conditions. Moreover, transcript end diversity has important biological implications for the regulation of gene expression. In addition, our data also serve as a valuable resource for the scientific community.
Collapse
|
30
|
Murguía JR, Serrano R. New functions of protein kinase Gcn2 in yeast and mammals. IUBMB Life 2012; 64:971-4. [DOI: 10.1002/iub.1090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 08/21/2012] [Indexed: 12/24/2022]
|
31
|
Takahashi H, Takahashi A, Naito S, Onouchi H. BAIUCAS: a novel BLAST-based algorithm for the identification of upstream open reading frames with conserved amino acid sequences and its application to the Arabidopsis thaliana genome. ACTA ACUST UNITED AC 2012; 28:2231-41. [PMID: 22618534 DOI: 10.1093/bioinformatics/bts303] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Upstream open reading frames (uORFs) are often found in the 5'-untranslated regions of eukaryotic messenger RNAs. Some uORFs have been shown to encode functional peptides involved in the translational regulation of the downstream main ORFs. Comparative genomic approaches have been used in genome-wide searches for uORFs encoding bioactive peptides, and by comparing uORF sequences between a few selected species or among a small group of species, uORFs with conserved amino acid sequences (UCASs) have been identified in plants, mammals and insects. Regulatory regions within uORF-encoded peptides that are involved in translational control are typically 10-20 amino acids long. Detection of homology between such short regions largely depends on the selection of species for comparison. To maximize the chances of identifying UCASs with short conserved regions, we devised a novel algorithm for homology search among a large number of species and the automatic selection of uORFs conserved in a wide range of species. RESULTS In this study, we developed the BAIUCAS (BLAST-based algorithm for identification of UCASs) method and identified 18 novel Arabidopsis uORFs whose amino acid sequences are conserved across diverse eudicot species, which include uORFs not found in previous comparative genomic studies due to low sequence conservation among species. Therefore, BAIUCAS is a powerful method for the identification of UCASs, and it is particularly useful for the detection of uORFs with a small number of conserved amino acid residues.
Collapse
Affiliation(s)
- Hiro Takahashi
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | | | | | | |
Collapse
|
32
|
Ladoukakis E, Pereira V, Magny EG, Eyre-Walker A, Couso JP. Hundreds of putatively functional small open reading frames in Drosophila. Genome Biol 2011; 12:R118. [PMID: 22118156 PMCID: PMC3334604 DOI: 10.1186/gb-2011-12-11-r118] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/04/2011] [Accepted: 11/25/2011] [Indexed: 12/22/2022] Open
Abstract
Background The relationship between DNA sequence and encoded information is still an unsolved puzzle. The number of protein-coding genes in higher eukaryotes identified by genome projects is lower than was expected, while a considerable amount of putatively non-coding transcription has been detected. Functional small open reading frames (smORFs) are known to exist in several organisms. However, coding sequence detection methods are biased against detecting such very short open reading frames. Thus, a substantial number of non-canonical coding regions encoding short peptides might await characterization. Results Using bio-informatics methods, we have searched for smORFs of less than 100 amino acids in the putatively non-coding euchromatic DNA of Drosophila melanogaster, and initially identified nearly 600,000 of them. We have studied the pattern of conservation of these smORFs as coding entities between D. melanogaster and Drosophila pseudoobscura, their presence in syntenic and in transcribed regions of the genome, and their ratio of conservative versus non-conservative nucleotide changes. For negative controls, we compared the results with those obtained using random short sequences, while a positive control was provided by smORFs validated by proteomics data. Conclusions The combination of these analyses led us to postulate the existence of at least 401 functional smORFs in Drosophila, with the possibility that as many as 4,561 such functional smORFs may exist.
Collapse
|
33
|
Abstract
In the past several decades the budding yeast Saccharomyces cerevisiae has emerged as a prominent model for aging research. The creation of a single-gene deletion collection covering the majority of open reading frames in the yeast genome and advances in genomic technologies have opened yeast research to genome-scale screens for a variety of phenotypes. A number of screens have been performed looking for genes that modify secondary age-associated phenotypes such as stress resistance or growth rate. More recently, moderate-throughput methods for measuring replicative life span and high-throughput methods for measuring chronological life span have allowed for the first unbiased screens aimed at directly identifying genes involved in determining yeast longevity. In this chapter we discuss large-scale life span studies performed in yeast and their implications for research related to the basic biology of aging.
