1
|
Wolfgramm H, Saade C, Harms M, Busch LM, Lange J, Schedlowski M, Surmann K, Gesell Salazar M, Hentschker C, Steil L, Michalik S, Völker U, Reder A. pTripleTREP - A vector for tightly controlled expression and purification of virulence factors in Staphylococcus aureus. Microb Cell Fact 2025; 24:115. [PMID: 40394585 DOI: 10.1186/s12934-025-02736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Recombinant proteins facilitate and contribute to detailed studies of the virulence mechanisms and pathophysiology of the major human pathogen Staphylococcus aureus. Of particular interest are secreted virulence factors. However, due to their potential toxicity and specific post-translational processing, virulence factors are difficult targets for heterologous protein production. Purified proteins with native conformation and adequate purity can therefore often only be achieved by elaborate multi-step purification workflows. While homologous expression in S. aureus theoretically offers a promising alternative in this regard, its application remains limited due to the lack of systems that ensure both tightly controlled expression and subsequent efficient purification. RESULTS To bridge this gap, we present pTripleTREP as a versatile expression vector for S. aureus, which enables the homologous expression and purification of staphylococcal virulence factors. It features a strong SigA-dependent staphylococcal promoter overlapped by three tetracycline responsive elements (TRE), which ensures tight repression under control conditions and high expression levels upon induction of the target gene. This allowed very precise controlled production of the exemplary targets, serine protease-like protein A (SplA) and B (SplB). A simple single-step protein purification workflow using a Twin-Strep-tag and Strep-Tactin®XT coated magnetic beads yielded endotoxin-free Spl samples with purities above 99%. Thereby, the homologous production host facilitates native secretion and maturation without the need to engineer the target gene sequence. Proper signal peptide cleavage and the corresponding enzymatic activity of the generated protein products were confirmed for SplA and B. CONCLUSION The expression vector pTripleTREP adds an important element to the staphylococcal molecular toolbox, facilitating the tightly controlled homologous expression and rapid native purification of secreted staphylococcal virulence factors. The optimised architecture and genetic features of the vector additionally provide a solid background for further applications such as plasmid-based complementation or interaction studies. Thus, pTripleTREP will support research on the role of staphylococcal virulence factors, paving the way for future therapeutic strategies to combat this pathogen.
Collapse
Affiliation(s)
- Hannes Wolfgramm
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christopher Saade
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Marco Harms
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Larissa M Busch
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Josephine Lange
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Maximilian Schedlowski
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Surmann
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| | - Alexander Reder
- Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
2
|
Zhang X, Xin J, Liu M, Zhang Y, Luan H, Feng W, Wang F, Xu W, Song P. Cost-effective whole-cell biosynthesis of ursodeoxycholic acid using engineered Escherichia coli with a multienzyme cascade. Front Microbiol 2025; 16:1538237. [PMID: 39931379 PMCID: PMC11808682 DOI: 10.3389/fmicb.2025.1538237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Ursodeoxycholic acid (UDCA) can be used as a drug to treat various liver and bile diseases. Currently, the biological synthesis of UDCA is predominantly conducted via a two-step enzymatic process in which synthesis is catalyzed by 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 7β-hydroxysteroid dehydrogenase (7β-HSDH) in succession, utilizing chenodeoxycholic acid (CDCA) as the substrate. In this study, an engineered Escherichia coli (E. coli) strain, designated UCA23, was constructed. This strain coexpressed four enzymes under the control of three independent T7 promoters: lactate dehydrogenase (LDH) derived from Lactobacillus delbrueckii, glucose dehydrogenase (GDH) derived from Priestia megaterium, 7α-HSDH derived from E. coli, and 7β-HSDH derived from Ruminococcus torques, enabling the whole-cell catalytic synthesis of UDCA from CDCA. This study systematically optimized the reaction parameters, including temperature, pH, and the addition of organic solvents and surfactants, for the whole-cell catalytic synthesis of UDCA by UCA23, and at the 2 L level, a UDCA conversion rate of 99% was achieved with 100 mM CDCA in 2 h, which is the highest level of conversion of a high-concentration CDCA substrate reported to date.
