1
|
Le Naour‐‐Vernet M, Lahfa M, Maidment JHR, Padilla A, Roumestand C, de Guillen K, Kroj T, Césari S. Structure-guided insights into the biology of fungal effectors. THE NEW PHYTOLOGIST 2025; 246:1460-1477. [PMID: 40130672 PMCID: PMC12018790 DOI: 10.1111/nph.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025]
Abstract
Phytopathogenic fungi cause enormous yield losses in many crops, threatening both agricultural production and global food security. To infect plants, they secrete effectors targeting various cellular processes in the host. Putative effector genes are numerous in fungal genomes, and they generally encode proteins with no sequence homology to each other or to other known proteins or domains. Recent studies have elucidated and predicted three-dimensional structures of effectors from a wide diversity of plant pathogenic fungi, revealing a limited number of conserved folds. Effectors with very diverse amino acid sequences can thereby be grouped into families based on structural homology. Some structural families are conserved in many different fungi, and some are expanded in specific fungal taxa. Here, we describe the features of these structural families and discuss recent advances in predicting new structural families. We highlight the contribution of structural analyses to deepen our understanding of the function and evolution of fungal effectors. We also discuss prospects offered by advances in structural modeling for predicting and studying the virulence targets of fungal effectors in plants.
Collapse
Affiliation(s)
- Marie Le Naour‐‐Vernet
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Mounia Lahfa
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Josephine H. R. Maidment
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - André Padilla
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Christian Roumestand
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Karine de Guillen
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de Montpellier29 rue de Navacelles34090MontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
2
|
Bizarria R, Creagh JW, Badigian TJ, Corrêa Dos Santos RA, Coss SA, Tekle RT, Fredstrom N, Ytreberg FM, Dunham MJ, Rodrigues A, Rowley PA. The Prevalence of Killer Yeasts in the Gardens of Fungus-Growing Ants and the Discovery of Novel Killer Toxin named Ksino. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618321. [PMID: 39463942 PMCID: PMC11507743 DOI: 10.1101/2024.10.14.618321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Killer toxins are proteinaceous antifungal molecules produced by yeasts, with activity against a wide range of human and plant pathogenic fungi. Fungus gardens of attine ants in Brazil were surveyed to determine the presence of killer toxin-producing yeasts and to define their antifungal activities and ecological importance. Our results indicate that up to 46% of yeasts isolated from specific fungal gardens can be killer yeasts, with an overall prevalence of 17% across all strains tested. Killer yeasts were less likely to inhibit the growth of yeasts isolated from the same environment but more effective at inhibiting yeast isolated from other environments, supporting a role for killer yeasts in shaping community composition. All killer yeasts harbored genome-encoded killer toxins due to the lack of cytoplasmic toxin-encoding elements (i.e., double-stranded RNA satellites and linear double-stranded DNAs). Of all the killer yeasts identified, an isolate of Candida sinolaborantium showed a broad spectrum of antifungal activities against 57% of yeast strains tested for toxin susceptibility. The complete genome sequence of C. sinolaborantium identified a new killer toxin, Ksino, with primary and tertiary structure homology to the Saccharomyces cerevisiae killer toxin named Klus. Genome-encoded homologs of Ksino were found in yeast strains of Saccharomycetes and Pichiomycetes, as well as other species of Ascomycota and Basidiomycota filamentous fungi. This demonstrates that killer yeasts can be widespread in attine ant fungus gardens, possibly influencing fungal community composition and the importance of these complex microbial communities for discovering novel antifungal molecules.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Jack W Creagh
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Tanner J Badigian
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Renato A Corrêa Dos Santos
- Laboratory of Computational, Evolutionary, and Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Sarah A Coss
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Rim T Tekle