Collapse
Affiliation(s)
- George L Sutphin
- Department of Pathology and the Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195-7470, USA,
| | | | | | | |
Collapse
|
34
|
Jeon S, Kim J. Upstream open reading frames regulate the cell cycle-dependent expression of the RNA helicase Rok1 in Saccharomyces cerevisiae. FEBS Lett 2010; 584:4593-8. [PMID: 20969870 DOI: 10.1016/j.febslet.2010.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/09/2010] [Accepted: 10/12/2010] [Indexed: 12/13/2022]
Abstract
The RNA helicase Rok1 plays a role in rRNA processing and in control of cell cycle progression in Saccharomyces cerevisiae. We identified two upstream open reading frames (uORFs) within the ROK1 5' untranslated region, which inhibited Rok1 translation. Mutating uATG to uAAG or generation of a premature stop codon in the uORFs resulted in increased Rok1p levels. Rok1 protein levels oscillated during the cell cycle, declining at G1/S and increasing at G2. The uAAG1 mutation caused a constitutive level of Rok1 proteins throughout the cell cycle, resulting in significant delays in mitotic bud emergence and recovery from pheromone arrest. Our study reveals that the Rok1 protein level is regulated by uORFs, which is critical in cell cycle progression.
Collapse
Affiliation(s)
- Soonmee Jeon
- Department of Microbiology and Molecular Biology, College of Biosciences and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | |
Collapse
|
35
|
Rodicio R, Heinisch JJ. Together we are strong-cell wall integrity sensors in yeasts. Yeast 2010; 27:531-40. [DOI: 10.1002/yea.1785] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
36
|
Selpi, Bryant CH, Kemp GJL, Sarv J, Kristiansson E, Sunnerhagen P. Predicting functional upstream open reading frames in Saccharomyces cerevisiae. BMC Bioinformatics 2009; 10:451. [PMID: 20042076 PMCID: PMC2813248 DOI: 10.1186/1471-2105-10-451] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some upstream open reading frames (uORFs) regulate gene expression (i.e., they are functional) and can play key roles in keeping organisms healthy. However, how uORFs are involved in gene regulation is not yet fully understood. In order to get a complete view of how uORFs are involved in gene regulation, it is expected that a large number of experimentally verified functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional are expensive. RESULTS In this paper, a new computational approach to predicting functional uORFs in the yeast Saccharomyces cerevisiae is presented. Our approach is based on inductive logic programming and makes use of a novel combination of knowledge about biological conservation, Gene Ontology annotations and genes' responses to different conditions. Our method results in a set of simple and informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further genes to have 398 novel functional uORFs. Three (RPC11, TPK1, and FOL1) of these 301 genes have been hypothesised, following wet-experiments, by a related study to have functional uORFs. A comparison with another related study suggests that eleven of the predicted functional uORFs from genes LDB17, HEM3, CIN8, BCK2, PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are strong candidates for wet-lab experimental studies. CONCLUSIONS Learning based prediction of functional uORFs can be done with a high sensitivity. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help to elucidate the regulatory roles of uORFs.
Collapse
Affiliation(s)
- Selpi
- Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
37
|
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 2009; 63:385-409. [PMID: 19514854 DOI: 10.1146/annurev.micro.62.081307.162835] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upstream open reading frames (uORFs) are frequently present in the 5'-leader regions of fungal mRNAs. They can affect translation by controlling the ability of ribosomes that scan from the mRNA 5' end to reach the downstream genic reading frame. The translation of uORFs can also affect mRNA stability. For several genes, including Saccharomyces cerevisiae GCN4, S. cerevisiae CPA1, and Neurospora crassa arg-2, regulation by uORFs controls expression in response to specific physiological signals. The roles of many uORFs that are identified by genome-level approaches, as have been initiated for Saccharomyces, Aspergillus, and Cryptococcus species, remain to be determined. Some uORFs may have regulatory roles, while others may exist to insulate the genic reading frame from the negative impacts of upstream translation start sites in the mRNA 5' leader.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
38
|
Rach EA, Yuan HY, Majoros WH, Tomancak P, Ohler U. Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome. Genome Biol 2009; 10:R73. [PMID: 19589141 PMCID: PMC2728527 DOI: 10.1186/gb-2009-10-7-r73] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/21/2009] [Accepted: 07/09/2009] [Indexed: 01/05/2023] Open
Abstract
