1
|
Negroni YL, Doro I, Tamborrino A, Luzzi I, Fortunato S, Hensel G, Khosravi S, Maretto L, Stevanato P, Lo Schiavo F, de Pinto MC, Krupinska K, Zottini M. The Arabidopsis Mitochondrial Nucleoid-Associated Protein WHIRLY2 Is Required for a Proper Response to Salt Stress. PLANT & CELL PHYSIOLOGY 2024; 65:576-589. [PMID: 38591870 PMCID: PMC11094760 DOI: 10.1093/pcp/pcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.
Collapse
Affiliation(s)
- Yuri L Negroni
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Doro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Alberto Tamborrino
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Luzzi
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Götz Hensel
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Solmaz Khosravi
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Karin Krupinska
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| |
Collapse
|
2
|
Veloso Ribeiro Franco L, Barros MH. Biolistic transformation of the yeast Saccharomyces cerevisiae mitochondrial DNA. IUBMB Life 2023; 75:972-982. [PMID: 37470229 DOI: 10.1002/iub.2769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.
Collapse
Affiliation(s)
| | - Mario H Barros
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Zheng J, Liu S, Wang D, Li L, Sarsaiya S, Zhou H, Cai H. Unraveling the functional consequences of a novel germline missense mutation (R38C) in the yeast model of succinate dehydrogenase subunit B: insights into neurodegenerative disorders. Front Mol Neurosci 2023; 16:1246842. [PMID: 37840772 PMCID: PMC10568460 DOI: 10.3389/fnmol.2023.1246842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
This study explores the implications of a novel germline missense mutation (R38C) in the succinate dehydrogenase (SDH) subunit B, which has been linked to neurodegenerative diseases. The mutation was identified from the SDH mutation database and corresponds to the SDH2R32C allele, mirroring the human SDHBR38C mutation. By subjecting the mutant yeast model to hydrogen peroxide (H2O2) stress, simulating oxidative stress, we observed heightened sensitivity to oxidative conditions. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed significant regulation (p < 0.05) of genes associated with antioxidant systems and energy metabolism. Through gas chromatography-mass spectrometry (GC-MS) analysis, we examined yeast cell metabolites under oxidative stress, uncovering insights into the potential protective role of o-vanillin. This study elucidates the biological mechanisms underlying cellular oxidative stress responses, offering valuable insights into its repercussions. These findings shed light on innovative avenues for addressing neurodegenerative diseases, potentially revolutionizing therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Heng Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Zhao S, Bao Q, Ma G, Yao Y, Xie L, Xiong J. Benzo[b]fluoranthene (B[b]F) affects apoptosis, oxidative stress, mitochondrial membrane potential and expressions of blood-brain barrier markers in microvascular endothelial cells. Toxicol In Vitro 2022; 86:105522. [DOI: 10.1016/j.tiv.2022.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
|
5
|
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA. Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev 2022; 102:1721-1755. [PMID: 35466694 DOI: 10.1152/physrev.00041.2021] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Armaan Fallahi
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Son JM, Lee C. Aging: All roads lead to mitochondria. Semin Cell Dev Biol 2021; 116:160-168. [PMID: 33741252 PMCID: PMC9774040 DOI: 10.1016/j.semcdb.2021.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria were described as early as 1890 as ubiquitous intracellular structures by Ernster and Schatz (1981) [1]. Since then, the accretion of knowledge in the past century has revealed much of the molecular details of mitochondria, ranging from mitochondrial origin, structure, metabolism, genetics, and signaling, and their implications in health and disease. We now know that mitochondria are remarkably multifunctional and deeply intertwined with many vital cellular processes. They are quasi-self organelles that still possess remnants of its bacterial ancestry, including an independent genome. The mitochondrial free radical theory of aging (MFRTA), which postulated that aging is a product of oxidative damage to mitochondrial DNA, provided a conceptual framework that put mitochondria on the map of aging research. However, several studies have more recently challenged the general validity of the theory, favoring novel ideas based on emerging evidence to understand how mitochondria contribute to aging and age-related diseases. One prominent topic of investigation lies on the fact that mitochondria are not only production sites for bioenergetics and macromolecules, but also regulatory hubs that communicate and coordinate many vital physiological processes at the cellular and organismal level. The bi-directional communication and coordination between the co-evolved mitochondrial and nuclear genomes is especially interesting in terms of cellular regulation. Mitochondria are dynamic and adaptive, rendering their function sensitive to cellular context. Tissues with high energy demands, such as the brain, seem to be uniquely affected by age-dependent mitochondrial dysfunction, providing a foundation for the development of novel mitochondrial-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA,USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA,Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, South Korea,Corresponding author at: Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Bartho LA, Fisher JJ, Cuffe JSM, Perkins AV. Mitochondrial transformations in the aging human placenta. Am J Physiol Endocrinol Metab 2020; 319:E981-E994. [PMID: 32954826 DOI: 10.1152/ajpendo.00354.