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Noah Fredstrom
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - F Marty Ytreberg
- Department of Physics, University of Idaho, Moscow, ID, 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
3
|
Lan Y, Cong Q, Yu Q, Liu L, Cui X, Li X, Wang Q, Yang S, Yu H, Kong Y. Genome Sequencing of Three Pathogenic Fungi Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease on Cultivated Mushrooms. Foods 2024; 13:2779. [PMID: 39272544 PMCID: PMC11394773 DOI: 10.3390/foods13172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Fungal diseases not only reduce the yield of edible mushrooms but also pose potential threats to the preservation and quality of harvested mushrooms. Cobweb disease, caused primarily by fungal pathogens from the Hypocreaceae family, is one of the most significant diseases affecting edible mushrooms. Deciphering the genomes of these pathogens will help unravel the molecular basis of their evolution and identify genes responsible for pathogenicity. Here, we present high-quality genome sequences of three cobweb disease fungi: Hypomyces aurantius Cb-Fv, Cladobotryum mycophilum CB-Ab, and Cladobotryum protrusum CB-Mi, isolated from Flammulina velutipes, Agaricus bisporus, and Morchella importuna, respectively. The assembled genomes of H. aurantius, C. mycophilum, and C. protrusum are 33.19 Mb, 39.83 Mb, and 38.10 Mb, respectively. This is the first report of the genome of H. aurantius. Phylogenetic analysis revealed that cobweb disease pathogens are closely related and diverged approximately 17.51 million years ago. CAZymes (mainly chitinases, glucan endo-1,3-beta-glucosidases, and secondary metabolite synthases), proteases, KP3 killer proteins, lipases, and hydrophobins were found to be conserved and strongly associated with pathogenicity, virulence, and adaptation in the three cobweb pathogens. This study provides insights into the genome structure, genome organization, and pathogenicity of these three cobweb disease fungi, which will be a valuable resource for comparative genomics studies of cobweb pathogens and will help control this disease, thereby enhancing mushroom quality.
Collapse
Affiliation(s)
- Yufei Lan
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qianqian Cong
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qingwei Yu
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Lin Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao Cui
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Xiumei Li
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qiao Wang
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Shuting Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yi Kong
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| |
Collapse
|
4
|
Guan Y, Ma L, Wang Q, Zhao J, Wang S, Wu J, Liu Y, Sun H, Huang J. Horizontally acquired fungal killer protein genes affect cell development in mosses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:665-676. [PMID: 36507655 DOI: 10.1111/tpj.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The moss Physcomitrium patens is crucial for studying plant development and evolution. Although the P. patens genome includes genes acquired from bacteria, fungi and viruses, the functions and evolutionary significance of these acquired genes remain largely unclear. Killer protein 4 (KP4) is a toxin secreted by the phytopathogenic fungus Ustilago maydis that inhibits the growth of sensitive target strains by blocking their calcium uptake. Here, we show that KP4 genes in mosses were acquired from fungi through at least three independent events of horizontal gene transfer. Two paralogous copies of KP4 (PpKP4-1 and PpKP4-2) exist in P. patens. Knockout mutants ppkp4-1 and ppkp4-2 showed cell death at the protonemal stage, and ppkp4-2 also exhibited defects in tip growth. We provide experimental evidence indicating that PpKP4-1/2 affects P. patens protonemal cell development by mediating cytoplasmic calcium and that KP4 genes are functionally conserved between P. patens and fungi. The present study provides additional insights into the role of horizontal gene transfer in land plant development and evolution.
Collapse
Affiliation(s)
- Yanlong Guan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinjie Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, 518004, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| |
Collapse
|
5
|
Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions. J Fungi (Basel) 2022; 8:jof8090968. [PMID: 36135693 PMCID: PMC9506348 DOI: 10.3390/jof8090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium.
