1
|
Xue Q, Wang B, Feng J, Li C, Yu M, Zhao Y, Qi Z. Lycorine (Lycoris radiata)-a unique natural medicine on breast cancer. J Cell Mol Med 2024; 28:e70032. [PMID: 39175104 PMCID: PMC11341274 DOI: 10.1111/jcmm.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Breast cancer (BC) is one of the most common types of cancer among women worldwide. Lycorine (Lycoris radiata), a small molecule derived from the traditional Chinese herb Amaryllidaceae plants, has appeared potential effect on inhibiting the growth of cancer cells and inducing apoptosis in various types of cancer with minor side effects. To discuss the therapeutic effects and molecular mechanisms of lycorine on BC established by lycorine-treated S180 tumour-bearing mice in vivo. Furthermore, both the mitotic and microtubule assembly dynamics genes were performed by qPCR assays, and the protein expression associated with mitotic arrest was investigated by western blot. Lycorine was demonstrated to reduce sarcoma growth of S180 tumour-bearing mice and inhibit the proliferation of MCF-7 cells in concentration-dependent manner. Moreover, lycorine induced M phase cell cycle arrest via interfering with the mitotic apparatus regulated the expression of 20 genes and 15 proteins in cell cycle progression. Furthermore, this study confirmed that the potential effect of lycorine on BC might be mediated by cell cycle arrest in M phase for the first time. These results would be the consequence of exploitation of lycorine as a potential drug for BC therapy, however further preclinical and clinical studies are still needed.
Collapse
Affiliation(s)
- Qinbing Xue
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Bing Wang
- School of Food EngineeringHarbin University of CommerceHarbinChina
| | - Jie Feng
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Chaoyu Li
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| | - Yan Zhao
- Department of Medical ImagingThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zheng Qi
- Engineering Research Center for Medicine, Ministry of EducationHarbin University of CommerceHarbinChina
| |
Collapse
|
2
|
Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther 2023; 251:108547. [PMID: 37838219 DOI: 10.1016/j.pharmthera.2023.108547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jacob W Ballway
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Lim KK, Koh NZH, Zeng YB, Chuan JK, Raechell R, Chen ES. Resistance to Chemotherapeutic 5-Fluorouracil Conferred by Modulation of Heterochromatic Integrity through Ino80 Function in Fission Yeast. Int J Mol Sci 2023; 24:10687. [PMID: 37445861 DOI: 10.3390/ijms241310687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
5-Fluorouracil (5-FU) is a conventional chemotherapeutic drug widely used in clinics worldwide, but development of resistance that compromises responsiveness remains a major hurdle to its efficacy. The mechanism underlying 5-FU resistance is conventionally attributed to the disruption of nucleotide synthesis, even though research has implicated other pathways such as RNA processing and chromatin dysregulation. Aiming to clarify resistance mechanisms of 5-FU, we tested the response of a collection of fission yeast (Schizosaccharomyces pombe) null mutants, which confer multiple environmental factor responsiveness (MER). Our screen identified disruption of membrane transport, chromosome segregation and mitochondrial oxidative phosphorylation to increase cellular susceptibility towards 5-FU. Conversely, we revealed several null mutants of Ino80 complex factors exhibited resistance to 5-FU. Furthermore, attenuation of Ino80 function via deleting several subunit genes reversed loss of chromosome-segregation fidelity in 5-FU in the loss-of-function mutant of the Argonaute protein, which regulates RNA interference (RNAi)-dependent maintenance of pericentromeric heterochromatin. Our study thus uncovered a critical role played by chromatin remodeling Ino80 complex factors in 5-FU resistance, which may constitute a possible target to modulate in reversing 5-FU resistance.
Collapse
Affiliation(s)
- Kim Kiat Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Nathaniel Zhi Hao Koh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Yi Bing Zeng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Jun Kai Chuan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Raechell Raechell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- National University Health System (NUHS), Singapore 119228, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Graduate School-Integrative Sciences & Engineering Programme, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
4
|
GRANT Motif Regulates CENP-A Incorporation and Restricts RNA Polymerase II Accessibility at Centromere. Genes (Basel) 2022; 13:genes13101697. [PMID: 36292582 PMCID: PMC9602348 DOI: 10.3390/genes13101697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Precise chromosome segregation is essential for maintaining genomic stability, and its proper execution centers on the centromere, a chromosomal locus that mounts the kinetochore complex to mediate attachment of chromosomes to the spindle microtubules. The location of the centromere is epigenetically determined by a centromere-specific histone H3 variant, CENP-A. Many human cancers exhibit overexpression of CENP-A, which correlates with occurrence of aneuploidy in these malignancies. Centromeric targeting of CENP-A depends on its histone fold, but recent studies showed that the N-terminal tail domain (NTD) also plays essential roles. Here, we investigated implications of NTD in conferring aneuploidy formation when CENP-A is overexpressed in fission yeast. A series of mutant genes progressively lacking one amino acid of the NTD have been constructed for overexpression in wild-type cells using the intermediate strength nmt41 promoter. Constructs hosting disrupted GRANT (Genomic stability-Regulating site within CENP-A N-Terminus) motif in NTD results in growth retardation, aneuploidy, increased localization to the centromere, upregulated RNA polymerase II accessibility and transcriptional derepression of the repressive centromeric chromatin, suggesting that GRANT residues fine-tune centromeric CENP-A incorporation and restrict RNA polymerase II accessibility. This work highlighted the importance of CENP-A NTD, particularly the GRANT motif, in aneuploidy formation of overexpressed CENP-A in fission yeast.