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria play a key role in homeostasis and are central to one of the leading hypotheses of aging, the free radical theory. Mitochondria function as a reticulated network, constantly adapting to the cellular environment through fusion (joining), biogenesis (formation of new mitochondria), and fission (separation). This adaptive response is particularly important in response to oxidative stress, cellular damage, and aging, when mitochondria are selectively removed through mitophagy, a mitochondrial equivalent of autophagy. During this complex process, mitochondria influence surrounding cell biology and organelles through the release of signaling molecules. Given that the human placenta is a unique organ having a transient and somewhat defined life span of ∼280 days, any adaption or dysfunction associated with mitochondrial physiology as a result of aging will have a dramatic impact on the health and function of both the placenta and the fetus. Additionally, a defective placenta during gestation, resulting in reduced fetal growth, has been shown to influence the development of chronic disease in later life. In this review we focus on the mitochondrial adaptions and transformations that accompany gestational length and share similarities with age-related diseases. In addition, we discuss the role of such changes in regulating placental function throughout gestation, the etiology of gestational complications, and the development of chronic diseases later in life.
Collapse
Affiliation(s)
- Lucy A Bartho
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland, Australia
| | - Joshua J Fisher
- Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
8
|
Szabó A, Antunovics Z, Karanyicz E, Sipiczki M. Diversity and Postzygotic Evolution of the Mitochondrial Genome in Hybrids of Saccharomyces Species Isolated by Double Sterility Barrier. Front Microbiol 2020; 11:838. [PMID: 32457720 PMCID: PMC7221252 DOI: 10.3389/fmicb.2020.00838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Eukaryotic species are reproductively isolated by sterility barriers that prevent interspecies fertilization (prezygotic sterility barrier) or the fertilization results in infertile offspring (postzygotic sterility barrier). The Saccharomyces species are isolated by postzygotic sterility barriers. Their allodiploid hybrids form no viable gametes (ascospores) and the viable ascospores of the allotetraploids cannot fertilize (conjugate). Our previous work revealed that this mechanism of reproductive isolation differs from those operating in plants and animals and we designated it double sterility barrier (the failure of homeologous chromosomes to pair and the repression of mating by mating-type heterozygosity). Other studies implicated nucleo-mitochondrial incompatibilities in the sterility of the Saccharomyces hybrids, a mechanism assumed to play a central role in the reproductive isolation of animal species. In this project the mitochondrial genomes of 50 cevarum (S. cerevisiae × S. uvarum) hybrids were analyzed. 62% had S. cerevisiae mitotypes, 4% had S. uvarum mitotypes, and 34% had recombinant mitotypes. All but one hybrid formed viable spores indicating that they had genomes larger than allodiploid. Most of these spores were sterile (no sporulation in the clone of vegetative descendants; a feature characteristic of allodiploids). But regardless of their mitotypes, most hybrids could also form fertile alloaneuploid spore clones at low frequencies upon the loss of the MAT-carrying chromosome of the S. uvarum subgenome during meiosis. Hence, the cevarum alloploid nuclear genome is compatible with both parental mitochondrial genomes as well as with their recombinants, and the sterility of the hybrids is maintained by the double sterility barrier (determined in the nuclear genome) rather than by nucleo-mitochondrial incompatibilities. During allotetraploid sporulation both the nuclear and the mitochondrial genomes of the hybrids could segregate but no correlation was observed between the sterility or the fertility of the spore clones and their mitotypes. Nucleo-mitochondrial incompatibility was manifested as respiration deficiency in certain meiotic segregants. As respiration is required for meiosis-sporulation but not for fertilization (conjugation), these segregants were deficient only in sporulation. Thus, the nucleo-mitochondrial incompatibility affects the sexual processes only indirectly through the inactivation of respiration and causes only partial sterility in certain segregant spore clones.
