1
|
Sahu JK, Thakur S, Subhadarsini I, Acharya N. p12 isoform-2 is a regulatory subunit of human DNA polymerase delta and is dysregulated in various cancers. FEBS Lett 2024; 598:3087-3104. [PMID: 39626050 DOI: 10.1002/1873-3468.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/24/2024]
Abstract
Dysregulation of human DNA polymerase delta (Polδ) subunits is associated with genome instability and pathological disorders. Genome databases suggest the expression of several spliced variants of subunits which may alter Polδ function. Here, we analyzed the protein-encoding variants of the Polδ subunit p12 and their association with cancer. p12 isoform-2 (p12*) encodes a 79 aa protein with a C-terminal tail distinct from the previously characterized p12. Like p12, p12* dimerizes and interacts with p125 and p50 subunits and is thus an integral component of Polδ. Further, we observed dysregulated p12* expression in low-grade glioma, renal, thyroid, and pancreatic carcinomas. This study identifies a previously unrecognized Polδ complex and highlights a possible regulatory role of p12 variants in cellular phenotypes.
Collapse
Affiliation(s)
- Jugal Kishor Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Ipsita Subhadarsini
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
2
|
Utkalaja BG, Patel SK, Sahu SR, Dutta A, Acharya N. Critical roles of Dpb3-Dpb4 sub-complex of DNA polymerase epsilon in DNA replication, genome stability, and pathogenesis of Candida albicans. mBio 2024; 15:e0122724. [PMID: 39207097 PMCID: PMC11481497 DOI: 10.1128/mbio.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
DNA polymerase ε (Polε) is an essential replicative polymerase consisting of Pol2, Dpb2, Dpb3, and Dpb4 subunits and has not been explored in the pathogenic yeast Candida albicans. C. albicans is accountable for >40% of deaths due to systemic candidiasis per year worldwide. Genome plasticity is one of the adaptive mechanisms associated with virulence, and as it is associated with DNA polymerase function, this study explored the role of Polε in genome stability and pathogenesis of C. albicans. POL2 and DPB2 are haploinsufficient, but DPB3 and DPB4 are dispensable for cell survival in diploid C. albicans. However, unlike in Saccharomyces cerevisiae, loss of any or both of the nonessential subunits or defective interaction between the two resulted in slow growth and temperature-sensitive phenotypes. Knockout strains of C. albicans (dpb3ΔΔ and dpb4ΔΔ and dpb3ΔΔdpb4ΔΔ) also exhibited sensitivity to genotoxic agents and delayed cell cycle progression. Reduced processive DNA synthesis and increased rate of mutagenesis were observed in dpb3 and dpb4 null strains. Whole-genome sequencing further confirmed the accumulation of indels and SNPs majorly in the intergenic repeat regions of the chromosomes of dpb3ΔΔdpb4ΔΔ. Polε-defective strains were constitutively filamentous and non-pathogenic in mice models of systemic candidiasis. Altogether, this study showed that the function of the Dpb3-Dpb4 subcomplex is critical for fungal morphogenesis and virulence besides its role as a structural component of Polε in DNA replication and genome stability; thus, their interacting interface may be targeted to develop antifungal drugs. IMPORTANCE This study explored the role of DNA polymerase epsilon, especially its non-essential structural subunits in Candida albicans biology. Apart from their role in DNA replication and genome stability, the Dpb3-Dpb4 subcomplex regulates morphological switching and virulence. Since the defective strain is locked in filamentous form and is avirulent, the complex may be targeted for anti-fungal drug development.
