1
|
Wang C, Li P, Cong W, Zhang L, Zhou M, Hou Y. A Novel Point Mutation M460I in Histidine Kinase FgOs1 Confers High Resistance to Fludioxonil in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25522-25532. [PMID: 39496401 DOI: 10.1021/acs.jafc.4c06858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, severely impacts global wheat production, reducing both the yield and quality. In China, fludioxonil, a phenylpyrrole fungicide, is used for managing FHB. This study assessed fludioxonil activity against 120 F. graminearum strains collected from Hubei, Zhejiang, and Jiangsu in 2024, revealing an average EC50 value of 0.0273 ± 0.0062 μg/mL. We obtained two resistant mutants through chemical taming and discovered a novel point mutation of FgOs1-M460I. Site-directed mutagenesis confirmed that the FgOs1-M460I mutation greatly reduced fludioxonil sensitivity, with an EC50 value greater than 100 μg/mL. These mutants also displayed reduced sexual and asexual reproduction and lower virulence and accumulated less glycerol under fludioxonil and osmotic stress compared to sensitive strain. The resistant mutants showed no cross-resistance with carbendazim, tebuconazole, phenamacril, pyraclostrobin, or pydiflumetofen. Thus, we conclude that the FgOs1-M460I substitution regulates fludioxonil resistance and plays a role in asexual reproduction, sexual reproduction, and pathogenicity.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiwei Cong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingrong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Cruz-Mireles N, Osés-Ruiz M, Derbyshire P, Jégousse C, Ryder LS, Bautista MJA, Eseola A, Sklenar J, Tang B, Yan X, Ma W, Findlay KC, Were V, MacLean D, Talbot NJ, Menke FLH. The phosphorylation landscape of infection-related development by the rice blast fungus. Cell 2024; 187:2557-2573.e18. [PMID: 38729111 DOI: 10.1016/j.cell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.
Collapse
Affiliation(s)
- Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Miriam Osés-Ruiz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark Jave A Bautista
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
3
|
Wang Y, Liu F, Pei J, Yan H, Wang Y. The AwHog1 Transcription Factor Influences the Osmotic Stress Response, Mycelium Growth, OTA Production, and Pathogenicity in Aspergillus westerdijkiae fc-1. Toxins (Basel) 2023; 15:432. [PMID: 37505700 PMCID: PMC10467130 DOI: 10.3390/toxins15070432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Aspergillus westerdijkiae, known as the major ochratoxin A (OTA) producer, usually occurs on agricultural crops, fruits, and dry-cured meats. Microorganisms produce OTA to adapt to the high osmotic pressure environment that is generated during food processing and storage. To investigate the relationship between OTA biosynthesis and the high osmolarity glycerol (HOG) pathway, the transcription factor AwHog1 gene in A. westerdijkiae was functionally characterised by means of a loss-of-function mutant. Our findings demonstrated that the growth and OTA production of a mutant lacking AwHog1 decreased significantly and was more sensitive to high osmotic media. The ΔAwHog1 mutant displayed a lower growth rate and a 73.16% reduction in OTA production in the wheat medium compared to the wild type. After three days of culture, the growth rate of the ΔAwHog1 mutant in medium with 60 g/L NaCl and 150 g/L glucose was slowed down 19.57% and 13.21%, respectively. Additionally, the expression of OTA biosynthesis genes was significantly reduced by the deletion of the AwHog1 gene. The infection ability of the ΔAwHog1 mutant was decreased, and the scab diameter of the pear was 6% smaller than that of the wild type. These data revealed that transcription factor AwHog1 plays a key role in the osmotic response, growth, OTA production, and pathogenicity in A. westerdijkiae.
Collapse
Affiliation(s)
- Yufei Wang
- College of Food Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Gongshu District, Hangzhou 310014, China; (Y.W.); (J.P.)
| | - Fei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China;
| | - Jingying Pei
- College of Food Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Gongshu District, Hangzhou 310014, China; (Y.W.); (J.P.)
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou 310051, China
| | - Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Gongshu District, Hangzhou 310014, China; (Y.W.); (J.P.)
| |
Collapse
|
4
|
Motoyama T, Nogawa T, Shimizu T, Kawatani M, Kashiwa T, Yun CS, Hashizume D, Osada H. Fungal NRPS-PKS Hybrid Enzymes Biosynthesize New γ-Lactam Compounds, Taslactams A-D, Analogous to Actinomycete Proteasome Inhibitors. ACS Chem Biol 2023; 18:396-403. [PMID: 36692171 DOI: 10.1021/acschembio.2c00830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Proteasome inhibitors with γ-lactam structure, such as lactacystin and salinosporamide A, have been isolated from actinomycetes and have attracted attention as lead compounds for anticancer drugs. Previously, we identified a unique enzyme TAS1, which is the first reported fungal NRPS-PKS hybrid enzyme, from the filamentous fungus Pyricularia oryzae for the biosynthesis of a mycotoxin tenuazonic acid, a tetramic acid compound without γ-lactam structure. Homologues of TAS1 have been identified in several fungal genomes and classified into four groups (A-D). Here, we show that the group D TAS1 homologues from two filamentous fungi can biosynthesize γ-lactam compounds, taslactams A-D, with high similarity to actinomycete proteasome inhibitors. One of the γ-lactam compounds, taslactam C, showed potent proteasome inhibitory activity. In contrast to actinomycete γ-lactam compounds which require multiple enzymes for biosynthesis, the TAS1 homologue alone was sufficient for the biosynthesis of the fungal γ-lactam compounds.
Collapse
Affiliation(s)
- Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Toshihiko Nogawa
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan.,Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan.,Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Takeshi Kashiwa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Choong-Soo Yun
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- Materials Characterization Support Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan.,Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan.,Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yata, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
5
|
Genome-Wide Analysis of AGC Kinases Reveals that MoFpk1 Is Required for Development, Lipid Metabolism, and Autophagy in Hyperosmotic Stress of the Rice Blast Fungus Magnaporthe oryzae. mBio 2022; 13:e0227922. [PMID: 36259725 PMCID: PMC9765699 DOI: 10.1128/mbio.02279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During eukaryotic evolution, the TOR-AGC kinase signaling module is involved in the coordinated regulation of cell growth and survival. However, the AGC kinases in plant-pathogenic fungi remain poorly understood. In this study, we have identified 20 members of the AGC family of protein kinases. Evolutionary and biological studies have revealed that AGC kinases are highly conserved and involved in the growth (8 genes), conidiation (13 genes), conidial germination (9 genes), appressorium formation (9 genes), and pathogenicity (5 genes) of Magnaporthe oryzae, in which a subfamily protein of the AGC kinases, MoFpk1, the activator of flippase, specifically exhibited diverse roles. Two kinase sites were screened and found to be critical for MoFpk1: 230K and 326D. Moreover, MoFpk1 is involved in cell wall integrity through the negative regulation of MoMps1 phosphorylation. The deletion of MoFpk1 resulted in defective phosphatidylacetamide (PE) and phosphatidylserine (PS) turnover and a series of lipid metabolism disorders. Under hyperosmotic stress, since the ΔMofpk1 mutant is unable to maintain membrane asymmetry, MoYpk1 phosphorylation and MoTor activity were downregulated, thus enhancing autophagy. Our results provide insights into the evolutionary and biological relationships of AGC kinases and new insight into plasma membrane (PM) homeostasis, i.e., responses to membrane stress and autophagy through lipid asymmetry maintenance. IMPORTANCE Our identification and analysis of evolutionary and biological relationships provide us with an unprecedented high-resolution view of the flexible and conserved roles of the AGC family in the topmost fungal pathogens that infect rice, wheat, barley, and millet. Guided by these insights, an AGC member, MoFpk1, was found to be indispensable for M. oryzae development. Our study defined a novel mechanism of plasma membrane homeostasis, i.e., adaptation to stress through the asymmetric distribution of phospholipids. Furthermore, defects in the asymmetric distribution of phospholipids in the membrane enhanced autophagy under hyperosmotic stress. This study provides a new mechanism for the internal linkage between lipid metabolism and autophagy, which may help new fungicide target development for controlling this devastating disease.
Collapse
|
6
|
Abdelhakim IA, Motoyama T, Nogawa T, Mahmud FB, Futamura Y, Takahashi S, Osada H. Isolation of new lucilactaene derivatives from P450 monooxygenase and aldehyde dehydrogenase knockout Fusarium sp. RK97-94 strains and their biological activities. J Antibiot (Tokyo) 2022; 75:361-374. [PMID: 35484225 DOI: 10.1038/s41429-022-00529-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
Fusarium sp. RK97-94 is a producer of potent antimalarial compounds such as lucilactaene and its derivatives. The biosynthetic gene cluster of lucilactaene was identified but only a knockout mutant of methyltransferase (luc1) was reported in previous papers. Herein, we report on isolation and identification of prelucilactaene G (1), and prelucilactaene H (2) from the aldehyde dehydrogenase knockout strain (∆luc3) culture broth, as well as prelucilactaene A (3), prelucilactaene B (4), and two isomeric mixtures of prelucilactaene E (5) and prelucilactaene F (6), from the P450 monooxygenase knockout strain (∆luc2) culture broth. Our data, unlike the previous ones, suggest the involvement of the aldehyde dehydrogenase (Luc3) in lucilactaene biosynthesis, and support the involvement of the P450 monooxygenase (Luc2) in C-20 hydroxylation rather than C-13-C-14 epoxidation or C-15 hydroxylation. Isolated compounds displayed moderate to strong antimalarial activities, and the structure-activity relationship of lucilactaene derivatives was examined.