Collapse
Affiliation(s)
| | | | | | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase. Curr Genet 2020; 66:693-701. [PMID: 32157382 DOI: 10.1007/s00294-020-01062-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by a gradual loss of a specific group of dopaminergic neurons in the substantia nigra. Importantly, current treatments only address the symptoms of PD, yet not the underlying molecular causes. Concomitantly, the function of genes that cause inherited forms of PD point to mitochondrial dysfunction as a major contributor in the etiology of PD. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses including high levels of reactive oxygen species and protein misfolding, which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to identify, repair and/or eliminate abnormal dysfunctional mitochondria. One such mechanism is mitophagy, a process which involves PTEN-induced putative kinase 1 (PINK1), a mitochondrial Ser/Thr kinase and Parkin, an E3 ubiquitin ligase, each encoded by genes responsible for early-onset autosomal recessive familial PD. Over 100 loss-of-function mutations in the PTEN-induced putative kinase 1 (PINK1) gene have been reported to cause autosomal recessive early-onset PD. PINK1 acts upstream of Parkin and is essential for the mitochondrial localization and activation of Parkin. Upon mitochondrial damage, PINK1 builds up on the outer mitochondrial membrane (OMM) and mediates the activation of Parkin. Activated Parkin then ubiquitinates numerous OMM proteins, eliciting mitochondrial autophagy (mitophagy). As a result, damaged mitochondrial components can be selectively eliminated. Thus, PINK1 acts a sensor of damage via fine-tuning of its levels on mitochondria, where it activates Parkin to orchestrate the clearance of unhealthy mitochondria. Previous work has unveiled that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of PINK1, and thus fine-tune PINK1-dependent mitochondrial quality control pathway. Herein, we briefly discuss the interconnection between N-end rule degradation pathways and mitophagy in the context of N-degron mediated degradation of mitochondrial kinase PINK1 and highlight some of the future prospects.
Collapse
|
10
|
Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet 2020; 139:381-399. [PMID: 31997134 PMCID: PMC7147958 DOI: 10.1007/s00439-020-02119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Our cells operate based on two distinct genomes that are enclosed in the nucleus and mitochondria. The mitochondrial genome presumably originates from endosymbiotic bacteria. With time, a large portion of the original genes in the bacterial genome is considered to have been lost or transferred to the nuclear genome, leaving a reduced 16.5 Kb circular mitochondrial DNA (mtDNA). Traditionally only 37 genes, including 13 proteins, were thought to be encoded within mtDNA, its genetic repertoire is expanding with the identification of mitochondrial-derived peptides (MDPs). The biology of aging has been largely unveiled to be regulated by genes that are encoded in the nuclear genome, whereas the mitochondrial genome remained more cryptic. However, recent studies position mitochondria and mtDNA as an important counterpart to the nuclear genome, whereby the two organelles constantly regulate each other. Thus, the genomic network that regulates lifespan and/or healthspan is likely constituted by two unique, yet co-evolved, genomes. Here, we will discuss aspects of mitochondrial biology, especially mitochondrial communication that may add substantial momentum to aging research by accounting for both mitonuclear genomes to more comprehensively and inclusively map the genetic and molecular networks that govern aging and age-related diseases.
