1
|
De Marchis F, Valeri MC, Pompa A, Bouveret E, Alagna F, Grisan S, Stanzione V, Mariotti R, Cultrera N, Baldoni L, Bellucci M. Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves. Transgenic Res 2016; 25:45-61. [PMID: 26560313 DOI: 10.1007/s11248-015-9919-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 11/05/2015] [Indexed: 01/24/2023]
Abstract
Taking into account that fatty acid (FA) biosynthesis plays a crucial role in lipid accumulation in olive (Olea europaea L.) mesocarp, we investigated the effect of olive acyl carrier protein (ACP) on FA composition by overexpressing an olive ACP cDNA in tobacco plants. The OeACP1.1A cDNA was inserted in the nucleus or in the chloroplast DNA of different tobacco plants, resulting in extensive transcription of the transgenes. The transplastomic plants accumulated lower olive ACP levels in comparison to nuclear-transformed plants. Moreover, the phenotype of the former plants was characterized by pale green/white cotyledons with abnormal chloroplasts, delayed germination and reduced growth. We suggest that the transplastomic phenotype was likely caused by inefficient olive ACP mRNA translation in chloroplast stroma. Conversely, total lipids from leaves of nuclear transformants expressing high olive ACP levels showed a significant increase in oleic acid (18:1) and linolenic acid (18:3), and a concomitant significant reduction of hexadecadienoic acid (16:2) and hexadecatrienoic acid (16:3). This implies that in leaves of tobacco transformants, as likely in the mesocarp of olive fruit, olive ACP not only plays a general role in FA synthesis, but seems to be specifically involved in chain length regulation forwarding the elongation to C18 FAs and the subsequent desaturation to 18:1 and 18:3.
Collapse
Affiliation(s)
- Francesca De Marchis
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Maria Cristina Valeri
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Andrea Pompa
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | | | - Fiammetta Alagna
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
- Research Unit for Table Grapes and Wine Growing in Mediterranean Environment, CREA, Via Casamassima 148, Turi, 70010, Bari, Italy
| | - Simone Grisan
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Vitale Stanzione
- Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Research Division of Perugia, CNR, Via Madonna Alta 128, 06128, Perugia, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Nicolò Cultrera
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy.
| |
Collapse
|
2
|
Jin S, Singh ND, Li L, Zhang X, Daniell H. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:435-46. [PMID: 25782349 PMCID: PMC4522700 DOI: 10.1111/pbi.12355] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/23/2014] [Accepted: 02/03/2015] [Indexed: 05/03/2023]
Abstract
In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells.
Collapse
Affiliation(s)
- Shuangxia Jin
- Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
3
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
5
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
6
|
Mathur S, Dasgupta I. Downstream promoter sequence of an Indian isolate of Rice tungro bacilliform virus alters tissue-specific expression in host rice and acts differentially in heterologous system. PLANT MOLECULAR BIOLOGY 2007; 65:259-75. [PMID: 17721744 DOI: 10.1007/s11103-007-9214-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/20/2007] [Indexed: 05/16/2023]
Abstract
An Indian isolate of Rice tungro bacilliform virus from West Bengal (RTBV-WB) showed significant nucleotide differences in its putative promoter region when compared with a previously characterized isolate from Philippines. The transcription start site of RTBV-WB was mapped followed by assessing the activity and tissue-specificity of the full-length (FL) promoter (-231 to +645) and several of its upstream and downstream deletions by studying the expression of beta-Glucuronidase (GUS) reporter gene in transgenic rice (Oryza sativa L. subsp. indica) plants at various stages of development. In addition to the expected vascular-specific expression pattern, studied by histochemical staining, GUS enzymatic assay and northern and RT-PCR analysis, two novel patterns were revealed in some of the downstream deleted versions; a non-expressing type, representing no expression at any stage in any tissue and constitutive type, representing constitutive expression at all stages in most tissues. This indicated the presence of previously unreported positive and negative cis-regulatory elements in the downstream region. The negative element and a putative enhancer region in the upstream region specifically bound to rice nuclear proteins in vitro. The FL and its deletion derivatives were also active in heterologous systems like tobacco (Nicotiana tabacum) and wheat (Triticum durum). Expression patterns in tobacco were different from those observed in rice suggesting the importance of upstream elements in those systems and host-specific regulation of the promoter in diverse organisms. Thus, the RTBV-WB FL promoter and its derivatives contain an array of cis-elements, which control constitutive or tissue- and development-specific gene expression in a combinatorial fashion.
Collapse
Affiliation(s)
- Saloni Mathur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | |
Collapse
|