Collapse
Affiliation(s)
- Islam A Abdelhakim
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan.,Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan.,Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Toshihiko Nogawa
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
| | - Fauze Bin Mahmud
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan.,Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.,Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan. .,Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, Japan.
| |
Collapse
|
7
|
Li L, Zhu XM, Zhang YR, Cai YY, Wang JY, Liu MY, Wang JY, Bao JD, Lin FC. Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. Int J Mol Sci 2022; 23:ijms23094658. [PMID: 35563048 PMCID: PMC9104627 DOI: 10.3390/ijms23094658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Plant diseases caused by fungi are one of the major threats to global food security and understanding the interactions between fungi and plants is of great significance for plant disease control. The interaction between pathogenic fungi and plants is a complex process. From the perspective of pathogenic fungi, pathogenic fungi are involved in the regulation of pathogenicity by surface signal recognition proteins, MAPK signaling pathways, transcription factors, and pathogenic factors in the process of infecting plants. From the perspective of plant immunity, the signal pathway of immune response, the signal transduction pathway that induces plant immunity, and the function of plant cytoskeleton are the keys to studying plant resistance. In this review, we summarize the current research progress of fungi–plant interactions from multiple aspects and discuss the prospects and challenges of phytopathogenic fungi and their host interactions.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Jing-Yi Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Meng-Yu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
- Correspondence: ; Tel.: +86-571-88404007
| |
Collapse
|
8
|
Motoyama T, Kondoh Y, Shimizu T, Hayashi T, Honda K, Uchida M, Osada H. Identification of Scytalone Dehydratase Inhibitors Effective against Melanin Biosynthesis Dehydratase Inhibitor-Resistant Pyricularia oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3109-3116. [PMID: 35234040 DOI: 10.1021/acs.jafc.1c04984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Melanin is a secondary metabolite required for the infection of the rice blast fungus Pyricularia oryzae. Melanin biosynthesis enzymes are targets for controlling rice blast disease, and three types of commercial melanin biosynthesis inhibitors (MBIs) including MBI-R, MBI-D, and MBI-P have been developed. However, the occurrence of MBI-D-resistant strains containing scytalone dehydratase (SDH1/RSY1) with V75M mutations has been recently reported. In this study, we aimed to identify inhibitors of SDH1-V75M. We screened the RIKEN Natural Products Depository chemical library using chemical array technology and evaluated the inhibition of SDH1-V75M by candidate compounds. NPD13731 strongly inhibited the activity of wild-type and mutant SDH1. The structure-activity relationship data were used to create a more potent inhibitor 16, which controlled rice blast disease in rice plants infected with MBI-D-resistant P. oryzae. Compound 16, which we named melabiostin, may be used to develop fungicides for controlling rice blast infections.
Collapse
Affiliation(s)
- Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Teruo Hayashi
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoko Uchida
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Subba P, Saha P, Karthikkeyan G, Biswas M, Prasad TSK, Roy-Barman S. Metabolite profiling reveals overexpression of the global regulator, MoLAEA leads to increased synthesis of metabolites in Magnaporthe oryzae. J Appl Microbiol 2022; 132:3825-3838. [PMID: 35261134 DOI: 10.1111/jam.15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To study the altered metabolic pathways and metabolites produced in overexpression and knockdown mutants of a global regulator named MoLAEA, which was recently found to regulate the expression of the genes involved in secondary metabolism in one of the most destructive plant pathogens, Magnaporthe oryzae. METHODS AND RESULTS Mass spectrometry-based global untargeted metabolomic profiling was used to identify altered metabolites. Metabolites were extracted from the mutant strains of MoLAEA using two extraction methods viz., aqueous and organic extraction and data acquired using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive and negative polarities. Levels of metabolites involved in various biological pathways such as amino acid as well as polyamine biosynthesis, fatty acid and pyrimidine metabolism showed remarkable change in the mutant strains. Interestingly, metabolites involved in stress responses were produced in higher quantities in the overexpression strain whereas, certain overproduced metabolites were associated with distinctive phenotypic changes in the overexpression strain compared to the wild-type. Further, the expression of several genes involved in the stress responses was found to have higher expression in the overexpression strain. CONCLUSIONS The global regulator MoLAEA is involved in secondary metabolism in the plant pathogen M. oryzae such that the mutant strains showed altered level of several metabolites involved in the biosynthesis pathways compared to the wild-type. Also, metabolites involved in stress responses were overproduced in the overexpression strain and this can be seen in the higher growth in media amended with stress-inducing agents or higher expression of genes involved in stress response in the overexpression strain compared to the wild-type. SIGNIFICANCE AND IMPACT This is the first report of metabolite profiling relative to the global regulation of secondary metabolism in M. oryzae, where secondary metabolism is poorly understood. It opens up avenues for more relevant investigations on the genetic regulation of several of the metabolites found in the analysis, which have not been previously characterized in M. oryzae.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Pallabi Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Mousumi Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | | | |
Collapse
|
10
|
Motoyama T, Yun CS, Osada H. Biosynthesis and biological function of secondary metabolites of the rice blast fungus Pyricularia oryzae. J Ind Microbiol Biotechnol 2021; 48:kuab058. [PMID: 34379774 PMCID: PMC8788799 DOI: 10.1093/jimb/kuab058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022]
Abstract
Filamentous fungi have many secondary metabolism genes and produce a wide variety of secondary metabolites with complex and unique structures. However, the role of most secondary metabolites remains unclear. Moreover, most fungal secondary metabolism genes are silent or poorly expressed under laboratory conditions and are difficult to utilize. Pyricularia oryzae, the causal pathogen of rice blast disease, is a well-characterized plant pathogenic fungus. P. oryzae also has a large number of secondary metabolism genes and appears to be a suitable organism for analyzing secondary metabolites. However, in case of this fungus, biosynthetic genes for only four groups of secondary metabolites have been well characterized. Among two of the four groups of secondary metabolites, biosynthetic genes were identified by activating secondary metabolism. These secondary metabolites include melanin, a polyketide compound required for rice infection; tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique nonribosomal peptide synthetase-polyketide synthase hybrid enzyme; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi, including plant pathogens and endophytes, and pyriculols, phytotoxic polyketide compounds. This review mainly focuses on the biosynthesis and biological functions of the four groups of P. oryzae secondary metabolites.
Collapse
Affiliation(s)
- Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Choong-Soo Yun
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Motoyama T, Ishii T, Kamakura T, Osada H. Screening of tenuazonic acid production-inducing compounds and identification of NPD938 as a regulator of fungal secondary metabolism. Biosci Biotechnol Biochem 2021; 85:2200-2208. [PMID: 34379730 DOI: 10.1093/bbb/zbab143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
The control of secondary metabolism in fungi is essential for the regulation of various cellular functions. In this study, we searched the RIKEN Natural Products Depository (NPDepo) chemical library for inducers of tenuazonic acid (TeA) production in the rice blast fungus Pyricularia oryzae and identified NPD938. NPD938 transcriptionally induced TeA production. We explored the mode of action of NPD938 and observed that this compound enhanced TeA production via LAE1, a global regulator of fungal secondary metabolism. NPD938 could also induce production of terpendoles and pyridoxatins in Tolypocladium album RK99-F33. Terpendole production was induced transcriptionally. We identified the pyridoxatin biosynthetic gene cluster among transcriptionally induced secondary metabolite biosynthetic gene clusters. Therefore, NPD938 is useful for the control of fungal secondary metabolism.
Collapse
Affiliation(s)
| | - Tomoaki Ishii
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan
| |
Collapse
|
12
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Cai E, Sun S, Deng Y, Huang P, Sun X, Wang Y, Chang C, Jiang Z. Histidine Kinase Sln1 and cAMP/PKA Signaling Pathways Antagonistically Regulate Sporisorium scitamineum Mating and Virulence via Transcription Factor Prf1. J Fungi (Basel) 2021; 7:jof7080610. [PMID: 34436149 PMCID: PMC8397173 DOI: 10.3390/jof7080610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Many prokaryotes and eukaryotes utilize two-component signaling pathways to counter environmental stress and regulate virulence genes associated with infection. In this study, we identified and characterized a conserved histidine kinase (SsSln1), which is the sensor of the two-component system of Sln1-Ypd1-Ssk1 in Sporisorium scitamineum. SsSln1 null mutant exhibited enhanced mating and virulence capabilities in S. scitamineum, which is opposite to what has been reported in Candida albicans. Further investigations revealed that the deletion of SsSLN1 enhanced SsHog1 phosphorylation and nuclear localization and thus promoted S. scitamineum mating. Interestingly, SsSln1 and cAMP/PKA signaling pathways antagonistically regulated the transcription of pheromone-responsive transcription factor SsPrf1, for regulating S. scitamineum mating and virulence. In short, the study depicts a novel mechanism in which the cross-talk between SsSln1 and cAMP/PKA pathways antagonistically regulates mating and virulence by balancing the transcription of the SsPRF1 gene in S. scitamineum.