Collapse
|
6
|
Snelders NC, Rovenich H, Thomma BPHJ. Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiol Rev 2022; 46:fuac022. [PMID: 35604874 PMCID: PMC9438471 DOI: 10.1093/femsre/fuac022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Fungi are well-known decomposers of organic matter that thrive in virtually any environment on Earth where they encounter wealths of other microbes. Some fungi evolved symbiotic lifestyles, including pathogens and mutualists, that have mostly been studied in binary interactions with their hosts. However, we now appreciate that such interactions are greatly influenced by the ecological context in which they take place. While establishing their symbioses, fungi not only interact with their hosts but also with the host-associated microbiota. Thus, they target the host and its associated microbiota as a single holobiont. Recent studies have shown that fungal pathogens manipulate the host microbiota by means of secreted effector proteins with selective antimicrobial activity to stimulate disease development. In this review, we discuss the ecological contexts in which such effector-mediated microbiota manipulation is relevant for the fungal lifestyle and argue that this is not only relevant for pathogens of plants and animals but also beneficial in virtually any niche where fungi occur. Moreover, we reason that effector-mediated microbiota manipulation likely evolved already in fungal ancestors that encountered microbial competition long before symbiosis with land plants and mammalian animals evolved. Thus, we claim that effector-mediated microbiota manipulation is fundamental to fungal biology.
Collapse
Affiliation(s)
- Nick C Snelders
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hanna Rovenich
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
7
|
Rouina H, Tseng YH, Nataraja KN, Uma Shaanker R, Krüger T, Kniemeyer O, Brakhage A, Oelmüller R. Comparative Secretome Analyses of Trichoderma/Arabidopsis Co-cultures Identify Proteins for Salt Stress, Plant Growth Promotion, and Root Colonization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.808430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous Trichoderma strains are beneficial for plants, promote their growth, and confer stress tolerance. A recently described novel Trichoderma strain strongly promotes the growth of Arabidopsis thaliana seedlings on media with 50 mM NaCl, while 150 mM NaCl strongly stimulated root colonization and induced salt-stress tolerance in the host without growth promotion. To understand the dynamics of plant-fungus interaction, we examined the secretome from both sides and revealed a substantial change under different salt regimes, and during co-cultivation. Stress-related proteins, such as a fungal cysteine-rich Kp4 domain-containing protein which inhibits plant cell growth, fungal WSC- and CFEM-domain-containing proteins, the plant calreticulin, and cell-wall modifying enzymes, disappear when the two symbionts are co-cultured under high salt concentrations. In contrast, the number of lytic polysaccharide monooxygenases increases, which indicates that the fungus degrades more plant lignocellulose under salt stress and its lifestyle becomes more saprophytic. Several plant proteins involved in plant and fungal cell wall modifications and root colonization are only found in the co-cultures under salt stress, while the number of plant antioxidant proteins decreased. We identified symbiosis- and salt concentration-specific proteins for both partners. The Arabidopsis PYK10 and a fungal prenylcysteine lyase are only found in the co-culture which promoted plant growth. The comparative analysis of the secretomes supports antioxidant enzyme assays and suggests that both partners profit from the interaction under salt stress but have to invest more in balancing the symbiosis. We discuss the role of the identified stage- and symbiosis-specific fungal and plant proteins for salt stress, and conditions promoting root colonization and plant growth.
Collapse
|
8
|
Daliri EBM, Ofosu FK, Xiuqin C, Chelliah R, Oh DH. Probiotic Effector Compounds: Current Knowledge and Future Perspectives. Front Microbiol 2021; 12:655705. [PMID: 33746935 PMCID: PMC7965967 DOI: 10.3389/fmicb.2021.655705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanism behind probiotic action will enable a rational selection of probiotics, increase the chances of success in clinical studies and make it easy to substantiate health claims. However, most probiotic studies over the years have rather focused on the effects of probiotics in health and disease, whereas little is known about the specific molecules that trigger effects in hosts. This makes it difficult to describe the detailed mechanism by which a given probiotic functions. Probiotics communicate with their hosts through molecular signaling. Meanwhile, since the molecules produced by probiotics under in vitro conditions may differ from those produced in vivo, in vitro mechanistic studies would have to be conducted under conditions that mimic gastrointestinal conditions as much as possible. The ideal situation would, however, be to carry out well-designed clinical trials in humans (or the target animal) using adequate quantities of the suspected probiotic molecule(s) or adequate quantities of isogenic knock-out or knock-in probiotic mutants. In this review, we discuss our current knowledge about probiotic bacteria and yeast molecules that are involved in molecular signaling with the host. We also discuss the challenges and future perspectives in the search for probiotic effector molecules.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Chen Xiuqin
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
9
|
Fredericks LR, Lee MD, Crabtree AM, Boyer JM, Kizer EA, Taggart NT, Roslund CR, Hunter SS, Kennedy CB, Willmore CG, Tebbe NM, Harris JS, Brocke SN, Rowley PA. The Species-Specific Acquisition and Diversification of a K1-like Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. PLoS Genet 2021; 17:e1009341. [PMID: 33539346 PMCID: PMC7888664 DOI: 10.1371/journal.pgen.1009341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/17/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.