Collapse
Affiliation(s)
- Xue Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng, China
| | - Jiagang Xin
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Mengyu Liu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng, China
| | - Yue Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng, China
| | - Haoni Luan
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng, China
| | - Wei Feng
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng, China
| | - Fei Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng, China
| | - Wei Xu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng, China
| | - Peng Song
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng, China
| |
Collapse
|
3
|
Mohler K, Moen JM, Rogulina S, Rinehart J. System-wide optimization of an orthogonal translation system with enhanced biological tolerance. Mol Syst Biol 2023; 19:e10591. [PMID: 37477096 PMCID: PMC10407733 DOI: 10.15252/msb.202110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Over the past two decades, synthetic biological systems have revolutionized the study of cellular physiology. The ability to site-specifically incorporate biologically relevant non-standard amino acids using orthogonal translation systems (OTSs) has proven particularly useful, providing unparalleled access to cellular mechanisms modulated by post-translational modifications, such as protein phosphorylation. However, despite significant advances in OTS design and function, the systems-level biology of OTS development and utilization remains underexplored. In this study, we employ a phosphoserine OTS (pSerOTS) as a model to systematically investigate global interactions between OTS components and the cellular environment, aiming to improve OTS performance. Based on this analysis, we design OTS variants to enhance orthogonality by minimizing host process interactions and reducing stress response activation. Our findings advance understanding of system-wide OTS:host interactions, enabling informed design practices that circumvent deleterious interactions with host physiology while improving OTS performance and stability. Furthermore, our study emphasizes the importance of establishing a pipeline for systematically profiling OTS:host interactions to enhance orthogonality and mitigate mechanisms underlying OTS-mediated host toxicity.
Collapse
Affiliation(s)
- Kyle Mohler
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI)University of California, San FranciscoSan FranciscoCAUSA
- 2QBI Coronavirus Research Group (QCRG)San FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Svetlana Rogulina
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jesse Rinehart
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| |
Collapse
|
4
|
Wedel E, Bernabe-Balas C, Ares-Arroyo M, Montero N, Santos-Lopez A, Mazel D, Gonzalez-Zorn B. Insertion Sequences Determine Plasmid Adaptation to New Bacterial Hosts. mBio 2023:e0315822. [PMID: 37097157 DOI: 10.1128/mbio.03158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Plasmids facilitate the vertical and horizontal spread of antimicrobial resistance genes between bacteria. The host range and adaptation of plasmids to new hosts determine their impact on the spread of resistance. In this work, we explore the mechanisms driving plasmid adaptation to novel hosts in experimental evolution. Using the small multicopy plasmid pB1000, usually found in Pasteurellaceae, we studied its adaptation to a host from a different bacterial family, Escherichia coli. We observed two different mechanisms of adaptation. One mechanism is single nucleotide polymorphisms (SNPs) in the origin of replication (oriV) of the plasmid, which increase the copy number in E. coli cells, elevating the stability, and resistance profile. The second mechanism consists of two insertion sequences (ISs), IS1 and IS10, which decrease the fitness cost of the plasmid by disrupting an uncharacterized gene on pB1000 that is harmful to E. coli. Both mechanisms increase the stability of pB1000 independently, but only their combination allows long-term maintenance. Crucially, we show that the mechanisms have a different impact on the host range of the plasmid. SNPs in oriV prevent the replication in the original host, resulting in a shift of the host range. In contrast, the introduction of ISs either shifts or expands the host range, depending on the IS. While IS1 leads to expansion, IS10 cannot be reintroduced into the original host. This study gives new insights into the relevance of ISs in plasmid-host adaptation to understand the success in spreading resistance. IMPORTANCE ColE1-like plasmids are small, mobilizable plasmids that can be found across at least four orders of Gammaproteobacteria and are strongly associated with antimicrobial resistance genes. Plasmid pB1000 carries the gene blaROB-1, conferring high-level resistance to penicillins and cefaclor. pB1000 has been described in various species of the family Pasteurellaceae, for example, in Haemophilus influenzae, which can cause diseases such as otitis media, meningitis, and pneumonia. To understand the resistance spread through horizontal transfer, it is essential to study the mechanisms of plasmid adaptation to novel hosts. In this work we identify that a gene from pB1000, which encodes a peptide that is toxic for E. coli, and the low plasmid copy number (PCN) of pB1000 in E. coli cells are essential targets in the described plasmid-host adaptation and therefore limit the spread of pB1000-encoded blaROB-1. Furthermore, we show how the interplay of two adaptation mechanisms leads to successful plasmid maintenance in a different bacterial family.