Collapse
Affiliation(s)
- Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
3
|
Sahu SR, Dutta A, Peroumal D, Kumari P, Utakalaja BG, Patel SK, Acharya N. Immunogenicity and efficacy of CNA25 as a potential whole-cell vaccine against systemic candidiasis. EMBO Mol Med 2024; 16:1254-1283. [PMID: 38783167 PMCID: PMC11178797 DOI: 10.1038/s44321-024-00080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Disseminated fungal infections account for ~1.5 million deaths per year worldwide, and mortality may increase further due to a rise in the number of immunocompromised individuals and drug-resistance fungal species. Since an approved antifungal vaccine is yet to be available, this study explored the immunogenicity and vaccine efficacy of a DNA polymerase mutant strain of Candida albicans. CNA25 is a pol32ΔΔ strain that exhibits growth defects and does not cause systemic candidiasis in mice. Immunized mice with live CNA25 were fully protected against C. albicans and C. parapsilosis but partially against C. tropicalis and C. glabrata infections. CNA25 induced steady expression of TLR2 and Dectin-1 receptors leading to a faster recognition and clearance by the immune system associated with the activation of protective immune responses mostly mediated by neutrophils, macrophages, NK cells, B cells, and CD4+ and CD8+ T cells. Molecular blockade of Dectin-1, IL-17, IFNγ, and TNFα abolished resistance to reinfection. Altogether, this study suggested that CNA25 collectively activates innate, adaptive, and trained immunity to be a promising live whole-cell vaccine against systemic candidiasis.
Collapse
Affiliation(s)
- Satya Ranjan Sahu
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Abinash Dutta
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Doureradjou Peroumal
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Premlata Kumari
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Bhabasha Gyanadeep Utakalaja
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Shraddheya Kumar Patel
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
4
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
5
|
Kumari P, Sahu SR, Utkalaja BG, Dutta A, Acharya N. RAD51-WSS1-dependent genetic pathways are essential for DNA-Protein crosslink repair and pathogenesis in Candida albicans. J Biol Chem 2023; 299:104728. [PMID: 37080389 DOI: 10.1016/j.jbc.2023.104728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
Genetic analyses in Saccharomyces cerevisiae suggest that nucleotide excision repair (NER), homologous recombination (HR), and proteases-dependent repair (PDR) pathways coordinately function to remove DNA-protein crosslinks (DPCs) from the genome. DPCs are genomic cytotoxic lesions generated due to the covalent linkage of proteins with DNA. Although NER and HR processes have been studied in pathogenic Candida albicans, their roles in DPCs repair (DPCR) are yet to be explored. Proteases like Wss1 and Tdp1 are known to be involved in DPCR, however, Tdp1 that selectively removes topoisomerase-DNA complexes is intrinsically absent in C. albicans. Therefore, the mechanism of DPCR might have evolved differently in C. albicans. Herein, we investigated the interplay of three genetic pathways and found that RAD51-WSS1 dependent HR and PDR pathways are essential for DPCs removal, and their absence caused an increased rate of loss of heterozygosity in C. albicans. RAD1 but not RAD2 of NER is critical for DPCR. Additionally, we observed truncation of chromosome#6 in the cells defective in both RAD51 and WSS1 genes. While the protease and DNA binding activities are essential, a direct interaction of Wss1 with the eukaryotic DNA clamp PCNA is not a requisite for Wss1's function. DPCR-defective C. albicans cells exhibited filamentous morphology, reduced immune cell evasion, and attenuation in virulence. Thus, we concluded that RAD51-WSS1-dependent DPCR pathways are essential for genome stability and candidiasis development. Since no vaccine against candidiasis is available for human use yet, we propose to explore DPCR defective attenuated strains (rad51ΔΔwss1ΔΔ and rad2ΔΔrad51ΔΔwss1ΔΔ) for whole-cell vaccine development.
Collapse
Affiliation(s)
- Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India; Regional center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India; Regional center of Biotechnology, Faridabad, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India; Regional center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India.
