1
|
Wu X, Zhang T, Zhang K, Zhang R, Shi M, Gu C, Shi T, Lu L, Xue F, Xu Q, Zhang C. The forced activation of asexual conidiation in Aspergillus niger simplifies bioproduction. Synth Syst Biotechnol 2024; 9:277-284. [PMID: 38496318 PMCID: PMC10942867 DOI: 10.1016/j.synbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Aspergillus niger is an efficient cell factory for organic acids production, particularly l-malic acid, through genetic manipulation. However, the traditional method of collecting A. niger spores for inoculation is labor-intensive and resource-consuming. In our study, we used the CRISPR-Cas9 system to replace the promoter of brlA, a key gene in Aspergillus conidiation, with a xylose-inducible promoter xylP in l-malic acid-producing A. niger strain RG0095, generating strain brlAxylP. When induced with xylose in submerged liquid culture, brlAxylP exhibited significant upregulation of conidiation-related genes. This induction allowed us to easily collect an abundance of brlAxylP spores (>7.1 × 106/mL) in liquid xylose medium. Significantly, the submerged conidiation approach preserves the substantial potential of A. niger as a foundational cellular platform for the biosynthesis of organic acids, including but not limited to l-malic acid. In summary, our study offers a simplified submerged conidiation strategy to streamline the preparation stage and reduce labor and material costs for industrial organic acid production using Aspergillus species.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tingting Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ke Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Rui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Man Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chenlei Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ling Lu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
2
|
Barthel L, Cairns T, Duda S, Müller H, Dobbert B, Jung S, Briesen H, Meyer V. Breaking down barriers: comprehensive functional analysis of the Aspergillus niger chitin synthase repertoire. Fungal Biol Biotechnol 2024; 11:3. [PMID: 38468360 PMCID: PMC10926633 DOI: 10.1186/s40694-024-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/02/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes. However, systematic functional analysis of the full chitin synthase catalogue in a given species is rare. This greatly limits fundamental understanding and potential applications of manipulating chitin synthesis across the fungal kingdom. RESULTS In this study, we conducted in silico profiling and subsequently deleted all predicted chitin synthase encoding genes in the multipurpose cell factory Aspergillus niger. Phylogenetic analysis suggested nine chitin synthases evolved as three distinct groups. Transcript profiling and co-expression network construction revealed remarkably independent expression, strongly supporting specific role(s) for the respective chitin synthases. Deletion mutants confirmed all genes were dispensable for germination, yet impacted colony spore titres, chitin content at hyphal septa, and internal architecture of submerged fungal pellets. We were also able to assign specific roles to individual chitin synthases, including those impacting colony radial growth rates (ChsE, ChsF), lateral cell wall chitin content (CsmA), chemical genetic interactions with a secreted antifungal protein (CsmA, CsmB, ChsE, ChsF), resistance to therapeutics (ChsE), and those that modulated pellet diameter in liquid culture (ChsA, ChsB). From an applied perspective, we show chsF deletion increases total protein in culture supernatant over threefold compared to the control strain, indicating engineering filamentous fungal chitin content is a high priority yet underexplored strategy for strain optimization. CONCLUSION This study has conducted extensive analysis for the full chitin synthase encoding gene repertoire of A. niger. For the first time we reveal both redundant and non-redundant functional roles of chitin synthases in this fungus. Our data shed light on the complex, multifaceted, and dynamic role of chitin in fungal growth, morphology, survival, and secretion, thus improving fundamental understanding and opening new avenues for biotechnological applications in fungi.