Collapse
Affiliation(s)
- Emilia Wedel
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bernabe-Balas
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ares-Arroyo
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Natalia Montero
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso Santos-Lopez
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Didier Mazel
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Rodrigo-Torres L, María Landete J, Huedo P, Peirotén Á, Langa S, Rodríguez-Minguez E, Medina M, Arahal DR, Aznar R, Arqués JL. Complete genome sequences of Lacticaseibacillus paracasei INIA P272 (CECT 8315) and Lacticaseibacillus rhamnosus INIA P344 (CECT 8316) isolated from breast-fed infants reveal probiotic determinants. Gene X 2022; 840:146743. [PMID: 35868412 DOI: 10.1016/j.gene.2022.146743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/08/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Lacticaseibacillus paracasei INIA P272 and Lacticaseibacillus rhamnosus INIA P344, isolated from breast-fed infants, are two promising bacterial strains for their use in functional foods according to their demonstrated probiotic and technological characteristics. To better understand their probiotic characteristics and evaluate their safety, here we report the draft genome sequences of both strains as well as the analysis of their genetical content. The draft genomes of L. paracasei INIA P272 and L. rhamnosus INIA P344 comprise 3.01 and 3.26 Mb, a total of 2994 and 3166 genes and a GC content of 46.27 % and 46.56 %, respectively. Genomic safety was assessed following the EFSA guidelines: the identification of both strains was confirmed through Average Nucleotide Identity, and the absence of virulence, pathogenic and antibiotic resistance genes was demonstrated. The genome stability analysis revealed the presence of plasmids and phage regions in both genomes, however, CRISPR sequences and other mechanisms to fight against phage infections were encoded. The probiotic abilities of both strains were supported by the presence of genes for the synthesis of SCFA, genes involved in resistance to acid and bile salts or a thiamine production cluster. Moreover, the encoded exopolysaccharide biosynthesis genes could provide additional protection against the deleterious gastrointestinal conditions, besides which, playing a key role in adherence and coaggregation of pathogenic bacteria together with the high number of adhesion proteins and domains encoded by both genomes. Additionally, the bacteriocin cluster genes found in both strains, could provide an advantageous ability to compete against pathogenic bacteria. This genomic study supports the probiotic characteristics described previously for these two strains and satisfies the safety requirements to be used in food products.
Collapse
Affiliation(s)
- Lidia Rodrigo-Torres
- Department of Microbiology and Ecology, University of Valencia, Burjassot 46100, Valencia, Spain; Spanish Type Culture Collection (CECT), University of Valencia, Paterna 46980, Valencia, Spain
| | - José María Landete
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Sant Cugat del Vallès 08172, Barcelona, Spain
| | - Ángela Peirotén
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Susana Langa
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Eva Rodríguez-Minguez
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - David R Arahal
- Department of Microbiology and Ecology, University of Valencia, Burjassot 46100, Valencia, Spain; Spanish Type Culture Collection (CECT), University of Valencia, Paterna 46980, Valencia, Spain
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Burjassot 46100, Valencia, Spain; Spanish Type Culture Collection (CECT), University of Valencia, Paterna 46980, Valencia, Spain
| | - Juan L Arqués
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Yang Y, Yu Q, Wang M, Zhao R, Liu H, Xun L, Xia Y. Escherichia coli BW25113 Competent Cells Prepared Using a Simple Chemical Method Have Unmatched Transformation and Cloning Efficiencies. Front Microbiol 2022; 13:838698. [PMID: 35401484 PMCID: PMC8989280 DOI: 10.3389/fmicb.2022.838698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Escherichia coli recA− strains are usually used for cloning to prevent insert instability via RecA-dependent recombination. Here, we report that E. coli BW25113 (recA+) competent cells prepared by using a previously reported transformation and storage solution (TSS) had 100-fold or higher transformation efficiency than the commonly used E. coli cloning strains, including XL1-Blue MRF’. The cloning success rates with E. coli BW25113 were 440 to 1,267-fold higher than those with E. coli XL1-Blue MRF’ when several inserts were assembled into four vectors by using a simple DNA assembly method. The difference was in part due to RecA, as the recA deletion in E. coli BW25113 reduced the transformation efficiency by 16 folds and cloning success rate by about 10 folds. However, the transformation efficiency and the cloning success rate of the recA deletion mutant of E. coli BW25113 are still 12- and >48-fold higher than those of E. coli XL1-Blue MRF’, which is a commonly used cloning strain. The cloned inserts with different lengths of homologous sequences were assembled into four vectors and transformed into E. coli BW25113, and they were stably maintained in BW25113. Thus, we recommend using E. coli BW25113 for efficient cloning and DNA assembly.