| |
Collapse
|
6
|
Patel SK, Sahu SR, Utkalaja BG, Bose S, Acharya N. Pol32, an accessory subunit of DNA polymerase delta, plays an essential role in genome stability and pathogenesis of Candida albicans. Gut Microbes 2023; 15:2163840. [PMID: 36601868 PMCID: PMC9828637 DOI: 10.1080/19490976.2022.2163840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is a pathobiont that inflicts serious bloodstream fungal infections in individuals with compromised immunity and gut dysbiosis. Genomic diversity in the form of copy number alteration, ploidy variation, and loss of heterozygosity as an adaptive mechanism to adverse environments is frequently observed in C. albicans. Such genomic variations also confer a varied degree of fungal virulence and drug resistance, yet the factors propelling these are not completely understood. DNA polymerase delta (Polδ) is an essential replicative DNA polymerase in the eukaryotic cell and is yet to be characterized in C. albicans. Therefore, this study was designed to gain insights into the role of Polδ, especially its non-essential subunit Pol32, in the genome plasticity and life cycle of C. albicans. PCNA, the DNA clamp, recruits Polδ to the replication fork for processive DNA replication. Unlike in Saccharomyces cerevisiae, the PCNA interaction protein (PIP) motif of CaPol32 is critical for Polδ's activity during DNA replication. Our comparative genetic analyses and whole-genome sequencing of POL32 proficient and deficient C. albicans cells revealed a critical role of Pol32 in DNA replication, cell cycle progression, and genome stability as SNPs, indels, and repeat variations were largely accumulated in pol32 null strain. The loss of pol32 in C. albicans conferred cell wall deformity; Hsp90 mediated azoles resistance, biofilm development, and a complete attenuation of virulence in an animal model of systemic candidiasis. Thus, although Pol32 is dispensable for cell survival, its function is essential for C. albicans pathogenesis; and we discuss its translational implications in antifungal drugs and whole-cell vaccine development.
Collapse
Affiliation(s)
- Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Swagata Bose
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,CONTACT Narottam Acharya ; Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar751023, India
| |
Collapse
|
7
|
Manohar K, Khandagale P, Patel SK, Sahu JK, Acharya N. The ubiquitin-binding domain of DNA polymerase η directly binds to DNA clamp PCNA and regulates translesion DNA synthesis. J Biol Chem 2022; 298:101506. [PMID: 34929163 PMCID: PMC8784325 DOI: 10.1016/j.jbc.2021.101506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
DNA polymerase eta (Polη) is a unique translesion DNA synthesis (TLS) enzyme required for the error-free bypass of ultraviolet ray (UV)-induced cyclobutane pyrimidine dimers in DNA. Therefore, its deficiency confers cellular sensitivity to UV radiation and an increased rate of UV-induced mutagenesis. Polη possesses a ubiquitin-binding zinc finger (ubz) domain and a PCNA-interacting-protein (pip) motif in the carboxy-terminal region. The role of the Polη pip motif in PCNA interaction required for DNA polymerase recruitment to the stalled replication fork has been demonstrated in earlier studies; however, the function of the ubz domain remains divisive. As per the current notion, the ubz domain of Polη binds to the ubiquitin moiety of the ubiquitinated PCNA, but such interaction is found to be nonessential for Polη's function. In this study, through amino acid sequence alignments, we identify three classes of Polη among different species based on the presence or absence of pip motif or ubz domain and using comprehensive mutational analyses, we show that the ubz domain of Polη, which intrinsically lacks the pip motif directly binds to the interdomain connecting loop (IDCL) of PCNA and regulates Polη's TLS activity. We further propose two distinct modes of PCNA interaction mediated either by pip motif or ubz domain in various Polη homologs. When the pip motif or ubz domain of a given Polη binds to the IDCL of PCNA, such interaction becomes essential, whereas the binding of ubz domain to PCNA through ubiquitin is dispensable for Polη's function.
Collapse
Affiliation(s)
- Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Jugal Kishor Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
8
|
'PIPs' in DNA polymerase: PCNA interaction affairs. Biochem Soc Trans 2021; 48:2811-2822. [PMID: 33196097 DOI: 10.1042/bst20200678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023]
Abstract
Interaction of PCNA with DNA polymerase is vital to efficient and processive DNA synthesis. PCNA being a homotrimeric ring possesses three hydrophobic pockets mostly involved in an interaction with its binding partners. PCNA interacting proteins contain a short sequence of eight amino acids, popularly coined as PIP motif, which snuggly fits into the hydrophobic pocket of PCNA to stabilize the interaction. In the last two decades, several PIP motifs have been mapped or predicted in eukaryotic DNA polymerases. In this review, we summarize our understandings of DNA polymerase-PCNA interaction, the function of such interaction during DNA synthesis, and emphasize the lacunae that persist. Because of the presence of multiple ligands in the replisome complex and due to many interaction sites in DNA polymerases, we also propose two modes of DNA polymerase positioning on PCNA required for DNA synthesis to rationalize the tool-belt model of DNA replication.