Collapse
Affiliation(s)
- Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Josephine M. Boyer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Emily A. Kizer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nathan T. Taggart
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cooper R. Roslund
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- iBEST Genomics Core, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney B. Kennedy
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cody G. Willmore
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nova M. Tebbe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jade S. Harris
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Sarah N. Brocke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
10
|
Zapparata A, Baroncelli R, Brandström Durling M, Kubicek CP, Karlsson M, Vannacci G, Sarrocco S. Fungal cross-talk: an integrated approach to study distance communication. Fungal Genet Biol 2021; 148:103518. [PMID: 33497840 DOI: 10.1016/j.fgb.2021.103518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/06/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Despite the interest on fungi as eukaryotic model systems, the molecular mechanisms regulating the fungal non-self-recognition at a distance have not been studied so far. This paper investigates the molecular mechanisms regulating the cross-talk at a distance between two filamentous fungi, Trichoderma gamsii and Fusarium graminearum which establish a mycoparasitic interaction where T. gamsii and F. graminearum play the roles of mycoparasite and prey, respectively. In the present work, we use an integrated approach involving dual culture tests, comparative genomics and transcriptomics to investigate the fungal interaction before contact ('sensing phase'). Dual culture tests demonstrate that growth rate of F. graminearum accelerates in presence of T. gamsii at the sensing phase. T. gamsii up-regulates the expression of a ferric reductase involved in iron acquisition, while F. graminearum up-regulates the expression of genes coding for transmembrane transporters and killer toxins. At the same time, T. gamsii decreases the level of extracellular interaction by down-regulating genes coding for hydrolytic enzymes acting on fungal cell wall (chitinases). Given the importance of fungi as eukaryotic model systems and the ever-increasing genomic resources available, the integrated approach hereby presented can be applied to other interactions to deepen the knowledge on fungal communication at a distance.
Collapse
Affiliation(s)
- Antonio Zapparata
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Riccardo Baroncelli
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christian P Kubicek
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Gil-Rodríguez AM, Garcia-Gutierrez E. Antimicrobial mechanisms and applications of yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:37-72. [PMID: 33934852 DOI: 10.1016/bs.aambs.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yeasts and humans have had a close relationship for millenia. Yeast have been used for food production since the first human societies. Since then, alternative uses have been discovered. Nowadays, antibiotic resistance constitutes a pressing need worldwide. In order to overcome this threat, one of the most important strategies is the search for new antimicrobials in natural sources. Moreover, biopreservation based on natural sources has emerged as an alternative to more common chemical preservatives. Yeasts constitute an underexploited source of antagonistic activity against other microorganisms. Here, we compile a summary of the antagonistic activity of yeast origin against other yeast and other microorganisms, such as bacteria or parasites. We present the mechanisms of action used by yeasts to display these activities. We also provide applications of these antagonistic activities in food industry and agriculture, medicine and veterinary, where yeast promise to play a pivotal role in the near future.