Collapse
Affiliation(s)
- Lars Barthel
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Timothy Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| | - Sven Duda
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Henri Müller
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Birgit Dobbert
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sascha Jung
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Heiko Briesen
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Zhu Y, Liu T, Wang Y, Chen G, Fang X, Zhou G, Wang J. ChsA, a Class Ⅱ Chitin Synthase, Contributes to Asexual Conidiation, Mycelial Morphology, Cell Wall Integrity, and the Production of Enzymes and Organic Acids in Aspergillus niger. J Fungi (Basel) 2023; 9:801. [PMID: 37623572 PMCID: PMC10455844 DOI: 10.3390/jof9080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Chitin synthases (CHSs) are vital enzymes for the synthesis of chitin and play important and differential roles in fungal development, cell wall integrity, environmental adaptation, virulence, and metabolism in fungi. However, except for ChsC, a class III CHS, little is known about the functions of CHSs in Aspergillus niger, an important fungus that is widely applied in the fermentation industry and food processing, as well as a spoilage fungus of food and a human pathogen. This study showed the important functions of ChsA, a class II CHS, in A. niger using multi-phenotypic and transcriptional analyses under various conditions. The deletion of chsA led to severe defects in conidiation on different media and resulted in the formation of smaller and less compact pellets with less septa in hyphal cells during submerged fermentation. Compared with the WT, the ΔchsA mutants exhibited less chitin content, reduced growth under the stresses of cell wall-disturbing and oxidative agents, more released protoplasts, a thicker conidial wall, decreased production of amylases, pectinases, cellulases, and malic acid, and increased citric acid production. However, ΔchsA mutants displayed insignificant changes in their sensitivity to osmotic agents and infection ability on apple. These findings concurred with the alteration in the transcript levels and enzymatic activities of some phenotype-related genes. Conclusively, ChsA is important for cell wall integrity and mycelial morphology, and acts as a positive regulator of conidiation, cellular responses to oxidative stresses, and the production of malic acid and some enzymes, but negatively regulates the citric acid production in A. niger.
Collapse
Affiliation(s)
- Yunqi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Tong Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Yingsi Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Guojun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| |
Collapse
|
4
|
Muszkieta L, Aimanianda V, Mellado E, Gribaldo S, Alcàzar-Fuoli L, Szewczyk E, Prevost MC, Latgé JP. Deciphering the role of the chitin synthase families 1 and 2 in thein vivoandin vitrogrowth ofAspergillus fumigatusby multiple gene targeting deletion. Cell Microbiol 2014; 16:1784-805. [DOI: 10.1111/cmi.12326] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Emilia Mellado
- Mycology Reference Laboratory; Centro Nacional de Microbiologia; Instituto de Salud Carlos III; Madrid Spain
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du gène chez les Extrêmophiles; Institut Pasteur; 75015 Paris France
| | - Laura Alcàzar-Fuoli
- Mycology Reference Laboratory; Centro Nacional de Microbiologia; Instituto de Salud Carlos III; Madrid Spain
| | - Edyta Szewczyk
- Department of Biological and Agricultural Engineering; University of California; Davis California USA
| | | | | |
Collapse
|
5
|
Jiang H, Liu F, Zhang S, Lu L. Putative PmrA and PmcA are important for normal growth, morphogenesis and cell wall integrity, but not for viability in Aspergillus nidulans. MICROBIOLOGY-SGM 2014; 160:2387-2395. [PMID: 25118249 DOI: 10.1099/mic.0.080119-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
P-type Ca(2+)-transporting ATPases are Ca(2+) pumps, extruding cytosolic Ca(2+) to the extracellular environment or the intracellular Ca(2+) store lumens. In budding yeast, Pmr1 (plasma membrane ATPase related), and Pmc1 (plasma membrane calcium-ATPase) cannot be deleted simultaneously for it to survive in standard medium. Here, we deleted two putative Ca(2+) pumps, designated AnPmrA and AnPmcA, from Aspergillus nidulans, and obtained the mutants ΔanpmrA and ΔanpmcA, respectively. Then, using ΔanpmrA as the starting strain, the promoter of its anpmcA was replaced with the alcA promoter to secure the mutant ΔanpmrAalcApmcA or its anpmcA was deleted completely to produce the mutant ΔanpmrAΔpmcA. Different from the case in Saccharomyces cerevisiae, double deletion of anpmrA and anpmcA was not lethal in A. nidulans. In addition, deletion of anpmrA and/or anpmcA had produced growth defects, although overexpression of AnPmc1 in ΔanpmrAalcApmcA could not restore the growth defects that resulted from the loss of AnPmrA. Moreover, we found AnPmrA was indispensable for maintenance of normal morphogenesis, especially in low-Ca(2+)/Mn(2+) environments. Thus, our findings suggest AnPmrA and AnPmcA might play important roles in growth, morphogenesis and cell wall integrity in A. nidulans in a different way from that in yeasts.