Collapse
|
9
|
Structure of an open conformation of T7 DNA polymerase reveals novel structural features regulating primer-template stabilization at the polymerization active site. Biochem J 2021; 478:2665-2679. [PMID: 34160020 DOI: 10.1042/bcj20200922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/25/2023]
Abstract
The crystal structure of full-length T7 DNA polymerase in complex with its processivity factor thioredoxin and double-stranded DNA in the polymerization active site exhibits two novel structural motifs in family-A DNA polymerases: an extended β-hairpin at the fingers subdomain, that interacts with the DNA template strand downstream the primer-terminus, and a helix-loop-helix motif (insertion1) located between residues 102 to 122 in the exonuclease domain. The extended β-hairpin is involved in nucleotide incorporation on substrates with 5'-overhangs longer than 2 nt, suggesting a role in stabilizing the template strand into the polymerization domain. Our biochemical data reveal that insertion1 of the exonuclease domain makes stabilizing interactions that facilitate proofreading by shuttling the primer strand into the exonuclease active site. Overall, our studies evidence conservation of the 3'-5' exonuclease domain fold between family-A DNA polymerases and highlight the modular architecture of T7 DNA polymerase. Our data suggest that the intercalating β-hairpin guides the template-strand into the polymerization active site after the T7 primase-helicase unwinds the DNA double helix ameliorating the formation of secondary structures and decreasing the appearance of indels.
Collapse
|
10
|
Kumari P, Sundaram R, Manohar K, Vasudevan D, Acharya N. Interdomain connecting loop and J loop structures determine cross-species compatibility of PCNA. J Biol Chem 2021; 297:100911. [PMID: 34175309 PMCID: PMC8319368 DOI: 10.1016/j.jbc.2021.100911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic proliferating cell nuclear antigen (PCNA) plays an essential role in orchestrating the assembly of the replisome complex, stimulating processive DNA synthesis, and recruiting other regulatory proteins during the DNA damage response. PCNA and its binding partner network are relatively conserved in eukaryotes, and it exhibits extraordinary structural similarity across species. However, despite this structural similarity, the PCNA of a given species is rarely functional in heterologous systems. In this report, we determined the X-ray crystal structure of Neurospora crassa PCNA (NcPCNA) and compared its structure–function relationship with other available PCNA studies to understand this cross-species incompatibility. We found two regions, the interdomain connecting loop (IDCL) and J loop structures, vary significantly among PCNAs. In particular, the J loop deviates in NcPCNA from that in Saccharomyces cerevisiae PCNA (ScPCNA) by 7 Å. Differences in the IDCL structures result in varied binding affinities of PCNAs for the subunit Pol32 of DNA polymerase delta and for T2-amino alcohol, a small-molecule inhibitor of human PCNA. To validate that these structural differences are accountable for functional incompatibility in S. cerevisiae, we generated NcPCNA mutants mimicking IDCL and J loop structures of ScPCNA. Our genetic analyses suggested that NcPCNA mutants are fully functional in S. cerevisiae. The susceptibility of the strains harboring ScPCNA mimics of NcPCNA to various genotoxic agents was similar to that in yeast cells expressing ScPCNA. Taken together, we conclude that in addition to the overall architecture of PCNA, structures of the IDCL and J loop of PCNA are critical determinants of interspecies functional compatibility.