Collapse
|
12
|
Nascimento BL, Delabeneta MF, Rosseto LRB, Junges DSB, Paris AP, Persel C, Gandra RF. Yeast Mycocins: a great potential for application in health. FEMS Yeast Res 2020; 20:5818766. [PMID: 32275311 DOI: 10.1093/femsyr/foaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/03/2020] [Indexed: 01/10/2023] Open
Abstract
Mycocins have demonstrated inhibition of fungi, bacteria, parasites and viruses, in addition to being studied as epidemiological markers and in the development of vaccines. They are defined as extracellular proteins or glycoproteins with different activities, the main mechanism of action being the inhibition of β-glucan synthesis in the cell wall of sensitive strains. Given the resistance problems created by several microorganisms to agents commonly used in clinical practice, the discovery of new substances with this purpose becomes essential. Mycocins have potential as anti-microbials because they show minimal toxicity and do not present resistance.
Collapse
Affiliation(s)
- Bruna L Nascimento
- Department of Medical and Pharmaceutical Sciences, Avenida Tancredo Neves 3224 CEP: 85806-470, Cascavel, Paraná, Brazil
| | - Mateus F Delabeneta
- Department of Medical and Pharmaceutical Sciences, Avenida Tancredo Neves 3224 CEP: 85806-470, Cascavel, Paraná, Brazil
| | - Lana Rubia B Rosseto
- Department of Medical and Pharmaceutical Sciences, Avenida Tancredo Neves 3224 CEP: 85806-470, Cascavel, Paraná, Brazil
| | - Daniele S B Junges
- Department of Medical and Pharmaceutical Sciences, Avenida Tancredo Neves 3224 CEP: 85806-470, Cascavel, Paraná, Brazil
| | - Ana Paula Paris
- Department of Medical and Pharmaceutical Sciences, Avenida Tancredo Neves 3224 CEP: 85806-470, Cascavel, Paraná, Brazil
| | - Cristiane Persel
- Department of Medical and Pharmaceutical Sciences, Avenida Tancredo Neves 3224 CEP: 85806-470, Cascavel, Paraná, Brazil
| | - Rinaldo F Gandra
- Department of Medical and Pharmaceutical Sciences, Avenida Tancredo Neves 3224 CEP: 85806-470, Cascavel, Paraná, Brazil
| |
Collapse
|
13
|
Lu S, Faris JD. Fusarium graminearum KP4-like proteins possess root growth-inhibiting activity against wheat and potentially contribute to fungal virulence in seedling rot. Fungal Genet Biol 2018; 123:1-13. [PMID: 30465882 DOI: 10.1016/j.fgb.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/29/2022]
Abstract
The virally encoded KP4 killer toxin protein was first identified from Ustilago maydis (Um), and its homologues are present in diverse fungi and in one species of moss. No KP4-like (KP4L) proteins have been functionally characterized. Here, we report the identification and functional analysis of four KP4L proteins from Fusarium graminearum (Fg), the primary causal pathogen of Fusarium head blight (FHB), which is also known to associate with seedling rot of wheat. The four FgKP4L proteins (FgKP4L-1, -2, -3 and -4) are encoded by small open reading frames (378-825 bp) located on chromosome 1 with the FgKP4L-1, -2 and -3 genes clustering together. Sequence analysis indicated that FgKP4L proteins have conserved domains predicted to form a three-dimensional alpha/beta-sandwich structure as first reported for UmKP4, with FgKP4L-4 featuring double Kp4 domains. Further analyses revealed that the FgKP4L genes are expressed in vitro under certain stress conditions, and all up-regulated during FHB and/or seedling rot development, the recombinant FgKP4L-2 protein does not induce cell death in wheat leaves or spikelets, but inhibits root growth of young seedlings, and the elimination of the FgKP4L-1/-2/-3 gene cluster from the fungal genome results in reduced virulence in seedling rot but not in FHB. Database searches revealed KP4L proteins from ∼80 fungal species with more than half from human/animal pathogens. Phylogenetic analysis suggested that UmKP4 and the moss KP4L proteins are closely related to those from a zygromycete and Aspergillus, respectively, implying cross-kingdom horizontal gene transfer.