Collapse
Affiliation(s)
- Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qiaoli Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
- *Correspondence: Luying Xun, Yongzhen Xia,
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Luying Xun, Yongzhen Xia,
| |
Collapse
|
7
|
Korniakova V, Devinck A, Groleau MC, Déziel E, Perreault J. Fluoride-Controlled Riboswitch-Based Dampening of Gene Expression for Cloning Potent Promoters. Front Genet 2022; 12:591543. [PMID: 35126444 PMCID: PMC8814607 DOI: 10.3389/fgene.2021.591543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Bioreporter systems based on detectable enzyme activity, such as that of beta-galactosidase or luciferase, are key in novel bacterial promoter discovery and study. While these systems permit quantification of gene expression, their use is limited by the toxicity of the expressed reporter enzymes in a given host. Indeed, the most potent promoters may be overlooked if their activity causes a lethal overproduction of the reporter genes when screening for transcriptional activity of potential promoter sequences with the luxCDABE cassette. To overcome this limitation, a variation of the mini-CTX-lux plasmid has been designed which allows reduction of promoter activity via the addition of an adjacent fluoride riboswitch. The riboswitch adds a layer of regulation between the promoter and the reporter gene, allowing cloning of stronger promoters by weakening expression, while giving the potential to induce with fluoride to provide a good signal for weaker promoters, thus circumventing limitations associated with reporter toxicity. We noticed the riboswitch potential portability issues between species, suggesting caution when using riboswitches non-native to the species where it is being used. This study introduces a new molecular biology tool which will allow for the identification of previously unverifiable or uncharacterized potent promoters and also provides a cloning vector for translational fusion with luciferase in a plasmid compatible with many species such as from the genera Burkholderia and Pseudomonas.
Collapse
|
8
|
Mehta D, Chirmade T, Tungekar AA, Gani K, Bhambure R. Cloning and expression of antibody fragment (Fab) I: Effect of expression construct and induction strategies on light and heavy chain gene expression. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Xu J, Yang J, Jiang Y, Wu M, Yang S, Yang L. A novel global transcriptional perturbation target identified by forward genetics reprograms Vibrio natriegens for improving recombinant protein production. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1124-1133. [PMID: 34169308 DOI: 10.1093/abbs/gmab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Vibrio natriegens is known to be the fastest-growing free-living bacterium with the potential to be a novel protein expression system other than Escherichia coli. Seven sampled genes of interest (GOIs) encoding biocatalyst enzymes, including Ochrobactrum anthropi-derived ω-transaminase (OATA), were strongly expressed in E. coli but weakly in V. natriegens using the pET expression system. In this study, we fused the C-terminal of OATA with green fluorescent protein (GFP) and obtained V. natriegens mutants that could increase both protein yield and enzyme activity of OATA as well as the other three GOIs by ultraviolet mutagenesis, fluorescence-activated cell sorting (FACS), and OATA colorimetric assay. Furthermore, next-generation sequencing and strain reconstruction revealed that the Y457 variants in the conserved site of endogenous RNA polymerase (RNAP) β' subunit rpoC are responsible for the increase in recombinant protein yield. We speculated that the mutation of rpoC Y457 may reprogram V. natriegens's innate gene transcription, thereby increasing the copy number of pET plasmids and soluble protein yield of certain GOIs. The increase in GOI expression may partly be attributed to the increase in copy number. In conclusion, GOI-GFP fusion combined with FACS is a powerful tool of forward genetics that can be used to obtain a superior expression chassis. If more high-expression-related targets are found for more GOIs, it would make the construction of next-generation protein expression chassis more time-saving.