A map of transcription start sites across the Drosophila genome, providing insights into initiation patterns and spatiotemporal conditions. Background Transcription initiation is a key component in the regulation of gene expression. mRNA 5' full-length sequencing techniques have enhanced our understanding of mammalian transcription start sites (TSSs), revealing different initiation patterns on a genomic scale. Results To identify TSSs in Drosophila melanogaster, we applied a hierarchical clustering strategy on available 5' expressed sequence tags (ESTs) and identified a high quality set of 5,665 TSSs for approximately 4,000 genes. We distinguished two initiation patterns: 'peaked' TSSs, and 'broad' TSS cluster groups. Peaked promoters were found to contain location-specific sequence elements; conversely, broad promoters were associated with non-location-specific elements. In alignments across other Drosophila genomes, conservation levels of sequence elements exceeded 90% within the melanogaster subgroup, but dropped considerably for distal species. Elements in broad promoters had lower levels of conservation than those in peaked promoters. When characterizing the distributions of ESTs, 64% of TSSs showed distinct associations to one out of eight different spatiotemporal conditions. Available whole-genome tiling array time series data revealed different temporal patterns of embryonic activity across the majority of genes with distinct alternative promoters. Many genes with maternally inherited transcripts were found to have alternative promoters utilized later in development. Core promoters of maternally inherited transcripts showed differences in motif composition compared to zygotically active promoters. Conclusions Our study provides a comprehensive map of Drosophila TSSs and the conditions under which they are utilized. Distinct differences in motif associations with initiation pattern and spatiotemporal utilization illustrate the complex regulatory code of transcription initiation.
Collapse
Affiliation(s)
- Elizabeth A Rach
- Program in Computational Biology and Bioinformatics, Duke University, Science Drive, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
39
|
Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009; 324:218-23. [PMID: 19213877 DOI: 10.1126/science.1168978] [Citation(s) in RCA: 2831] [Impact Index Per Article: 176.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.
Collapse
Affiliation(s)
- Nicholas T Ingolia
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, and California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
40
|
Lawless C, Pearson RD, Selley JN, Smirnova JB, Grant CM, Ashe MP, Pavitt GD, Hubbard SJ. Upstream sequence elements direct post-transcriptional regulation of gene expression under stress conditions in yeast. BMC Genomics 2009; 10:7. [PMID: 19128476 PMCID: PMC2649001 DOI: 10.1186/1471-2164-10-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 01/07/2009] [Indexed: 01/01/2023] Open
Abstract
Background The control of gene expression in eukaryotic cells occurs both transcriptionally and post-transcriptionally. Although many genes are now known to be regulated at the translational level, in general, the mechanisms are poorly understood. We have previously presented polysomal gradient and array-based evidence that translational control is widespread in a significant number of genes when yeast cells are exposed to a range of stresses. Here we have re-examined these gene sets, considering the role of UTR sequences in the translational responses of these genes using recent large-scale datasets which define 5' and 3' transcriptional ends for many yeast genes. In particular, we highlight the potential role of 5' UTRs and upstream open reading frames (uORFs). Results We show a highly significant enrichment in specific GO functional classes for genes that are translationally up- and down-regulated under given stresses (e.g. carbohydrate metabolism is up-regulated under amino acid starvation). Cross-referencing these data with the stress response data we show that translationally upregulated genes have longer 5' UTRs, consistent with their role in translational regulation. In the first genome-wide study of uORFs in a set of mapped 5' UTRs, we show that uORFs are rare, being statistically under-represented in UTR sequences. However, they have distinct compositional biases consistent with their putative role in translational control and are more common in genes which are apparently translationally up-regulated. Conclusion These results demonstrate a central regulatory role for UTR sequences, and 5' UTRs in particular, highlighting the significant role of uORFs in post-transcriptional control in yeast. Yeast uORFs are more highly conserved than has been suggested, lending further weight to their significance as functional elements involved in gene regulation. It also suggests a more complex and novel mechanism of control, whereby uORFs permit genes to escape from a more general attenuation of translation under conditions of stress. However, since uORFs are relatively rare (only ~13% of yeast genes have them) there remain many unanswered questions as to how UTR elements can direct translational control of many hundreds of genes under stress.