Collapse
Affiliation(s)
- Enping Cai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Shuquan Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Environmental Monitoring and Remediation Engineering Technology Research Center, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Yizhen Deng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Peishen Huang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Xian Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Yuting Wang
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Changqing Chang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (C.C.); (Z.J.); Tel.: +86-020-757-3225 (C.C.); +86-020-3860-4779 (Z.J.)
| | - Zide Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Correspondence: (C.C.); (Z.J.); Tel.: +86-020-757-3225 (C.C.); +86-020-3860-4779 (Z.J.)
| |
Collapse
|
14
|
Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae. Mol Genet Genomics 2021; 296:1135-1145. [PMID: 34196769 DOI: 10.1007/s00438-021-01809-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Nik1 orthologs or group III hybrid histidine kinases (HHK3) represent a unique cytoplasmic osmosensor that act upstream of HOG/p38 MAPK pathway in fungi. It is an important molecular target for developing new antifungal agents against human pathogens. HHK3 orthologs contain a linear array of alternative HAMP and HAMP-like linker domains (poly-HAMP) in the N-terminal region. HAMP domains are quite common in prokaryotic histidine kinases where it mostly functions as signal transducer mediating conformational changes in the kinase domains. In contrast, poly-HAMP in HHK3 acts as a sensor and signal transducer to regulate histidine kinase activity. However, the mechanistic detail of this is poorly understood. Interestingly, recent studies indicate that the poly-HAMP-mediated regulation of the kinase activity varies among the orthologs. Hik1 is an important HHK3 ortholog from fungus Magnaporthe oryzae. In this paper, we aimed to decipher the role HAMP and HAMP-like linker domains in regulating the activity of Hik1p. We show that Hik1p acts as a bona fide osmosensor and negatively regulates the downstream HOG/p38 MAPK pathway in Saccharomyces cerevisiae. Our data suggest a differential role of the HAMP domains in the functionality of Hik1p. Most interestingly, the deletion of individual domains in poly-HAMP resulted in distinct active forms of Hik1p and thereby indicating that the poly-HAMP domain, instead of acting as on-off switch, regulates the histidine kinase activity by transition through multiple conformational states.
Collapse
|
15
|
Bourret RB, Kennedy EN, Foster CA, Sepúlveda VE, Goldman WE. A Radical Reimagining of Fungal Two-Component Regulatory Systems. Trends Microbiol 2021; 29:883-893. [PMID: 33853736 DOI: 10.1016/j.tim.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Bacterial two-component regulatory systems (TCSs) mediate signal transduction by transferring phosphoryl groups between sensor kinase and response regulator proteins, sometimes using intermediary histidine-phosphotransferase (Hpt) domains to form multistep phosphorelays. Because (i) almost all known fungal sensor kinases exhibit a domain architecture characteristic of bacterial TCS phosphorelays, (ii) all known fungal Hpts are stand-alone proteins suited to shuttle between cytoplasm and nucleus, and (iii) the best-characterized fungal TCS is a canonical phosphorelay, it is widely assumed that most or all fungal TCSs function via phosphorelays. However, fungi generally encode more sensor kinases than Hpts or response regulators, leading to a disparity between putative phosphorelay inputs and outputs. The simplest resolution of this paradox is to hypothesize that most fungal sensor kinases do not participate in phosphorelays. Reimagining how fungal TCSs might function leads to multiple testable predictions.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| | - Emily N Kennedy
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Clay A Foster
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Victoria E Sepúlveda
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - William E Goldman
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
16
|
Yang Q, Song L, Miao Z, Su M, Liang W, He Y. Acetylation of BcHpt Lysine 161 Regulates Botrytis cinerea Sensitivity to Fungicides, Multistress Adaptation and Virulence. Front Microbiol 2020; 10:2965. [PMID: 31969871 PMCID: PMC6960119 DOI: 10.3389/fmicb.2019.02965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/09/2019] [Indexed: 12/02/2022] Open
Abstract
BcHpt is a core element of the high-osmolarity glycerol (HOG) transduction pathway in Botrytis cinerea. In contrast to other elements of the pathway, which have been characterized and proven to play important roles in vegetative differentiation, fungicide resistance, the multistress response, and virulence in B. cinerea, BcHpt (Histidine-containing phosphotransfer) is essential but uncharacterized in B. cinerea. Our previous study reported the first lysine acetylation site (Lys161) in BcHpt. In this study, the functions of this lysine acetylation site in BcHpt were characterized using site-directed mutagenesis. To mimic Lys161 acetylation, we generated the mutant strain ΔBcHPt + BcHptK161Q-GFP, which exhibited a slower growth rate; lower pathogenicity; higher sensitivity to multiple stresses, including osmotic and oxidative stresses, dicarboximides, and demethylation inhibitors (DMIs); and lower BcSak1 phosphorylation levels than wild-type B. cinerea. Constitutive acetylation of BcHpt Ly161 apparently inhibits hyphal growth, the multistress response, and sensitivity to fungicides in B. cinerea. Moreover, the lysine acetylation site affected phosphorylation of the MAPK BcSak1.
Collapse
Affiliation(s)
- Qianqian Yang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhengang Miao
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Meiling Su
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yawen He
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Lin L, Wang S, Li X, He Q, Benz JP, Tian C. STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa. PLoS Genet 2019; 15:e1008510. [PMID: 31765390 PMCID: PMC6901240 DOI: 10.1371/journal.pgen.1008510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/09/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Cellulolytic fungi have evolved a complex regulatory network to maintain the precise balance of nutrients required for growth and hydrolytic enzyme production. When fungi are exposed to cellulose, the transcript levels of cellulase genes rapidly increase and then decline. However, the mechanisms underlying this bell-shaped expression pattern are unclear. We systematically screened a protein kinase deletion set in the filamentous fungus Neurospora crassa to search for mutants exhibiting aberrant expression patterns of cellulase genes. We observed that the loss of stk-12 (NCU07378) caused a dramatic increase in cellulase production and an extended period of high transcript abundance of major cellulase genes. These results suggested that stk-12 plays a critical role as a brake to turn down the transcription of cellulase genes to repress the overexpression of hydrolytic enzymes and prevent energy wastage. Transcriptional profiling analyses revealed that cellulase gene expression levels were maintained at high levels for 56 h in the Δstk-12 mutant, compared to only 8 h in the wild-type (WT) strain. After growth on cellulose for 3 days, the transcript levels of cellulase genes in the Δstk-12 mutant were 3.3-fold over WT, and clr-2 (encoding a transcriptional activator) was up-regulated in Δstk-12 while res-1 and rca-1 (encoding two cellulase repressors) were down-regulated. Consequently, total cellulase production in the Δstk-12 mutant was 7-fold higher than in the WT. These results strongly suggest that stk-12 deletion results in dysregulation of the cellulase expression machinery. Further analyses showed that STK-12 directly targets IGO-1 to regulate cellulase production. The TORC1 pathway promoted cellulase production, at least partly, by inhibiting STK-12 function, and STK-12 and CRE-1 functioned in parallel pathways to repress cellulase gene expression. Our results clarify how cellulase genes are repressed at the transcriptional level during cellulose induction, and highlight a new strategy to improve industrial fungal strains.
Collapse
Affiliation(s)
- Liangcai Lin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shanshan Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaolin Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - J. Philipp Benz
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz, Freising, Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr, Garching, Germany
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- * E-mail:
| |
Collapse
|
18
|
A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature 2019; 574:423-427. [PMID: 31597961 DOI: 10.1038/s41586-019-1637-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 09/04/2019] [Indexed: 11/09/2022]
Abstract
The blast fungus Magnaporthe oryzae gains entry to its host plant by means of a specialized pressure-generating infection cell called an appressorium, which physically ruptures the leaf cuticle1,2. Turgor is applied as an enormous invasive force by septin-mediated reorganization of the cytoskeleton and actin-dependent protrusion of a rigid penetration hypha3. However, the molecular mechanisms that regulate the generation of turgor pressure during appressorium-mediated infection of plants remain poorly understood. Here we show that a turgor-sensing histidine-aspartate kinase, Sln1, enables the appressorium to sense when a critical turgor threshold has been reached and thereby facilitates host penetration. We found that the Sln1 sensor localizes to the appressorium pore in a pressure-dependent manner, which is consistent with the predictions of a mathematical model for plant infection. A Δsln1 mutant generates excess intracellular appressorium turgor, produces hyper-melanized non-functional appressoria and does not organize the septins and polarity determinants that are required for leaf infection. Sln1 acts in parallel with the protein kinase C cell-integrity pathway as a regulator of cAMP-dependent signalling by protein kinase A. Pkc1 phosphorylates the NADPH oxidase regulator NoxR and, collectively, these signalling pathways modulate appressorium turgor and trigger the generation of invasive force to cause blast disease.