Collapse
Affiliation(s)
- Hechun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Feifei Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
6
|
Krijgsheld P, Bleichrodt R, van Veluw G, Wang F, Müller W, Dijksterhuis J, Wösten H. Development in Aspergillus. Stud Mycol 2013; 74:1-29. [PMID: 23450714 PMCID: PMC3563288 DOI: 10.3114/sim0006] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genus Aspergillus represents a diverse group of fungi that are among the most abundant fungi in the world. Germination of a spore can lead to a vegetative mycelium that colonizes a substrate. The hyphae within the mycelium are highly heterogeneous with respect to gene expression, growth, and secretion. Aspergilli can reproduce both asexually and sexually. To this end, conidiophores and ascocarps are produced that form conidia and ascospores, respectively. This review describes the molecular mechanisms underlying growth and development of Aspergillus.
Collapse
Affiliation(s)
- P. Krijgsheld
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R. Bleichrodt
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - G.J. van Veluw
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - F. Wang
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - W.H. Müller
- Biomolecular Imaging, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - J. Dijksterhuis
- Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - H.A.B. Wösten
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Gandía M, Harries E, Marcos JF. Identification and characterization of chitin synthase genes in the postharvest citrus fruit pathogen Penicillium digitatum. Fungal Biol 2012; 116:654-64. [DOI: 10.1016/j.funbio.2012.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/10/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
|
8
|
Rogg LE, Fortwendel JR, Juvvadi PR, Steinbach WJ. Regulation of expression, activity and localization of fungal chitin synthases. Med Mycol 2012; 50:2-17. [PMID: 21526913 PMCID: PMC3660733 DOI: 10.3109/13693786.2011.577104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in-depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets.
Collapse
Affiliation(s)
- Luise E. Rogg
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Jarrod R. Fortwendel
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| | - Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
9
|
Wakefield L, Gadoury DM, Seem RC, Milgroom MG, Sun Q, Cadle-Davidson L. Differential gene expression during conidiation in the grape powdery mildew pathogen, Erysiphe necator. PHYTOPATHOLOGY 2011; 101:839-46. [PMID: 21405992 DOI: 10.1094/phyto-11-10-0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Asexual sporulation (conidiation) is coordinately regulated in the grape powdery mildew pathogen Erysiphe necator but nothing is known about its genetic regulation. We hypothesized that genes required for conidiation in other fungi would be upregulated at conidiophore initiation or full conidiation (relative to preconidiation vegetative growth and development of mature ascocarps), and that the obligate biotrophic lifestyle of E. necator would necessitate some novel gene regulation. cDNA amplified fragment length polymorphism analysis with 45 selective primer combinations produced ≈1,600 transcript-derived fragments (TDFs), of which 620 (39%) showed differential expression. TDF sequences were annotated using BLAST analysis of GenBank and of a reference transcriptome for E. necator developed by 454-FLX pyrosequencing of a normalized cDNA library. One-fourth of the differentially expressed, annotated sequences had similarity to fungal genes of unknown function. The remaining genes had annotated function in metabolism, signaling, transcription, transport, and protein fate. As expected, a portion of orthologs known in other fungi to be involved in developmental regulation was upregulated immediately prior to or during conidiation; particularly noteworthy were several genes associated with the light-dependent VeA regulatory system, G-protein signaling (Pth11 and a kelch repeat), and nuclear transport (importin-β and Ran). This work represents the first investigation into differential gene expression during morphogenesis in E. necator and identifies candidate genes and hypotheses for characterization in powdery mildews. Our results indicate that, although control of conidiation in powdery mildews may share some basic elements with established systems, there are significant points of divergence as well, perhaps due, in part, to the obligate biotrophic lifestyle of powdery mildews.