Collapse
Affiliation(s)
- Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India; Manipal Academy of Higher Education, Manipal, India
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
11
|
Sundaram R, Manohar K, Patel SK, Acharya N, Vasudevan D. Structural analyses of PCNA from the fungal pathogen Candida albicans identify three regions with species-specific conformations. FEBS Lett 2021; 595:1328-1349. [PMID: 33544878 DOI: 10.1002/1873-3468.14055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/11/2023]
Abstract
An assembly of multiprotein complexes achieves chromosomal DNA replication at the replication fork. In eukaryotes, proliferating cell nuclear antigen (PCNA) plays a vital role in the assembly of multiprotein complexes at the replication fork and is essential for cell viability. PCNA from several organisms, including Saccharomyces cerevisiae, has been structurally characterised. However, the structural analyses of PCNA from fungal pathogens are limited. Recently, we have reported that PCNA from the opportunistic fungal pathogen Candida albicans complements the essential functions of ScPCNA in S. cerevisiae. Still, it only partially rescues the loss of ScPCNA when the yeast cells are under genotoxic stress. To understand this further, herein, we have determined the crystal structure of CaPCNA and compared that with the existing structures of other fungal and human PCNA. Our comparative structural and in-solution small-angle X-ray scattering (SAXS) analyses reveal that CaPCNA forms a stable homotrimer, both in crystal and in solution. It displays noticeable structural alterations in the oligomerisation interface, P-loop and hydrophobic pocket regions, suggesting its differential function in a heterologous system and avenues for developing specific therapeutics. DATABASES: The PDB and SASBDB accession codes for CaPCNA are 7BUP and SASDHQ9, respectively.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, India
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
12
|
Selective Metal Ion Utilization Contributes to the Transformation of the Activity of Yeast Polymerase η from DNA Polymerization toward RNA Polymerization. Int J Mol Sci 2020; 21:ijms21218248. [PMID: 33158019 PMCID: PMC7672554 DOI: 10.3390/ijms21218248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Polymerase eta (Polη) is a translesion synthesis DNA polymerase directly linked to cancer development. It can bypass several DNA lesions thereby rescuing DNA damage-stalled replication complexes. We previously presented evidence implicating Saccharomyces cerevisiae Polη in transcription elongation, and identified its specific RNA extension and translesion RNA synthetic activities. However, RNA synthesis by Polη proved rather inefficient under conditions optimal for DNA synthesis. Searching for factors that could enhance its RNA synthetic activity, we have identified the divalent cation of manganese. Here, we show that manganese triggers drastic changes in the activity of Polη. Kinetics experiments indicate that manganese increases the efficiency of ribonucleoside incorporation into RNA by ~400–2000-fold opposite undamaged DNA, and ~3000 and ~6000-fold opposite TT dimer and 8oxoG, respectively. Importantly, preference for the correct base is maintained with manganese during RNA synthesis. In contrast, activity is strongly impaired, and base discrimination is almost lost during DNA synthesis by Polη with manganese. Moreover, Polη shows strong preference for manganese during RNA synthesis even at a 25-fold excess magnesium concentration. Based on this, we suggest that a new regulatory mechanism, selective metal cofactor utilization, modulates the specificity of Polη helping it to perform distinct activities needed for its separate functions during replication and transcription.
Collapse
|
13
|
Khandagale P, Thakur S, Acharya N. Identification of PCNA-interacting protein motifs in human DNA polymerase δ. Biosci Rep 2020; 40:BSR20200602. [PMID: 32314787 PMCID: PMC7189476 DOI: 10.1042/bsr20200602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/22/2023] Open
Abstract
DNA polymerase δ (Polδ) is a highly processive essential replicative DNA polymerase. In humans, the Polδ holoenzyme consists of p125, p50, p68 and p12 subunits and recently, we showed that the p12 subunit exists as a dimer. Extensive biochemical studies suggest that all the subunits of Polδ interact with the processivity factor proliferating cell nuclear antigen (PCNA) to carry out a pivotal role in genomic DNA replication. While PCNA-interacting protein motif (PIP) motifs in p68, p50 and p12 have been mapped, same in p125, the catalytic subunit of the holoenzyme, remains elusive. Therefore, in the present study by using multiple approaches we have conclusively mapped a non-canonical PIP motif from residues 999VGGLLAFA1008 in p125, which binds to the inter-domain-connecting loop (IDCL) of PCNA with high affinity. Collectively, including previous studies, we conclude that similar to Saccharomyces cerevisiae Polδ, each of the human Polδ subunits possesses motif to interact with PCNA and significantly contributes toward the processive nature of this replicative DNA polymerase.
Collapse
Affiliation(s)
- Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| |
Collapse
|