Collapse
|
19
|
Abstract
The blast disease, caused by the ascomycete Magnaporthe oryzae, poses a great threat to rice production worldwide. Increasing use of fungicides and/or blast-resistant varieties of rice (Oryza sativa) has proved to be ineffective in long-term control of blast disease under field conditions. To develop effective and durable resistance to blast, it is important to understand the cellular mechanisms underlying pathogenic development in M. oryzae. In this review, we summarize the latest research in phototropism, autophagy, nutrient and redox signaling, and intrinsic phytohormone mimics in M. oryzae for cellular and metabolic adaptation(s) during its interactions with the host plants.
Collapse
Affiliation(s)
- Yi Zhen Deng
- Integrative Microbiology Research Centre and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore 117604;
| |
Collapse
|
20
|
Jiang H, Chi Z, Liu GL, Hu Z, Zhao SZ, Chi ZM. Melanin biosynthesis in the desert-derived Aureobasidium melanogenum XJ5-1 is controlled mainly by the CWI signal pathway via a transcriptional activator Cmr1. Curr Genet 2019; 66:173-185. [DOI: 10.1007/s00294-019-01010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
|
21
|
Wang Y, Wu Q, Liu L, Li X, Lin A, Li C. MoMCP1, a Cytochrome P450 Gene, Is Required for Alleviating Manganese Toxin Revealed by Transcriptomics Analysis in Magnaporthe oryzae. Int J Mol Sci 2019; 20:ijms20071590. [PMID: 30934953 PMCID: PMC6480321 DOI: 10.3390/ijms20071590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022] Open
Abstract
Manganese, as an essential trace element, participates in many physiological reactions by regulating Mn associated enzymes. Magnaporthe oryzae is a serious pathogen and causes destructive losses for rice production. We identified a cytochrome P450 gene, MoMCP1, involving the alleviation of manganese toxin and pathogenicity. To identify the underlying mechanisms, transcriptomics were performed. The results indicated that many pathogenicity related genes were regulated, especially hydrophobin related genes in ∆Momcp1. Furthermore, the Mn2+ toxicity decreased the expressions of genes involved in the oxidative phosphorylation and energy production, and increased the reactive oxygen species (ROS) levels, which might impair the functions of mitochondrion and vacuole, compromising the pathogenicity and development in ∆Momcp1. Additionally, our results provided further information about Mn associated the gene network for Mn metabolism in cells.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Xiaoling Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650223, China.
| | - Aijia Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
22
|
Zheng J, Tang C, Deng C, Wang Y. Involvement of a Response Regulator VdSsk1 in Stress Response, Melanin Biosynthesis and Full Virulence in Verticillium dahliae. Front Microbiol 2019; 10:606. [PMID: 30967857 PMCID: PMC6439524 DOI: 10.3389/fmicb.2019.00606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/11/2019] [Indexed: 11/25/2022] Open
Abstract
Verticillium dahliae causes vascular wilt disease on over 200 plant species worldwide. This fungus forms melanized microsclerotia which help it to survive under adverse conditions and these structures are vital to the disease spread. Here, we identified and characterized a V. dahliae homolog to of the Saccharomyces cerevisiae Ssk1, a response regulator of the two-component system. Herein, we demonstrated that the VdSsk1 deletion strains were more sensitive to various stresses, including oxidative stress conferred by H2O2 and sodium nitroprusside dihydrate, while the mutants confered higher resistance to fungicides such as fludioxonil and iprodione. Furthermore, disruption of VdSsk1 resulted in significant downregulation of melanin biosynthesis-related genes but did not affect microsclerotial development. Phosphorylation of VdHog1 was not detected in the VdSsk1 deletion strains under the treatment of sorbitol, indicating that phosphorylation of VdHog1 is dependent on VdSsk1. Finally, we demonstrated that VdSsk1 is required for full virulence. Taken together, this study suggests that VdSsk1 modulates stress response, melanin biosynthesis and virulence of V. dahliae.
Collapse
Affiliation(s)
- Jiayue Zheng
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chenglin Deng
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Gandía M, Garrigues S, Hernanz-Koers M, Manzanares P, Marcos JF. Differential roles, crosstalk and response to the Antifungal Protein AfpB in the three Mitogen-Activated Protein Kinases (MAPK) pathways of the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 2019; 124:17-28. [DOI: 10.1016/j.fgb.2018.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
|
24
|
Liang Q, Li B, Wang J, Ren P, Yao L, Meng Y, Si E, Shang X, Wang H. PGPBS, a mitogen-activated protein kinase kinase, is required for vegetative differentiation, cell wall integrity, and pathogenicity of the barley leaf stripe fungus Pyrenophora graminea. Gene 2019; 696:95-104. [PMID: 30779945 DOI: 10.1016/j.gene.2019.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 01/23/2023]
Abstract
The high-osmolarity glycerol (HOG) signaling pathway regulates the adaptation of fungi to environmental stressors. The mitogen-activated protein kinase kinase (MAPKK) PBS2 of Saccharomyces cerevisiae serves as a scaffold protein in the HOG pathway. We characterized the pgpbs gene of Pyrenophora graminea, which encodes a MAPKK that is 56% orthologous to PBS2 of S. cerevisiae. A cloning technique based on homology was applied to amplify the pgpbs gene. Specific silent mutations then were generated in pgpbs. We evaluated the potential roles of PGPBS in the osmotic response, vegetative differentiation, cell wall integrity, drug resistance, and pathogenicity. Our findings indicated that the pgpbs coding region comprises 2075 base pairs and encodes a protein of 676 amino acids. Mutants deficient in pgpbs expression had significant reductions in vegetative growth and were sensitive to calcofluor white (CFW), an inhibitor of cell wall synthesis. Mutants also lost pathogenicity and were sensitive to an osmotic stress-inducing medium containing NaCl and sorbitol. Moreover, mutants had increased resistance to the dicarboximide fungicide iprodione and the triazole fungicide tebuconazole. These findings suggest that pgpbs is involved in the osmotic and ionic stress responses, vegetative differentiation, cell wall integrity, virulence, and tolerance to iprodione and tebuconazole. We expect that our findings will help elucidate the pathogenesis of barley leaf stripe and will inform strategies for breeding resistance to this disease.