Collapse
Affiliation(s)
- Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Shanghai Taoyusheng Biotechnology Co. Ltd, Shanghai 201201, China
| | - Mianbin Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| |
Collapse
|
10
|
Borne R, Vita N, Franche N, Tardif C, Perret S, Fierobe HP. Engineering of a new Escherichia coli strain efficiently metabolizing cellobiose with promising perspectives for plant biomass-based application design. Metab Eng Commun 2021; 12:e00157. [PMID: 33457204 PMCID: PMC7797564 DOI: 10.1016/j.mec.2020.e00157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022] Open
Abstract
The necessity to decrease our fossil energy dependence requests bioprocesses based on biomass degradation. Cellobiose is the main product released by cellulases when acting on the major plant cell wall polysaccharide constituent, the cellulose. Escherichia coli, one of the most common model organisms for the academy and the industry, is unable to metabolize this disaccharide. In this context, the remodeling of E. coli to catabolize cellobiose should thus constitute an important progress for the design of such applications. Here, we developed a robust E. coli strain able to metabolize cellobiose by integration of a small set of modifications in its genome. Contrary to previous studies that use adaptative evolution to achieve some growth on this sugar by reactivating E. coli cryptic operons coding for cellobiose metabolism, we identified easily insertable modifications impacting the cellobiose import (expression of a gene coding a truncated variant of the maltoporin LamB, modification of the expression of lacY encoding the lactose permease) and its intracellular degradation (genomic insertion of a gene encoding either a cytosolic β-glucosidase or a cellobiose phosphorylase). Taken together, our results provide an easily transferable set of mutations that confers to E. coli an efficient growth phenotype on cellobiose (doubling time of 2.2 h in aerobiosis) without any prior adaptation.
Collapse
Affiliation(s)
| | | | | | - Chantal Tardif
- Aix-Marseille Université, CNRS, UMR7283, 31 ch. Joseph Aiguier, F-13402, Marseille, France
| | - Stéphanie Perret
- Aix-Marseille Université, CNRS, UMR7283, 31 ch. Joseph Aiguier, F-13402, Marseille, France
| | - Henri-Pierre Fierobe
- Aix-Marseille Université, CNRS, UMR7283, 31 ch. Joseph Aiguier, F-13402, Marseille, France
| |
Collapse
|
11
|
Ramirez MS, Iriarte A, Reyes-Lamothe R, Sherratt DJ, Tolmasky ME. Small Klebsiella pneumoniae Plasmids: Neglected Contributors to Antibiotic Resistance. Front Microbiol 2019; 10:2182. [PMID: 31616398 PMCID: PMC6764390 DOI: 10.3389/fmicb.2019.02182] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is the causative agent of community- and, more commonly, hospital-acquired infections. Infections caused by this bacterium have recently become more dangerous due to the acquisition of multiresistance to antibiotics and the rise of hypervirulent variants. Plasmids usually carry genes coding for resistance to antibiotics or virulence factors, and the recent sequence of complete K. pneumoniae genomes showed that most strains harbor many of them. Unlike large plasmids, small, usually high copy number plasmids, did not attract much attention. However, these plasmids may include genes coding for specialized functions, such as antibiotic resistance, that can be expressed at high levels due to gene dosage effect. These genes may be part of mobile elements that not only facilitate their dissemination but also participate in plasmid evolution. Furthermore, high copy number plasmids may also play a role in evolution by allowing coexistence of mutated and non-mutated versions of a gene, which helps to circumvent the constraints imposed by trade-offs after certain genes mutate. Most K. pneumoniae plasmids 25-kb or smaller replicate by the ColE1-type mechanism and many of them are mobilizable. The transposon Tn1331 and derivatives were found in a high percentage of these plasmids. Another transposon that was found in representatives of this group is the bla KPC-containing Tn4401. Common resistance determinants found in these plasmids were aac(6')-Ib and genes coding for β-lactamases including carbapenemases.
Collapse
Affiliation(s)
- Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República de Uruguay, Montevideo, Uruguay
| | | | - David J. Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|