Collapse
Affiliation(s)
- Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
11
|
Eldeeb MA, Ragheb MA, Esmaili M. How does protein degradation regulate TOM machinery-dependent mitochondrial import? Curr Genet 2020; 66:501-505. [PMID: 32060627 DOI: 10.1007/s00294-020-01056-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysregulation is a pivotal hallmark of aging-related disorders. Although there is a considerable understanding of the molecular counteracting responses toward damaged mitochondria, the molecular underpinnings connecting the abnormal aggregation of mitochondrial precursor protein fragments and abrogation of mitochondrial import machinery are far from clear. Recently, proteasomal-dependent degradation was unveiled as a pivotal fine-tuner of TOM machinery-dependent mitochondrial import. Herein, the role of proteasomal-mediated degradation in regulating fidelity of TOM-dependent import is briefly discussed and analyzed. The insights obtained from the characterization of this process may be applied to targeting mitochondrial import dysfunction in some neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt. .,McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep 2019; 20:e48395. [PMID: 31667999 PMCID: PMC6893295 DOI: 10.15252/embr.201948395] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organized in the cell in the form of a dynamic, interconnected network. Mitochondrial dynamics, regulated by mitochondrial fission, fusion, and trafficking, ensure restructuring of this complex reticulum in response to nutrient availability, molecular signals, and cellular stress. Aberrant mitochondrial structures have long been observed in aging and age-related diseases indicating that mitochondrial dynamics are compromised as cells age. However, the specific mechanisms by which aging affects mitochondrial dynamics and whether these changes are causally or casually associated with cellular and organismal aging is not clear. Here, we review recent studies that show specifically how mitochondrial fission, fusion, and trafficking are altered with age. We discuss factors that change with age to directly or indirectly influence mitochondrial dynamics while examining causal roles for altered mitochondrial dynamics in healthy aging and underlying functional outputs that might affect longevity. Lastly, we propose that altered mitochondrial dynamics might not just be a passive consequence of aging but might constitute an adaptive mechanism to mitigate age-dependent cellular impairments and might be targeted to increase longevity and promote healthy aging.
Collapse
Affiliation(s)
- Arpit Sharma
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Hannah J Smith
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Pallas Yao
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - William B Mair
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
13
|
Abstract
Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging. [BMB Reports 2019; 52(1): 13-23].
Collapse
Affiliation(s)
- Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA; Biomedical Science, Graduate School, Ajou University, Suwon 16499, Korea
| |
Collapse
|
14
|
Druseikis M, Ben-Ari J, Covo S. The Goldilocks effect of respiration on canavanine tolerance in Saccharomyces cerevisiae. Curr Genet 2019; 65:1199-1215. [PMID: 31011791 DOI: 10.1007/s00294-019-00974-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022]
Abstract
When glucose is available, Saccharomyces cerevisiae prefers fermentation to respiration. In fact, it can live without respiration at all. Here, we study the role of respiration in stress tolerance in yeast. We found that colony growth of respiratory-deficient yeast (petite) is greatly inhibited by canavanine, the toxic analog of arginine that causes proteotoxic stress. We found lower amounts of the amino acids involved in arginine biosynthesis in petites compared with WT. This finding may be explained by the fact that petite cells exposed to canavanine show reduction in the efficiency of targeting of proteins required for arginine biosynthesis. The retrograde (RTG) pathway signals mitochondrial stress. It positively controls production of arginine precursors. We show that canavanine abrogates RTG signaling especially in petite cells, and mutants in the RTG pathway are extremely sensitive to canavanine. We suggest that petite cells are naturally ineffective in production of some amino acids; combination of this fact with the effect of canavanine on the RTG pathway is the simplest explanation why petite cells are inhibited by canavanine. Surprisingly, we found that canavanine greatly inhibits colony formation when WT cells are forced to respire. Our research proposes a novel connection between respiration and proteotoxic stress.