Collapse
Affiliation(s)
- Qianqian Liang
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Engeering Laboratory of Application Mycology, Hexi University, Zhangye, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China; College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Junchen Wang
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Panrong Ren
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Lirong Yao
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Yaxiong Meng
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Erjing Si
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Xunwu Shang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China
| | - Huajun Wang
- College of Agronomy, Gansu Agriculture University, Lanzhou, China; Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
| |
Collapse
|
25
|
Motoyama T, Nogawa T, Hayashi T, Hirota H, Osada H. Induction of Nectriapyrone Biosynthesis in the Rice Blast Fungus Pyricularia oryzae
by Disturbance of the Two-Component Signal Transduction System. Chembiochem 2019; 20:693-700. [DOI: 10.1002/cbic.201800620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Hiroshi Hirota
- CSRS; RIKEN; 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Hiroyuki Osada
- CSRS; RIKEN; 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| |
Collapse
|
26
|
Cheng J, Yin Z, Zhang Z, Liang Y. Functional analysis of MoSnf7 in Magnaporthe oryzae. Fungal Genet Biol 2018; 121:29-45. [PMID: 30240788 DOI: 10.1016/j.fgb.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Snf7 is the core subunit protein of the yeast endosomal sorting complex required for transport (ESCRT) complex, which plays important roles in endocytosis and autophagy. In this study, we characterized MoSnf7 in Magnaporthe oryzae, a homolog of yeast Snf7, the core protein of ESCRT-III subcomplex. Like Snf7, MoSnf7 also localizes next to the vacuoles. Deletion of MoSNF7 resulted in significant decrease in vegetative growth and pathogenicity. Further analyses of ΔMosnf7 mutants showed that they were defective in endocytosis, sexual and asexual development, turgor pressure maintenance of appressorium at hyphal tips, and cell wall integrity. Additional assays for the localization and degradation of GFP-MoAtg8 in ΔMosnf7 mutants showed that they were defective in autophagy pathway. Based on the roles of yeast Snf7 in endocytosis and autophagy, we propose that the decreased vegetative growth and pathogenicity of ΔMosnf7 rice blast fungus M. oryzae, was partly due to the conservative roles of MoSnf7 in vesicle trafficking and autophagy pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yongheng Liang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
27
|
Zhou G, Ying SH, Hu Y, Fang X, Feng MG, Wang J. Roles of Three HSF Domain-Containing Proteins in Mediating Heat-Shock Protein Genes and Sustaining Asexual Cycle, Stress Tolerance, and Virulence in Beauveria bassiana. Front Microbiol 2018; 9:1677. [PMID: 30090094 PMCID: PMC6068467 DOI: 10.3389/fmicb.2018.01677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Heat-shock transcription factors (HSFs) with a HSF domain are regulators of fungal heat-shock protein (HSP) genes and many others vectoring heat-shock elements, to which the domain binds in response to heat shock and other stress cues. The fungal insect pathogen Beauveria bassiana harbors three HSF domain-containing orthologous to Hsf1, Sfl1, and Skn7 in many fungi. Here, we show that the three proteins are interrelated at transcription level, play overlapping or opposite roles in activating different families of 28 HSP genes and mediate differential expression of some genes required for asexual developmental and intracellular Na+ homeostasis. Expression levels of skn7 and sfl1 largely increased in Δhsf1, which is evidently lethal in some other fungi. Hsf1 was distinct from Sfl1 and Skn7 in activating most HSP genes under normal and heat-shocked conditions. Sfl1 and Skn7 played overlapping roles in activating more than half of the HSP genes under heat shock. Each protein also activated a few HSP genes not targeted by two others under certain conditions. Deletion of sfl1 resulted in most severe growth defects on rich medium and several minimal media at optimal 25°C while such growth defects were less severe in Δhsf1 and minor in Δskn7. Conidiation level was lowered by 76% in Δskn7, 62% in Δsfl1, and 39% in Δhsf1. These deletion mutants also showed differential changes in cell wall integrity, antioxidant activity, virulence and cellular tolerance to osmotic salt, heat shock, and UV-B irradiation. These results provide a global insight into vital roles of Hsf1, Sfl1, and Skn7 in B. bassiana adaptation to environment and host.
Collapse
Affiliation(s)
- Gang Zhou
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China.,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yue Hu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Li S, Musungu B, Lightfoot D, Ji P. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean. Front Genet 2018; 9:104. [PMID: 29666630 PMCID: PMC5891612 DOI: 10.3389/fgene.2018.00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein-protein interactions (PPI) and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI) database. Additionally, 149 plant cell wall degrading enzymes (PCWDE) were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom) generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.
Collapse
Affiliation(s)
- Shuxian Li
- Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Stoneville, MS, United States
| | - Bryan Musungu
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
| | - David Lightfoot
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, United States
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| |
Collapse
|
29
|
Wang Z, An N, Xu W, Zhang W, Meng X, Chen G, Liu W. Functional characterization of the upstream components of the Hog1-like kinase cascade in hyperosmotic and carbon sensing in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:97. [PMID: 29636818 PMCID: PMC5883349 DOI: 10.1186/s13068-018-1098-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Trichoderma reesei holds a high capacity for protein secretion and represents the most important cellulase producer in industry. However, the external signal sensing and intracellular signal transduction during cellulose induction remain unclear. As one of the most pervasive signal transduction pathways in all eukaryotic species, the mitogen-activated protein kinase (MAPK) pathway and its upstream sensing and signaling components are involved in various physiological processes including stress and nutrient sensing. Particularly, the Hog1-type MAPK Tmk3 has been reported to be involved in the cellulase production in T. reesei. RESULTS Here we established the physiological role of two upstream regulatory branches, the Sho1 branch and the Sln1 branch, of the Hog1-type Tmk3 pathway in T. reesei. Deletion of Trste20 of the Sho1 branch or repression of Trypd1 of the Sln1 branch reduced the resistance to high salt stress, whereas TrSho1 showed an opposing effect to that of TrSte20 and the identified TrSln1 seemed to be dispensable in the osmotic regulation. The Sho1 and Sln1 branches also participated in the cell wall integrity maintenance and other stress responses (i.e. oxidative and thermo stresses). Notably, TrSho1 and TrSte20 of the Sho1 branch and TrYpd1 of the Sln1 branch were shown to be differentially involved in the cellulase production of T. reesei. Repression of Trypd1 hardly affected cellulase induction, whereas overexpression of Trypd1 resulted in the reduced production of cellulases. Contrary to the case of Trypd1, repression of Trsho1 or deletion of Trste20 significantly reduced the transcription of cellulase genes. CONCLUSIONS TrSho1 and TrSte20 of the Sho1 branch and TrYpd1 of the Sln1 branch are all involved in general stress responses including hyperosmotic regulation and cell wall integrity maintenance. Moreover, our study revealed that the Sho1 and Sln1 osmosensing pathways are differentially involved in the regulation of cellulase production in T. reesei. The Sho1 branch positively regulated the production of cellulases and the transcription of cellulase genes while TrYpd1 of the Sln1 branch negatively controlled the cellulase production, supporting the crosstalks of osmosensing and nutrient sensing.
Collapse
Affiliation(s)
- Zhixing Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Ning An
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Wenqiang Xu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| |
Collapse
|
30
|
Tang C, Xiong D, Fang Y, Tian C, Wang Y. The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae. Fungal Genet Biol 2017; 108:26-35. [PMID: 28917999 DOI: 10.1016/j.fgb.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 11/16/2022]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on various plant species resulting in devastating yield losses worldwide. The capacity of V. dahliae to colonize in host plant xylem and disseminate by microsclerotia has led to studies to evaluate genes associated with pathogenesis and microsclerotia formation. Here, we identified and characterized a V. dahliae homolog to Skn7, a two-component stress response regulator of Saccharomyces cerevisiae. Results showed that melanized microsclerotia formation and conidiation were significantly inhibited in the VdSkn7 deletion mutants. VdSkn7-deficient mutants displayed severe growth defect under heat shock, cell wall perturbing agents and H2O2, and were significantly less virulent but were not sensitive to osmotic stresses compared to the wild-type strain. Finally, we demonstrated that VdSkn7 is required for the plant penetration. Taken together, our study thus provides new evidence on the functional conservation and divergence of Skn7 orthologs among fungal organisms and indicates that VdSkn7 contributes to microsclerotial development, virulence and stress response of V. dahliae.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
31
|
Yun CS, Motoyama T, Osada H. Regulatory Mechanism of Mycotoxin Tenuazonic Acid Production in Pyricularia oryzae. ACS Chem Biol 2017; 12:2270-2274. [PMID: 28820236 DOI: 10.1021/acschembio.7b00353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tenuazonic acid (TeA) is a mycotoxin produced by the rice blast fungus Pyricularia oryzae and some plant pathogenic fungi. We previously demonstrated that TeA is biosynthesized in P. oryzae by TeA synthetase 1 (TAS1) and that its production is induced by osmo-sensory MAPK-encoding gene (OSM1) deletion or the addition of 1% DMSO to cultures; however, the regulatory mechanisms of TeA production were unknown. Here, we identify a Zn(II)2-Cys6-type transcription factor in the upstream region of TAS1, which is encoded by TAS2 and regulates TeA production. We also find PoLAE1, which is a homologue of LaeA, a regulator of fungal secondary metabolism. Analysis of PoLAE1 deletion and overexpression strains indicate that PoLAE1 drives TeA production. We also demonstrate that two TeA-inducing signals, 1% DMSO addition and OSM1 deletion, were transmitted through PoLAE1. Our results indicate that TeA production is regulated by two specific regulators, TAS2 and PoLAE1, in P. oryzae.
Collapse
Affiliation(s)
- Choong-Soo Yun
- Chemical Biology Research
Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takayuki Motoyama
- Chemical Biology Research
Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research
Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
32
|
Wang RJ, Peng J, Li QX, Peng YL. Phosphorylation-mediated Regulatory Networks in Mycelia of Pyricularia oryzae Revealed by Phosphoproteomic Analyses. Mol Cell Proteomics 2017; 16:1669-1682. [PMID: 28706003 PMCID: PMC5587865 DOI: 10.1074/mcp.m116.066670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
Protein phosphorylation is known to regulate pathogenesis, mycelial growth, conidiation and stress response in Pyricularia oryzae However, phosphorylation mediated regulatory networks in the fungal pathogen remain largely to be uncovered. In this study, we identified 1621 phosphorylation sites of 799 proteins in mycelia of P. oryzae, including 899 new p-sites of 536 proteins and 47 new p-sites of 31 pathogenicity-related proteins. From the sequences flanking the phosphorylation sites, 19 conserved phosphorylation motifs were identified. Notably, phosphorylation was detected in 7 proteins that function upstream of Pmk1, but not in Pmk1 and its downstream Mst12 and Sfl1 that have been known to regulate appressorium formation and infection hyphal growth of P. oryzae Interestingly, phosphorylation was detected at the site Ser240 of Pmp1, which is a putative protein phosphatase highly conserved in filamentous fungi but not characterized. We thus generated Δpmp1 deletion mutants and dominant allele PMP1S240D mutants. Phenotyping analyses indicated that Pmp1 is required for virulence, conidiation and mycelial growth. Further, we observed that phosphorylation level of Pmk1 in mycelia was significantly increased in the Δpmp1 mutant, but decreased in the PMP1S240D mutant in comparison with the wild type, demonstrating that Pmp1 phosphorylated at Ser240 is important for regulating phosphorylation of Pmk1. To our surprise, phosphorylation of Mps1, another MAP kinase required for cell wall integrity and appressorium formation of P. oryzae, was also significantly enhanced in the Δpmp1 mutant, but decreased in the PMP1S240D mutant. In addition, we found that Pmp1 directly interacts with Mps1 and the region AA180-230 of Pmp1 is required for the interaction. In summary, this study sheds new lights on the protein phosphorylation mediated regulatory networks in P. oryzae.