Collapse
Affiliation(s)
- Craig Lawless
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tautz D. Polycistronic peptide coding genes in eukaryotes--how widespread are they? BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 8:68-74. [PMID: 19074495 DOI: 10.1093/bfgp/eln054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The classical textbook assumption for the structure of an eukaryotic gene is that it codes for a single polypeptide of more than 100 amino acids in length. This is also the implicit assumption in most gene annotation pipelines. A gene family has now been discovered in insects that shows that an eukaryotic mRNA can code for peptides as short as eleven amino acids and that a single mRNA can code for several such peptides. This raises the question whether short open reading frames might also have a functional potential in other mRNAs, in particular those that occur in the 5'-UTR of many mRNAs. A number of these have been shown to act in cis to regulate the translation of the main open reading frame of the mRNA. But there may be others that could act in trans on other biological processes. The question of how many peptide-coding genes may exist is therefore worth revisiting. This poses new bioinformatic challenges that can only be resolved through multiple genome comparisons within a range of evolutionary distances.
Collapse
Affiliation(s)
- Diethard Tautz
- Max-Planck-Institut für Evolutionsbiologie, August-Thienemannstrasse 2, Plön, Germany.
| |
Collapse
|
42
|
Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 2008; 133:292-302. [PMID: 18423200 DOI: 10.1016/j.cell.2008.02.037] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/27/2007] [Accepted: 02/06/2008] [Indexed: 11/27/2022]
Abstract
In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.
Collapse
Affiliation(s)
- Kristan K Steffen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hayden CA, Bosco G. Comparative genomic analysis of novel conserved peptide upstream open reading frames in Drosophila melanogaster and other dipteran species. BMC Genomics 2008; 9:61. [PMID: 18237443 PMCID: PMC2276209 DOI: 10.1186/1471-2164-9-61] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 02/01/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) are elements found in the 5'-region of an mRNA transcript, capable of regulating protein production of the largest, or major ORF (mORF), and impacting organismal development and growth in fungi, plants, and animals. In Drosophila, approximately 40% of transcripts contain upstream start codons (uAUGs) but there is little evidence that these are translated and affect their associated mORF. RESULTS Analyzing 19,389 Drosophila melanogaster transcript annotations and 666,153 dipteran EST sequences we have identified 44 putative conserved peptide uORFs (CPuORFs) in Drosophila melanogaster that show evidence of negative selection, and therefore are likely to be translated. Transcripts with CPuORFs constitute approximately 0.3% of the total number of transcripts, a similar frequency to the Arabidopsis genome, and have a mean length of 70 amino acids, much larger than the mean length of plant CPuORFs (40 amino acids). There is a statistically significant clustering of CPuORFs at cytological band 57 (p = 10-5), a phenomenon that has never been described for uORFs. Based on GO term and Interpro domain analyses, genes in the uORF dataset show a higher frequency of ORFs implicated in mitochondrial import than the genome-wide frequency (p < 0.01) as well as methyltransferases (p < 0.02). CONCLUSION Based on these data, it is clear that Drosophila contain putative CPuORFs at frequencies similar to those found in plants. They are distinguished, however, by the type of mORF they tend to associate with, Drosophila CPuORFs preferentially occurring in transcripts encoding mitochondrial proteins and methyltransferases. This provides a basis for the study of CPuORFs and their putative regulatory role in mitochondrial function and disease.
Collapse
Affiliation(s)
- Celine A Hayden
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
44
|
Cvijović M, Dalevi D, Bilsland E, Kemp GJL, Sunnerhagen P. Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation. BMC Bioinformatics 2007; 8:295. [PMID: 17686169 PMCID: PMC1964767 DOI: 10.1186/1471-2105-8-295] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/08/2007] [Indexed: 11/30/2022] Open
Abstract
Background The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. Results We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. Conclusion Evolutionary conservation of uORFs in yeasts can be traced up to 100 million years of separation. The conserved uORFs have certain characteristics with respect to length, distance from each other and from the main start codon, and folding energy of the sequence. These newly found characteristics can be used to facilitate detection of other conserved uORFs.