Collapse
Affiliation(s)
- Shunwen Lu
- US Department of Agriculture, Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND 58102-2765, USA.
| | - Justin D Faris
- US Department of Agriculture, Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND 58102-2765, USA
| |
Collapse
|
14
|
Quijano CD, Wichmann F, Schlaich T, Fammartino A, Huckauf J, Schmidt K, Unger C, Broer I, Sautter C. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants. ACTA ACUST UNITED AC 2016; 11:90-98. [PMID: 28352545 PMCID: PMC5042339 DOI: 10.1016/j.btre.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 11/28/2022]
Abstract
Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.
Collapse
Affiliation(s)
- Carolina Diaz Quijano
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| | - Fabienne Wichmann
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| | - Thomas Schlaich
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| | - Alessandro Fammartino
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| | - Jana Huckauf
- Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, D-18059 Rostock, Germany
| | - Kerstin Schmidt
- biovativ GmbH, Thuneneplatz 1, D-18190, Gross Lusewitz, Germany
| | - Christoph Unger
- Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, D-18059 Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, D-18059 Rostock, Germany
| | - Christof Sautter
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance.
Collapse
Affiliation(s)
- Serena Muccilli
- Consiglio per la Ricerca in Agricoltura e L'analisi dell'Economia Agraria-Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia 190, 95024 Acireale, CT, Italy.
| | - Cristina Restuccia
- Di3A-Dipatimento di Agricoltura, Alimentazione e Ambiente, University of Catania, via Santa Sofia 98, 95123 Catania, Italy.
| |
Collapse
|
16
|
van Eerde A, Grahn EM, Winter HC, Goldstein IJ, Krengel U. Atomic-resolution structure of the -galactosyl binding Lyophyllum decastes lectin reveals a new protein family found in both fungi and plants. Glycobiology 2014; 25:492-501. [DOI: 10.1093/glycob/cwu136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Brown DW, Busman M, Proctor RH. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:809-823. [PMID: 24742071 DOI: 10.1094/mpmi-09-13-0281-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transition from one lifestyle to another in some fungi is initiated by a single orthologous gene, SGE1, that regulates markedly different genes in different fungi. Despite these differences, many of the regulated genes encode effector proteins or proteins involved in the synthesis of secondary metabolites (SM), both of which can contribute to pathogenicity. Fusarium verticillioides is both an endophyte and a pathogen of maize and can grow as a saprophyte on dead plant material. During growth on live maize plants, the fungus can synthesize a number of toxic SM, including fumonisins, fusarins, and fusaric acid, that can contaminate kernels and kernel-based food and feed. In this study, the role of F. verticillioides SGE1 in pathogenicity and secondary metabolism was examined by gene deletion analysis and transcriptomics. SGE1 is not required for vegetative growth or conidiation but is required for wild-type pathogenicity and affects synthesis of multiple SM, including fumonisins and fusarins. Induced expression of SGE1 enhanced or reduced expression of hundreds of genes, including numerous putative effector genes that could contribute to growth in planta; genes encoding cell surface proteins; gene clusters required for synthesis of fusarins, bikaverin, and an unknown metabolite; as well as the gene encoding the fumonisin cluster transcriptional activator. Together, our results indicate that SGE1 has a role in global regulation of transcription in F. verticillioides that impacts but is not absolutely required for secondary metabolism and pathogenicity on maize.