Collapse
Affiliation(s)
- Rui-Jin Wang
- From the ‡State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing 100193, China.,§Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Junbo Peng
- From the ‡State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing 100193, China
| | - Qing X Li
- §Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822.
| | - You-Liang Peng
- From the ‡State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
33
|
Mohanan VC, Chandarana PM, Chattoo BB, Patkar RN, Manjrekar J. Fungal Histidine Phosphotransferase Plays a Crucial Role in Photomorphogenesis and Pathogenesis in Magnaporthe oryzae. Front Chem 2017; 5:31. [PMID: 28580356 PMCID: PMC5437211 DOI: 10.3389/fchem.2017.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation, and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well-studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.
Collapse
Affiliation(s)
- Varsha C Mohanan
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Pinal M Chandarana
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Bharat B Chattoo
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Rajesh N Patkar
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Johannes Manjrekar
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India.,Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| |
Collapse
|
34
|
StPBS2, a MAPK kinase gene, is involved in determining hyphal morphology, cell wall development, hypertonic stress reaction as well as the production of secondary metabolites in Northern Corn Leaf Blight pathogen Setosphaeria turcica. Microbiol Res 2017; 201:30-38. [PMID: 28602399 DOI: 10.1016/j.micres.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 12/29/2022]
Abstract
Mitogen activated protein kinase kinase (MAPKK) is a crucial component in the MAPK signaling pathway. However, the functions of MAPKKs in foliar pathogens remain poorly understood. In the current study, a MAPKK gene designated as StPBS2 was cloned from Setosphaeria turcica and the functions of this gene were investigated by RNAi technology. Four independent StPBS2 gene silence transformants with different efficiencies were confirmed by real time PCR. Compared to the wild type strain (WT), these transformants showed decreased colony growth, shortened hyphae cell length, broadened cell width and an obvious reduction in conidium yield. Moreover, the cell wall of the transformants was thicker and they were also more sensitive to substances that interfere with cell wall biosynthesis than WT. Additionally, the transformants displayed higher sensitivity to hypertonic stress than WT and the sensitivity was associated with the level of silencing of StPBS2. They were also resistant to the fungicides iprodione, procymidone and fludioxonil, to which WT almost completely sensitive. The transformants produced more red secondary metabolites than WT and the production was enhanced with increasing silencing level and increased glucose content in PDA medium. Our results suggest that StPBS2 is involved in morphogenesis, condiogenesis, cell wall development, hypertonic stress reaction and resistance to fungicides, as well as in the biosynthesis of secondary metabolites in S. turcica.
Collapse
|
35
|
Li G, Zhang X, Tian H, Choi YE, Tao WA, Xu JR. MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ Microbiol 2017; 19:1959-1974. [PMID: 28244240 DOI: 10.1111/1462-2920.13710] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 12/31/2022]
Abstract
Appressorium formation plays a critical role in Magnaporthe oryzae. Mst50 is an adapter protein of the Mst11-Mst7-Pmk1 cascade that is essential for appressorium formation. To further characterize its functions, affinity purification was used to identify Mst50-interacting proteins (MIPs) in this study. Two of the MIPs are Mst11 and Mst7 that are known to interact with Mst50 for Pmk1 activation. Surprisingly, two other MIPs are Mck1 and Mkk2 that are the upstream kinases of the Mps1 pathway. Domain deletion analysis showed that the sterile alpha-motif of Mst50 but not the Ras-association domain was important for its interaction with Mck1 and responses to cell wall and oxidative stresses. The mst50 mutant was reduced in Mps1 activation under stress conditions. MIP11 encodes a RACK1 protein that also interacted with Mck1. Deletion of MIP11 resulted in defects in cell wall integrity, Mps1 phosphorylation and plant infection. Furthermore, Mst50 interacted with histidine kinase Hik1, and the mst50 mutant was reduced in Osm1 phosphorylation. These results indicated that Mst50 is involved in all three MAPK pathways in M. oryzae although its functions differ in each pathway. Several MIPs are conserved hypothetical proteins and may be involved in responses to various signals and crosstalk among signaling pathways.
Collapse
Affiliation(s)
- Guotian Li
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huan Tian
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
36
|
Fan G, Zhang K, Huang H, Zhang H, Zhao A, Chen L, Chen R, Li G, Wang Z, Lu GD. Multiprotein-bridging factor 1 regulates vegetative growth, osmotic stress, and virulence in Magnaporthe oryzae. Curr Genet 2016; 63:293-309. [DOI: 10.1007/s00294-016-0636-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
|
37
|
Zhang F, Xu G, Geng L, Lu X, Yang K, Yuan J, Nie X, Zhuang Z, Wang S. The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus. Toxins (Basel) 2016; 8:toxins8070202. [PMID: 27399770 PMCID: PMC4963835 DOI: 10.3390/toxins8070202] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022] Open
Abstract
This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall stress. Additionally, the ΔAflSkn7 mutants were especially sensitive to oxidative stress. These observations confirmed that AflSkn7 influences oxidative stress responses rather than osmotic stress responses. Additionally, AflSkn7 was observed to increase aflatoxin biosynthesis and seed infection rates. These results indicate AflSkn7 affects A. flavus morphological development, stress response, aflatoxin production, and pathogenicity. The results of this study may facilitate the development of new methods to manage A. flavus infections.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Gaopo Xu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Longpo Geng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoyan Lu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kunlong Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
38
|
Shao Y, Yang S, Zhang Z, Zhou Y, Chen F. mrskn7, a putative response regulator gene of Monascus ruber M7, is involved in oxidative stress response, development, and mycotoxin production. Mycologia 2016; 108:851-859. [PMID: 27302050 DOI: 10.3852/15-200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/28/2015] [Indexed: 11/10/2022]
Abstract
Skn7, a response regulator (RR), is associated with oxidative stress adaptation, hypo-osmotic stress response, fungicide sensitivity, cell wall biosynthesis, cell cycle regulation, sexual mating, and sporulation in many filamentous fungi and yeasts. In this study a Skn7-like protein gene mrskn7 (Monascus ruber skn7) was isolated, sequenced, and disrupted to investigate its function in M. ruber Bioinformatics predicted that the deduced protein encoded by mrskn7 contained the conserved DNA-binding and signal-receiver domains similar to the Skn7-like protein structure in other filamentous fungi. The Δmrskn7 strain produced fewer conidia and less mycotoxin, demonstrated increased sensitivity to peroxide but the same level of osmotic resistance to NaCl and glycerol with the wild-type. Additionally, cleistothecia observed at different time point showed a different morphology between the wild-type and the Δmrskn7 strain, suggesting the involvement of mrskn7 in sexual development of M. ruber These results indicated that mrskn7 plays important roles in asexual and sexual development, the production of mycotoxin as well as regulation of oxidative stress signal in M. ruber.