Collapse
Affiliation(s)
- Marija Cvijović
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
- Max-Planck Institute for Molecular Genetics, Ihnestraße 63, D-14195 Berlin, Germany
| | - Daniel Dalevi
- Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Elizabeth Bilsland
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
- Biochemistry Department, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Graham JL Kemp
- Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
| |
Collapse
|
45
|
Hayden CA, Jorgensen RA. Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biol 2007; 5:32. [PMID: 17663791 PMCID: PMC2075485 DOI: 10.1186/1741-7007-5-32] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 07/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) can mediate translational control over the largest, or major ORF (mORF) in response to starvation, polyamine concentrations, and sucrose concentrations. One plant uORF with conserved peptide sequences has been shown to exert this control in an amino acid sequence-dependent manner but generally it is not clear what kinds of genes are regulated, or how extensively this mechanism is invoked in a given genome. RESULTS By comparing full-length cDNA sequences from Arabidopsis and rice we identified 26 distinct homology groups of conserved peptide uORFs, only three of which have been reported previously. Pairwise Ka/Ks analysis showed that purifying selection had acted on nearly all conserved peptide uORFs and their associated mORFs. Functions of predicted mORF proteins could be inferred for 16 homology groups and many of these proteins appear to have a regulatory function, including 6 transcription factors, 5 signal transduction factors, 3 developmental signal molecules, a homolog of translation initiation factor eIF5, and a RING finger protein. Transcription factors are clearly overrepresented in this data set when compared to the frequency calculated for the entire genome (p = 1.2 x 10(-7)). Duplicate gene pairs arising from a whole genome duplication (ohnologs) with a conserved uORF are much more likely to have been retained in Arabidopsis (Arabidopsis thaliana) than are ohnologs of other genes (39% vs 14% of ancestral genes, p = 5 x 10(-3)). Two uORF groups were found in animals, indicating an ancient origin of these putative regulatory elements. CONCLUSION Conservation of uORF amino acid sequence, association with homologous mORFs over long evolutionary time periods, preferential retention after whole genome duplications, and preferential association with mORFs coding for transcription factors suggest that the conserved peptide uORFs identified in this study are strong candidates for translational controllers of regulatory genes.
Collapse
Affiliation(s)
- Celine A Hayden
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| | - Richard A Jorgensen
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA
| |
Collapse
|
46
|
Neafsey DE, Galagan JE. Positive selection for unpreferred codon usage in eukaryotic genomes. BMC Evol Biol 2007; 7:119. [PMID: 17640368 PMCID: PMC1936986 DOI: 10.1186/1471-2148-7-119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 07/18/2007] [Indexed: 01/17/2023] Open
Abstract
Background Natural selection has traditionally been understood as a force responsible for pushing genes to states of higher translational efficiency, whereas lower translational efficiency has been explained by neutral mutation and genetic drift. We looked for evidence of directional selection resulting in increased unpreferred codon usage (and presumably reduced translational efficiency) in three divergent clusters of eukaryotic genomes using a simple optimal-codon-based metric (Kp/Ku). Results Here we show that for some genes natural selection is indeed responsible for causing accelerated unpreferred codon substitution, and document the scope of this selection. In Cryptococcus and to a lesser extent Drosophila, we find many genes showing a statistically significant signal of selection for unpreferred codon usage in one or more lineages. We did not find evidence for this type of selection in Saccharomyces. The signal of positive selection observed from unpreferred synonymous codon substitutions is coincident in Cryptococcus and Drosophila with the distribution of upstream open reading frames (uORFs), another genic feature known to reduce translational efficiency. Functional enrichment analysis of genes exhibiting low Kp/Ku ratios reveals that genes in regulatory roles are particularly subject to this type of selection. Conclusion Through genome-wide scans, we find recent selection for unpreferred codon usage at approximately 1% of genetic loci in a Cryptococcus and several genes in Drosophila. Unpreferred codons can impede translation efficiency, and we find that genes with translation-impeding uORFs are enriched for this selection signal. We find that regulatory genes are particularly likely to be subject to selection for unpreferred codon usage. Given that expression noise can propagate through regulatory cascades, and that low translational efficiency can reduce expression noise, this finding supports the hypothesis that translational efficiency may be suppressed in some cases to reduce stochastic noise in gene expression.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Microbial Analysis Group, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - James E Galagan
- Microbial Analysis Group, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
47
|
Dobi KC, Winston F. Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:5575-86. [PMID: 17526727 PMCID: PMC1952096 DOI: 10.1128/mcb.00459-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most fundamental aspects of transcription are conserved among eukaryotes. One striking difference between yeast Saccharomyces cerevisiae and metazoans, however, is the distance over which transcriptional activation occurs. In S. cerevisiae, upstream activation sequences (UASs) are generally located within a few hundred base pairs of a target gene, while in Drosophila and mammals, enhancers are often several kilobases away. To study the potential for long-distance activation in S. cerevisiae, we constructed and analyzed reporters in which the UAS-TATA distance varied. Our results show that UASs lose the ability to activate normal transcription as the UAS-TATA distance increases. Surprisingly, transcription does initiate, but proximally to the UAS, regardless of its location. To identify factors affecting long-distance activation, we screened for mutants allowing activation of a reporter when the UAS-TATA distance is 799 bp. These screens identified four loci, SIN4, SPT2, SPT10, and HTA1-HTB1, with sin4 mutations being the strongest. Our results strongly suggest that long-distance activation in S. cerevisiae is normally limited by Sin4 and other factors and that this constraint plays a role in ensuring UAS-core promoter specificity in the compact S. cerevisiae genome.