Collapse
|
18
|
Liu GL, Chi Z, Wang GY, Wang ZP, Li Y, Chi ZM. Yeast killer toxins, molecular mechanisms of their action and their applications. Crit Rev Biotechnol 2013; 35:222-34. [DOI: 10.3109/07388551.2013.833582] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Abstract
In fungi, heterokaryon incompatibility is a nonself recognition process occurring when filaments of different isolates of the same species fuse. Compatibility is controlled by so-called het loci and fusion of strains of unlike het genotype triggers a complex incompatibility reaction that leads to the death of the fusion cell. Herein, we analyze the transcriptional changes during the incompatibility reaction in Podospora anserina. The incompatibility response was found to be associated with a massive transcriptional reprogramming: 2231 genes were up-regulated by a factor 2 or more during incompatibility. In turn, 2441 genes were down-regulated. HET, NACHT, and HeLo domains previously found to be involved in the control of heterokaryon incompatibility were enriched in the up-regulated gene set. In addition, incompatibility was characterized by an up-regulation of proteolytic and other hydrolytic activities, of secondary metabolism clusters and toxins and effector-like proteins. The up-regulated set was found to be enriched for proteins lacking orthologs in other species and chromosomal distribution of the up-regulated genes was uneven with up-regulated genes residing preferentially in genomic islands and on chromosomes IV and V. There was a significant overlap between regulated genes during incompatibility in P. anserina and Neurospora crassa, indicating similarities in the incompatibility responses in these two species. Globally, this study illustrates that the expression changes occurring during cell fusion incompatibility in P. anserina are in several aspects reminiscent of those described in host-pathogen or symbiotic interactions in other fungal species.
Collapse
|
20
|
Ambrose KV, Belanger FC. SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS One 2012; 7:e53214. [PMID: 23285269 PMCID: PMC3532157 DOI: 10.1371/journal.pone.0053214] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
One of the most important plant-fungal symbiotic relationships is that of cool season grasses with endophytic fungi of the genera Epichloë and Neotyphodium. These associations often confer benefits, such as resistance to herbivores and improved drought tolerance, to the hosts. One benefit that appears to be unique to fine fescue grasses is disease resistance. As a first step towards understanding the basis of the endophyte-mediated disease resistance in Festuca rubra we carried out a SOLiD-SAGE quantitative transcriptome comparison of endophyte-free and Epichloë festucae-infected F. rubra. Over 200 plant genes involved in a wide variety of physiological processes were statistically significantly differentially expressed between the two samples. Many of the endophyte expressed genes were surprisingly abundant, with the most abundant fungal tag representing over 10% of the fungal mapped tags. Many of the abundant fungal tags were for secreted proteins. The second most abundantly expressed fungal gene was for a secreted antifungal protein and is of particular interest regarding the endophyte-mediated disease resistance. Similar genes in Penicillium and Aspergillus spp. have been demonstrated to have antifungal activity. Of the 10 epichloae whole genome sequences available, only one isolate of E. festucae and Neotyphodium gansuense var inebrians have an antifungal protein gene. The uniqueness of this gene in E. festucae from F. rubra, its transcript abundance, and the secreted nature of the protein, all suggest it may be involved in the disease resistance conferred to the host, which is a unique feature of the fine fescue-endophyte symbiosis.
Collapse
Affiliation(s)
- Karen V. Ambrose
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Faith C. Belanger
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
21
|
Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG, Marshall M, Kazan K, Chakraborty S, McDonald BA, Manners JM. Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 2012; 8:e1002952. [PMID: 23028337 PMCID: PMC3460631 DOI: 10.1371/journal.ppat.1002952] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/23/2012] [Indexed: 12/22/2022] Open
Abstract
Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens.
Collapse
Affiliation(s)
- Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brown DW, Butchko RAE, Baker SE, Proctor RH. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium. Fungal Biol 2011; 116:318-31. [PMID: 22289777 DOI: 10.1016/j.funbio.2011.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 12/15/2022]
Abstract
Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain-based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, Fusarium graminearum, Fusarium oxysporum, and Fusarium solani identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted phylogenomic and functional domain analyses. The resulting geneaology suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicates that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.
Collapse
Affiliation(s)
- Daren W Brown
- Bacterial Foodborne Pathogens and Mycology Research, USDA-ARS-NCAUR, Peoria, Illinois 61604, USA.
| | | | | | | |
Collapse
|