Collapse
Affiliation(s)
- Yanchun Shao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; College of Food Science and Technology, State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, P.R. China
| | - Sha Yang
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, P.R. China
| | - Zhouwei Zhang
- Institute of Processing of Agricultural Product and Nuclear Agricultural Research, Hubei Academy of Agricultural Sciences, No. 1 Yaoyuan Street, Hongshan District, Wuhan, 430064 Hubei Province, P.R. China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, No. 1 Yaoyuan Street, Hongshan District, Wuhany, 430064 Hubei Province, P.R. China
| | - Fusheng Chen
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; College of Food Science and Technology, State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, P.R. China
| |
Collapse
|
39
|
Jacob S, Schüffler A, Thines E. Hog1p activation by marasmic acid through inhibition of the histidine kinase Sln1p. PEST MANAGEMENT SCIENCE 2016; 72:1268-1274. [PMID: 26888741 PMCID: PMC5071701 DOI: 10.1002/ps.4257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The histidine kinase (HK) MoHik1p within the high-osmolarity glycerol (HOG) pathway is known to be the target of the fungicide fludioxonil. Treatment of the fungus with fludioxonil causes an uncontrolled hyperactivation of the pathway and cell death. In this study, we used a target-based in vivo test system with mutant strains of the rice blast fungus Magnaporthe oryzae to search for new fungicidal compounds having various target locations within the HOG pathway. Mutants with inactivated HOG signalling are resistant to fungicides having the target located in the HOG pathway. RESULTS The HK MoSln1p was identified as being involved in the new antifungal mode of action of marasmic acid, as single inactivation of the genes MoSLN1, MoSSK1, MoSSK2, MoPBS2 and MoHOG1 resulted in mutant strains resistant against the sesquiterpenoid, whereas the wild-type strain and the ΔMohik1 mutant were susceptible. Western blot analysis of phosphorylated MoHog1p confirmed the hypothesis that marasmic acid interferes with the HOG pathway, as a strong phosphorylation of MoHog1p was detectable after sesquiterpenoid treatment in the wild-type strain but not in the ΔMosln1 mutant. CONCLUSION This study provides evidence for marasmic acid activating the HOG pathway via the HK MoSln1p, and we propose that the sesquiterpenoid has a new mode of action in M. oryzae that differs from that of known HOG inhibitors, e.g. fludioxonil. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Stefan Jacob
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Kaiserslautern, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Kaiserslautern, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Kaiserslautern, Germany
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
40
|
John E, Lopez-Ruiz F, Rybak K, Mousley CJ, Oliver RP, Tan KC. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat. MICROBIOLOGY-SGM 2016; 162:1023-1036. [PMID: 26978567 PMCID: PMC5042077 DOI: 10.1099/mic.0.000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The HOG1 mitogen-activated protein kinase (MAPK) pathway is activated through two-component histidine kinase (HK) signalling. This pathway was first characterized in the budding yeast Saccharomyces cerevisiae as a regulator of osmotolerance. The fungus Parastagonospora nodorum is the causal agent of septoria nodorum blotch of wheat. This pathogen uses host-specific effectors in tandem with general pathogenicity mechanisms to carry out its infection process. Genes showing strong sequence homology to S. cerevisiae HOG1 signalling pathway genes have been identified in the genome of P. nodorum. In this study, we examined the role of the pathway in the virulence of P. nodorum on wheat by disrupting putative pathway component genes: HOG1 (SNOG_13296) MAPK and NIK1 (SNOG_11631) hybrid HK. Mutants deleted in NIK1 and HOG1 were insensitive to dicarboximide and phenylpyrrole fungicides, but not a fungicide that targets ergosterol biosynthesis. Furthermore, both Δnik1 and Δhog1 mutants showed increased sensitivity to hyperosmotic stress. However, HOG1, but not NIK1, is required for tolerance to elevated temperatures. HOG1 deletion conferred increased tolerance to 6-methoxy-2-benzoxazolinone, a cereal phytoalexin. This suggests that the HOG1 signalling pathway is not exclusively associated with NIK1. Both Δnik1 and Δhog1 mutants retained the ability to infect and cause necrotic lesions on wheat. However, we observed that the Δhog1 mutation resulted in reduced production of pycnidia, asexual fruiting bodies that facilitate spore dispersal during late infection. Our study demonstrated the overlapping and distinct roles of a HOG1 MAPK and two-component HK signalling in P. nodorum growth and pathogenicity.
Collapse
Affiliation(s)
- Evan John
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Francisco Lopez-Ruiz
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Kasia Rybak
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Carl J Mousley
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct and Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Richard P Oliver
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Kar-Chun Tan
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
41
|
Yu PL, Chen LH, Chung KR. How the Pathogenic Fungus Alternaria alternata Copes with Stress via the Response Regulators SSK1 and SHO1. PLoS One 2016; 11:e0149153. [PMID: 26863027 PMCID: PMC4749125 DOI: 10.1371/journal.pone.0149153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/27/2016] [Indexed: 01/06/2023] Open
Abstract
The tangerine pathotype of Alternaria alternata is a necrotrophic fungal pathogen causing brown spot disease on a number of citrus cultivars. To better understand the dynamics of signal regulation leading to oxidative and osmotic stress response and fungal infection on citrus, phenotypic characterization of the yeast SSK1 response regulator homolog was performed. It was determined that SSK1 responds to diverse environmental stimuli and plays a critical role in fungal pathogenesis. Experiments to determine the phenotypes resulting from the loss of SSK1 reveal that the SSK1 gene product may be fulfilling similar regulatory roles in signaling pathways involving a HOG1 MAP kinase during ROS resistance, osmotic resistance, fungicide sensitivity and fungal virulence. The SSK1 mutants display elevated sensitivity to oxidants, fail to detoxify H2O2 effectively, induce minor necrosis on susceptible citrus leaves, and displays resistance to dicarboximide and phenylpyrrole fungicides. Unlike the SKN7 response regulator, SSK1 and HOG1 confer resistance to salt-induced osmotic stress via an unknown kinase sensor rather than the “two component” histidine kinase HSK1. SSK1 and HOG1 play a moderate role in sugar-induced osmotic stress. We also show that SSK1 mutants are impaired in their ability to produce germ tubes from conidia, indicating a role for the gene product in cell differentiation. SSK1 also is involved in multi-drug resistance. However, deletion of the yeast SHO1 (synthetic high osmolarity) homolog resulted in no noticeable phenotypes. Nonetheless, our results show that A. alternata can sense and react to different types of stress via SSK1, HOG1 and SKN7 in a cooperative manner leading to proper physiological and pathological functions.
Collapse
Affiliation(s)
- Pei-Ling Yu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Chanclud E, Kisiala A, Emery NRJ, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB. Cytokinin Production by the Rice Blast Fungus Is a Pivotal Requirement for Full Virulence. PLoS Pathog 2016; 12:e1005457. [PMID: 26900703 PMCID: PMC4765853 DOI: 10.1371/journal.ppat.1005457] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
Plants produce cytokinin (CK) hormones for controlling key developmental processes like source/sink distribution, cell division or programmed cell-death. Some plant pathogens have been shown to produce CKs but the function of this mimicry production by non-tumor inducing pathogens, has yet to be established. Here we identify a gene required for CK biosynthesis, CKS1, in the rice blast fungus Magnaporthe oryzae. The fungal-secreted CKs are likely perceived by the plant during infection since the transcriptional regulation of rice CK-responsive genes is altered in plants infected by the mutants in which CKS1 gene was deleted. Although cks1 mutants showed normal in vitro growth and development, they were severely affected for in planta growth and virulence. Moreover, we showed that the cks1 mutant triggered enhanced induction of plant defenses as manifested by an elevated oxidative burst and expression of defense-related markers. In addition, the contents of sugars and key amino acids for fungal growth were altered in and around the infection site by the cks1 mutant in a different manner than by the control strain. These results suggest that fungal-derived CKs are key effectors required for dampening host defenses and affecting sugar and amino acid distribution in and around the infection site.
Collapse
Affiliation(s)
- Emilie Chanclud
- Université Montpellier, UMR BGPI INRA/CIRAD/SupAgro, Montpellier, France
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, Ontario, Canada
- Department of Plant Genetics, Physiology and Biotechnology, University of Technology and Life Sciences, Bydgoszcz, Poland
| | - Neil R. J Emery
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | | | | | | | | | - Thomas Kroj
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Montpellier, France
| | | |
Collapse
|
43
|
Nakamura H, Kikuma T, Jin FJ, Maruyama JI, Kitamoto K. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae. J Biosci Bioeng 2015; 121:365-71. [PMID: 26467693 DOI: 10.1016/j.jbiosc.2015.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
Abstract
The serine-threonine kinase Rim15p is a master regulator of stress signaling and is required for stress tolerance and sexual sporulation in the yeast Saccharomyces cerevisiae. However, in filamentous fungi that reproduce asexually via conidiation, the physiological function of Rim15p homologs has not been extensively analyzed. Here, we functionally characterized the protein homolog of Rim15p in the filamentous fungus Aspergillus oryzae, by deleting and overexpressing the corresponding Aorim15 gene and examining the role of this protein in stress tolerance and development. Deletion of Aorim15 resulted in an increase in the sensitivity of conidia to oxidative and heat stresses, whereas conidia of the Aorim15 overexpressing strain were more resistant to these stresses. These results indicated that AoRim15 functions in stress tolerance, similar to S. cerevisiae Rim15p. Phenotypic analysis revealed that conidiation was markedly reduced by overexpression of Aorim15 in A. oryzae, and was completely abolished in the deletion strain. In addition, the formation of sclerotia, which is another type of developmental structure in filamentous fungi, was decreased by the deletion of Aorim15, whereas Aorim15 overexpression increased the number of sclerotia. These results indicated that AoRim15 is a positive regulator of sclerotia formation and that overexpression of AoRim15 shifts the developmental balance from conidiation towards sclerotia formation. Collectively, we demonstrated that AoRim15 is involved in the stress tolerance of conidia and differentially regulates between the two developmental fates of conidiation and sclerotia formation.