Collapse
Affiliation(s)
- Krista C Dobi
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Roy SW, Penny D, Neafsey DE. Evolutionary conservation of UTR intron boundaries in Cryptococcus. Mol Biol Evol 2007; 24:1140-8. [PMID: 17374879 DOI: 10.1093/molbev/msm045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Despite significant progress, the general functional and evolutionary significance of the untranslated regions (UTRs) of eukaryotic transcripts remain mysterious. Particularly mysterious is the common occurrence of spliceosomal introns in transcript UTRs because UTR splicing is not necessary for restoration of transcript coding sequence. In general, it is not known to what extent such splicing performs an important function or merely represents spliceosomal "noise." We conducted the first analysis of evolutionary conservation of UTR splicing. Among 4 species from Cryptococcus neoformans species complex, we find high levels of conservation of UTR intron boundary sequences, strongly suggesting that UTR intron splicing is conserved by purifying selection. We estimate that 50-90% of splice boundaries are maintained by selection. Donor site sequences are more highly conserved than acceptor sequences, and splicing boundaries are more conserved in 5' UTRs than in 3' UTRs. In addition, we report a variety of differences between patterns of UTR splicing in Cryptococcus and corresponding patterns in animals and plants. These results focus attention on the functional roles of eukaryotic UTRs and deepen the mystery of UTR intron splicing.
Collapse
Affiliation(s)
- Scott William Roy
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
49
|
Sunnerhagen P. Cytoplasmatic post-transcriptional regulation and intracellular signalling. Mol Genet Genomics 2007; 277:341-55. [PMID: 17333280 DOI: 10.1007/s00438-007-0221-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/06/2007] [Indexed: 02/05/2023]
Abstract
Studies of intracellular signalling have traditionally focused on regulation at the levels of initiation of transcription on one hand, and post-translational regulation on the other. More recently, it is becoming apparent that the post-transcriptional level of gene expression is also subject to regulation by signalling pathways. The emphasis in this review is on short-term regulation of mRNAs at the levels of degradation and frequency of translation. Interplay between the mRNA translation and degradation machineries and mainly the TOR, stress-induced MAP kinase (SAPK), and DNA damage checkpoint pathways is discussed. Since a large fraction of the molecular mechanisms has been dissected using molecular genetics methods in yeast, most of the examples in this review are from budding and fission yeast. Some parallels are drawn to plant and animal cells. This review is intended for those more familiar with intracellular signalling, and who realise that post-transcriptional regulation may be an underemphasised level of signalling output.
Collapse
Affiliation(s)
- Per Sunnerhagen
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, P.O. Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
50
|
Castrillo JI, Zeef LA, Hoyle DC, Zhang N, Hayes A, Gardner DCJ, Cornell MJ, Petty J, Hakes L, Wardleworth L, Rash B, Brown M, Dunn WB, Broadhurst D, O'Donoghue K, Hester SS, Dunkley TPJ, Hart SR, Swainston N, Li P, Gaskell SJ, Paton NW, Lilley KS, Kell DB, Oliver SG. Growth control of the eukaryote cell: a systems biology study in yeast. J Biol 2007; 6:4. [PMID: 17439666 PMCID: PMC2373899 DOI: 10.1186/jbiol54] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/20/2006] [Accepted: 02/07/2007] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. RESULTS Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. CONCLUSION This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.
Collapse
Affiliation(s)
- Juan I Castrillo
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leo A Zeef
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David C Hoyle
- Northwest Institute for Bio-Health Informatics (NIBHI), School of Medicine, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nianshu Zhang
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Andrew Hayes
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David CJ Gardner
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Michael J Cornell
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- School of Computer Science, Kilburn Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - June Petty
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Luke Hakes
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leanne Wardleworth
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Bharat Rash
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marie Brown
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Warwick B Dunn
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - David Broadhurst
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Kerry O'Donoghue
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Svenja S Hester
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Tom PJ Dunkley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Sarah R Hart
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Neil Swainston
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Peter Li
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Simon J Gaskell
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Norman W Paton
- School of Computer Science, Kilburn Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Douglas B Kell
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Stephen G Oliver
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|