Collapse
|
5
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Int J Biochem Cell Biol 2022; 144:106155. [PMID: 34990836 DOI: 10.1016/j.biocel.2021.106155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Epigenetic dysregulation is an important contributor to carcinogenesis. This is not surprising, as chromatin-genomic DNA organized around structural histone scaffolding-serves as the template on which occurs essential nuclear processes, such as transcription, DNA replication and DNA repair. Histone H3 lysine 36 (H3K36) methyltransferases, such as the SET-domain 2 protein (SETD2), have emerged as critical tumor suppressors. Previous work on mammalian SETD2 and its counterpart in model organisms, Set2, has highlighted the role of this protein in governing genomic stability through transcriptional elongation and splicing, as well as in DNA damage response processes and cell cycle progression. A compendium of SETD2 mutations have been documented, garnered from sequenced cancer patient genome data, and these findings underscore the cancer-driving properties of SETD2 loss-of-function. In this review, we consolidate the molecular mechanisms regulated by SETD2/Set2 and discuss evidence of its dysregulation in tumorigenesis. Insight into the genetic interactions that exist between SETD2 and various canonical intracellular signaling pathways has not only empowered pharmacological intervention by taking advantage of synthetic lethality but underscores SETD2 as a druggable target for precision cancer therapy.
Collapse
|
7
|
Kriss CL, Duro N, Nadeau OW, Guergues J, Chavez-Chiang O, Culver-Cochran AE, Chaput D, Varma S, Stevens SM. Site-specific identification and validation of hepatic histone nitration in vivo: Implications for alcohol-induced liver injury. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4713. [PMID: 33942435 DOI: 10.1002/jms.4713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Oxidative and nitrative stress have been implicated in the molecular mechanisms underlying a variety of biological processes and disease states including cancer, aging, cardiovascular disease, neurological disorders, diabetes, and alcohol-induced liver injury. One marker of nitrative stress is the formation of 3-nitrotyrosine, or protein tyrosine nitration (PTN), which has been observed during inflammation and tissue injury; however, the role of PTN in the progression or possibly the pathogenesis of disease is still unclear. We show in a model of alcohol-induced liver injury that an increase in PTN occurs in hepatocyte nuclei within the liver of wild-type male C57BL/6J mice following chronic ethanol exposure (28 days). High-resolution mass spectrometric analysis of isolated hepatic nuclei revealed several novel sites of tyrosine nitration on histone proteins. Histone nitration sites were validated by tandem mass spectrometry (MS/MS) analysis of representative synthetic nitropeptides equivalent in sequence to the respective nitrotyrosine sites identified in vivo. We further investigated the potential structural impact of the novel histone H3 Tyr41 (H3Y41) nitration site identified using molecular dynamics (MD) simulations. MD simulations of the nitrated and non-nitrated forms of histone H3Y41 showed significant structural changes at the DNA interface upon H3Y41 nitration. The results from this study suggest that, in addition to other known post-translational modifications that occur on histone proteins (e.g., acetylation and methylation), PTN could induce chromatin structural changes, possibly affecting gene transcription processes associated with the development of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Crystina L Kriss
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
- Department of Cardiovascular Regeneration, Houston Methodist Research Institute, 6607 Bertner Ave, Houston, TX, 77030, USA
| | - Nalvi Duro
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Dr, Colchester, VT, 05446, USA
| | - Jennifer Guergues
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Dr, Colchester, VT, 05446, USA
- MSRC Proteomics Core Laboratory, Vanderbilt University, Medical Research Building III, Nashville, TN, 37232, USA
| | - Omar Chavez-Chiang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB-3, Tampa, FL, 33612, USA
| | - Ashley E Culver-Cochran
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| |
Collapse
|