Collapse
Affiliation(s)
- Hidetoshi Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kikuma
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Feng Jie Jin
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
44
|
Jacob S, Foster AJ, Yemelin A, Thines E. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: Identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity. Fungal Biol 2015; 119:580-94. [DOI: 10.1016/j.funbio.2015.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
|
45
|
Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. EUKARYOTIC CELL 2015; 14:636-51. [PMID: 25934690 DOI: 10.1128/ec.00043-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
Important for the lifestyle and survival of every organism is the ability to respond to changing environmental conditions. The necrotrophic plant pathogen Botrytis cinerea triggers an oxidative burst in the course of plant infection and therefore needs efficient signal transduction to cope with this stress. The factors involved in this process and their precise roles are still not well known. Here, we show that the transcription factor Bap1 and the response regulator (RR) B. cinerea Skn7 (BcSkn7) are two key players in the oxidative stress response (OSR) of B. cinerea; both have a major influence on the regulation of classical OSR genes. A yeast-one-hybrid (Y1H) approach proved direct binding to the promoters of gsh1 and grx1 by Bap1 and of glr1 by BcSkn7. While the function of Bap1 is restricted to the regulation of oxidative stress, analyses of Δbcskn7 mutants revealed functions beyond the OSR. Involvement of BcSkn7 in development and virulence could be demonstrated, indicated by reduced vegetative growth, impaired formation of reproductive structures, and reduced infection cushion-mediated penetration of the host by the mutants. Furthermore, Δbcskn7 mutants were highly sensitive to oxidative, osmotic, and cell wall stress. Analyses of Δbap1 bcskn7 double mutants indicated that loss of BcSkn7 uncovers an underlying phenotype of Bap1. In contrast to Saccharomyces cerevisiae, the ortholog of the glutathione peroxidase Gpx3p is not required for nuclear translocation of Bap1. The presented results contribute to the understanding of the OSR in B. cinerea and prove that it differs substantially from that of yeast, demonstrating the complexity and versatility of components involved in signaling pathways.
Collapse
|
46
|
Yang Q, Yin D, Yin Y, Cao Y, Ma Z. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2015; 16:276-287. [PMID: 25130972 PMCID: PMC6638353 DOI: 10.1111/mpp.12181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The high-osmolarity glycerol pathway plays an important role in the responses of fungi to various environmental stresses. Saccharomyces cerevisiae Skn7 is a response regulator in the high-osmolarity glycerol pathway, which regulates the oxidative stress response, cell cycle and cell wall biosynthesis. In this study, we characterized an Skn7 orthologue BcSkn7 in Botrytis cinerea. BcSKN7 can partly restore the growth defects of S. cerevisiae SKN7 mutant and vice versa. The BcSKN7 mutant (ΔBcSkn7-1) revealed increased sensitivity to ionic osmotic and oxidative stresses and to ergosterol biosynthesis inhibitors. In addition, ΔBcSkn7-1 was also impaired dramatically in conidiation and sclerotial formation. Western blot analysis showed that BcSkn7 positively regulated the phosphorylation of BcSak1 (the orthologue of S. cerevisiae Hog1) under osmotic stress, indicating that BcSkn7 is associated with the high-osmolarity glycerol pathway in B. cinerea. In contrast with BcSak1, BcSkn7 is not involved in the regulation of B. cinerea virulence. All of the phenotypic defects of ΔBcSkn7-1 are restored by genetic complementation of the mutant with the wild-type BcSKN7. The results of this study indicate that BcSkn7 plays an important role in the regulation of vegetative differentiation and in the response to various stresses in B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | | | | | | | | |
Collapse
|
47
|
MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii. EUKARYOTIC CELL 2015; 14:396-405. [PMID: 25710964 DOI: 10.1128/ec.00266-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/16/2015] [Indexed: 01/06/2023]
Abstract
Two-component signaling pathways generally include sensor histidine kinases and response regulators. We identified an ortholog of the response regulator protein Skn7 in the insect-pathogenic fungus Metarhizium robertsii, which we named MrSkn7. Gene deletion assays and functional characterizations indicated that MrSkn7 functions as a transcription factor. The MrSkn7 null mutant of M. robertsii lost the ability to sporulate and had defects in cell wall biosynthesis but was not sensitive to oxidative and osmotic stresses compared to the wild type. However, the mutant was able to produce spores under salt stress. Insect bioassays using these spores showed that the virulence of the mutant was significantly impaired compared to that of the wild type due to the failures to form the infection structure appressorium and evade host immunity. In particular, deletion of MrSkn7 triggered cell autolysis with typical features such as cell vacuolization, downregulation of repressor genes, and upregulation of autolysis-related genes such as extracellular chitinases and proteases. Promoter binding assays confirmed that MrSkn7 could directly or indirectly control different putative target genes. Taken together, the results of this study help us understand the functional divergence of Skn7 orthologs as well as the mechanisms underlying the development and control of virulence in insect-pathogenic fungi.
Collapse
|
48
|
Lu J, Cao H, Zhang L, Huang P, Lin F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog 2014; 10:e1004432. [PMID: 25299517 PMCID: PMC4192604 DOI: 10.1371/journal.ppat.1004432] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn(2)Cys(6) transcription factor (TF) genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn(2)Cys(6)TF genes. A large variation in biological functions of Zn(2)Cys(6)TF genes was observed under the conditions tested. Sixty-one of 104 Zn(2)Cys(6) TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Jianping Lu
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| | - Huijuan Cao
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lilin Zhang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Pengyun Huang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fucheng Lin
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, China
| |
Collapse
|
49
|
Jacob S, Foster AJ, Yemelin A, Thines E. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae. Microbiologyopen 2014; 3:668-87. [PMID: 25103193 PMCID: PMC4234259 DOI: 10.1002/mbo3.197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 01/11/2023] Open
Abstract
The aim of this study is a functional characterization of 10 putative histidine kinases (HIKs)-encoding genes in the phytopathogenic fungus Magnaporthe oryzae. Two HIKs were found to be required for pathogenicity in the fungus. It was found that the mutant strains ΔMohik5 and ΔMohik8 show abnormal conidial morphology and furthermore ΔMohik5 is unable to form appressoria. Both HIKs MoHik5p and MoHik8p appear to be essential for pathogenicity since the mutants fail to infect rice plants. MoSln1p and MoHik1p were previously reported to be components of the HOG pathway in M. oryzae. The ΔMosln1 mutant is more susceptible to salt stress compared to ΔMohik1, whereas ΔMohik1 appears to be stronger affected by osmotic or sugar stress. In contrast to yeast, the HOG signaling cascade in phytopathogenic fungi apparently comprises more elements. Furthermore, vegetative growth of the mutants ΔMohik5 and ΔMohik9 was found to be sensitive to hypoxia-inducing NaNO2 -treatment. Additionally, it was monitored that NaNO2 -treatment resulted in MoHog1p phosphorylation. As a consequence we assume a first simplified model for hypoxia signaling in M. oryzae including the HOG pathway and the HIKs MoHik5p and MoHik9p.
Collapse
Affiliation(s)
- Stefan Jacob
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Andrew J Foster
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Alexander Yemelin
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
- Johannes Gutenberg-University Mainz, Institute of Biotechnology and Drug ResearchDuesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
50
|
Chen D, Wang Y, Zhou X, Wang Y, Xu JR. The Sch9 kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum. PLoS One 2014; 9:e105811. [PMID: 25144230 PMCID: PMC4140829 DOI: 10.1371/journal.pone.0105811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/24/2014] [Indexed: 11/20/2022] Open
Abstract
Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley worldwide. In a previous study on functional characterization of the F. graminearum kinome, one protein kinase gene important for virulence is orthologous to SCH9 that is functionally related to the cAMP-PKA and TOR pathways in the budding yeast. In this study, we further characterized the functions of FgSCH9 in F. graminearum and its ortholog in Magnaporthe oryzae. The ΔFgsch9 mutant was slightly reduced in growth rate but significantly reduced in conidiation, DON production, and virulence on wheat heads and corn silks. It had increased tolerance to elevated temperatures but became hypersensitive to oxidative, hyperosmotic, cell wall, and membrane stresses. The ΔFgsch9 deletion also had conidium morphology defects and produced smaller conidia. These results suggest that FgSCH9 is important for stress responses, DON production, conidiogenesis, and pathogenesis in F. graminearum. In the rice blast fungus Magnaporthe oryzae, the ΔMosch9 mutant also was defective in conidiogenesis and pathogenesis. Interestingly, it also produced smaller conidia and appressoria. Taken together, our data indicate that the SCH9 kinase gene may have a conserved role in regulating conidium size and plant infection in phytopathogenic ascomycetes.
Collapse
Affiliation(s)
- Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|