Collapse
Affiliation(s)
- Marina Druseikis
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel
| | - Julius Ben-Ari
- Interdepartmental Equipment Unit, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel.
| |
Collapse
|
15
|
Koch B, Traven A. Mdivi-1 and mitochondrial fission: recent insights from fungal pathogens. Curr Genet 2019; 65:837-845. [PMID: 30783741 PMCID: PMC6620241 DOI: 10.1007/s00294-019-00942-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial fission shows potential as a therapeutic target in non-infectious human diseases. The compound mdivi-1 was identified as a mitochondrial fission inhibitor that acts against the evolutionarily conserved mitochondrial fission GTPase Dnm1/Drp1, and shows promising data in pre-clinical models of human pathologies. Two recent studies, however, found no evidence that mdivi-1 acts as a mitochondrial fission inhibitor and proposed other mechanisms. In mammalian cells, Bordt et al. showed that mdivi-1 inhibits complex I in mitochondria (Dev Cell 40:583, 2017). In a second study, we have recently demonstrated that mdivi-1 does not trigger a mitochondrial morphology change in the human yeast pathogen Candida albicans, but impacts on endogenous nitric oxide (NO) levels and inhibits the key virulence property of hyphal formation (Koch et al., Cell Rep 25:2244, 2018). Here we discuss recent insights into mdivi-1’s action in pathogenic fungi and the potential and challenges for repurposing it as an anti-infective. We also outline recent findings on the roles of mitochondrial fission in human and plant fungal pathogens, with the goal of starting the conversation on whether the research field of fungal pathogenesis can benefit from efforts in other disease areas aimed at developing therapeutic inhibitors of mitochondrial division.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
16
|
Niu S, Zhang G, Li X, Haroon M, Si H, Fan G, Li XQ. Organelle DNA contents and starch accumulation in potato tubers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:205-216. [PMID: 30390131 DOI: 10.1007/s00122-018-3208-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Starch contents were found to be positively correlated with organelle/nuclear DNA ratios, suggesting that these ratios are involved in starch accumulation and may serve as a target trait in genetic engineering and a biomarker in breeding for improving the dry matter and starch production in potato. Starch is the main dry matter component of various staple food crops, including potato. Starch synthesis and accumulation is in plastids, uses sugar, consumes cellular energy, and requires active expression of starch synthesis genes. We hypothesized that the plastid/nuclear DNA ratios and mitochondrial/nuclear DNA ratios are involved in this accumulation. We analyzed the dry mater, starch, plastid DNA, mitochondrial DNA, and nuclear DNA in tuber stem ends and tuber bud ends in two potato cultivars and verified the results using whole tubers in nine potato cultivars. Dry matter contents (DMC) and organelle/nuclear DNA ratios increased rapidly during tuber bulking. DMC and starch contents were greater at the tuber stem ends than at the tuber bud ends. Both the comparisons between tuber ends and among whole tubers indicated that DMC and starch contents were positively correlated with both plastid/nuclear DNA ratios and mitochondrial/nuclear DNA ratios. The results suggest that pt/nuc and mt/nuc DNA ratios are important and may serve as a biomarker in selection, genetic engineering, and cytoplasm manipulation, for dry matter and starch accumulation in potato.
Collapse
Affiliation(s)
- Suyan Niu
- Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou, 450044, China
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guodong Zhang
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
- Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiubao Li
- Rizhao Academy of Agricultural Sciences, Rizhao, 276500, Shandong, China
| | - Muhammad Haroon
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Guoqiang Fan
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada.
| |
Collapse
|