Collapse
Affiliation(s)
- Laura Wakefield
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | | | |
Collapse
|
10
|
Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes. Biosci Biotechnol Biochem 2010; 74:2327-9. [PMID: 21071861 DOI: 10.1271/bbb.100398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Agrobacterium tumefaciens was used to transform the vegetative dikaryotic mycelium of Flammulina velutipes using a hygromycin B resistance gene as selectable marker. The gene coding for urogen III methyltransferase (cob) was introduced into F. velutipes dikaryotic cells. The resulting transformant cells generated a bright red fluorescence, indicating that cob is promising as a reporter gene in F. velutipes.
Collapse
|
11
|
Class III chitin synthase ChsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development. EUKARYOTIC CELL 2009; 8:945-56. [PMID: 19411617 DOI: 10.1128/ec.00326-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Class III chitin synthases play important roles in tip growth and conidiation in many filamentous fungi. However, little is known about their functions in those processes. To address these issues, we characterized the deletion mutant of a class III chitin synthase-encoding gene of Aspergillus nidulans, chsB, and investigated ChsB localization in the hyphae and conidiophores. Multilayered cell walls and intrahyphal hyphae were observed in the hyphae of the chsB deletion mutant, and wavy septa were also occasionally observed. ChsB tagged with FLAG or enhanced green fluorescent protein (EGFP) localized mainly at the tips of germ tubes, hyphal tips, and forming septa during hyphal growth. EGFP-ChsB predominantly localized at polarized growth sites and between vesicles and metulae, between metulae and phialides, and between phalides and conidia in asexual development. These results strongly suggest that ChsB functions in the formation of normal cell walls of hyphae, as well as in conidiophore and conidia development in A. nidulans.
Collapse
|
12
|
Sekiya M, Nogami S, Ohya Y. Transcription factors of M-phase cyclin CLB2 in the yeast cell wall integrity checkpoint. Genes Genet Syst 2009; 84:269-76. [DOI: 10.1266/ggs.84.269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mizuho Sekiya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Satoru Nogami
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| |
Collapse
|
13
|
Horiuchi H. Functional diversity of chitin synthases ofAspergillus nidulansin hyphal growth, conidiophore development and septum formation. Med Mycol 2009; 47 Suppl 1:S47-52. [DOI: 10.1080/13693780802213332] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Odenbach D, Thines E, Anke H, Foster AJ. The Magnaporthe grisea class VII chitin synthase is required for normal appressorial development and function. MOLECULAR PLANT PATHOLOGY 2009; 10:81-94. [PMID: 19161355 PMCID: PMC6640330 DOI: 10.1111/j.1364-3703.2008.00515.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The plant pathogenic fungus Magnaporthe grisea is able to enter its host via appressorium-mediated penetration. Earlier investigations have shown that these infection structures are rich in the cell wall polysaccharide chitin. Previously, we have described how the transcription of a class VII chitin synthase-encoding gene CHS7 is completely dependent on the putative transcription factor Con7p during the germination of conidia, and how con7(-) mutants are unable to form appressoria under any conditions tested. Because of the pleiotropic effects of the con7(-) mutation, we examined the consequences of the targeted deletion of CHS7. The chs7(-) mutants generated were unable to form appressoria on artificial surfaces, except following the application of the exogenous inducers 1,16-hexadecanediol and cyclic adenosine monophosphate. The appressoria formed had a reduced chitin content and were often found to be smaller and misshapen compared with the wild-type. chs7(-) mutants were significantly reduced in their ability to enter rice plants, but growth in planta was not affected. Reverse transcriptase-polymerase chain reaction analysis demonstrated that CHS7 transcription was strongly induced on germination of spores, and a green fluorescent protein-tagged Chs7p protein was found to be produced abundantly during infection-related morphogenesis. Together, these data suggest that the class VII chitin synthase Chs7p of M. grisea is required for normal appressorium formation and function.
Collapse
Affiliation(s)
- Dominik Odenbach
- IBWF e.V., Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | | | | | | |
Collapse
|