1
|
Ortiz Álvarez J, Barrientos Flores C, Colín Castro CA, Hernández Durán M, Martínez Zavaleta MG, Méndez Sotelo BJ, Hernández Pérez CF, Sohlenkamp C, Franco Cendejas R, López Jácome LE. Unveiling the resistance: comparative genomic analysis of two novel cefiderocol-resistant Stenotrophomonas species from a referral hospital in Mexico City. J Appl Microbiol 2025; 136:lxaf048. [PMID: 40037605 DOI: 10.1093/jambio/lxaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Stenotrophomonas maltophilia is the species most frequently identified by clinical microbiology laboratories due to its presence in the main identification systems databases. Phenotypic identification methods are widely used in laboratories, and the misidentification of Stenotrophomonas spp. is highly probable due to the presence of cryptic species. Our aim was to confirm the identity of five cefiderocol-resistant Stenotrophomonas species, initially identified as S. maltophilia, using genome analysis tools, performing comparative and functional analyses of these clinical strains associated with infectious processes. METHODS Identifications were performed using average nucleotide identity, average amino acid identity, and in silico DNA-DNA hybridization. Virulence factors, resistance mechanisms, prophages, CRISPR elements, and metabolism elements were identified and annotated. RESULTS We confirmed the identity of the strains C960 and C2866 as Stenotrophomonas geniculata, and of strain C1657 as Stenotrophomonas indicatrix. The species designation parameters obtained indicated that the strains C4297 and C2852 are novel species. In comparison with the hypothetical proteome of the S. maltophilia complex species analyzed, elements associated with amino acid metabolism, DNA/RNA processing and repair, envelope biogenesis, and intracellular transport are predominant. Elements probably associated with antibiotic resistance, such as efflux pumps, aminoglycoside transferases, and phosphoethanolamine transferases, were identified, and the presence of genes related to capsule formation, iron acquisition, and intracellular survival probably contributes to virulence. CONCLUSIONS This is the first report of S. geniculata and S. indicatrix as human pathogens. Besides, we proposed two novel species members of Smc: Stenotrophomonas veracruzanensis sp. nov. and Stenotrophomonas mexicanensis sp. nov.
Collapse
Affiliation(s)
- Jossue Ortiz Álvarez
- Programa "Investigadoras e Investigadores por México" (IIXM), Secretaria de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Mexico City, 03940, Mexico
| | | | - Claudia Adriana Colín Castro
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - Melissa Hernández Durán
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - María Guadalupe Martínez Zavaleta
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - Braulio Josué Méndez Sotelo
- División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - Cindy Fabiola Hernández Pérez
- Centro Nacional de Referencia de Inocuidad y Bioseguridad Agroalimentaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Tecámac, Mexico State, 55740, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Rafael Franco Cendejas
- Subdirección de Investigación Biomédica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - Luis Esaú López Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
2
|
Rivera-Hernández G, Tijerina-Castro GD, Cortés-Pérez S, Ferrera-Cerrato R, Alarcón A. Evaluation of functional plant growth-promoting activities of culturable rhizobacteria associated to tunicate maize ( Zea mays var. tunicata A. St. Hil), a Mexican exotic landrace grown in traditional agroecosystems. Front Microbiol 2024; 15:1478807. [PMID: 39417083 PMCID: PMC11480017 DOI: 10.3389/fmicb.2024.1478807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Tunicate maize (Zea mays var. tunicata A. St. Hil) is a landrace that constitutes a fundamental aspect of the socio-cultural identity of Ixtenco, Tlaxcala (Mexico) and represents an exotic phenotype whose kernels are enclosed in leaflike glumes. Despite multiple studies conducted worldwide on plant growth-promoting-rhizobacteria (PGPR) in commercial maize varieties grown under monoculture systems, very little is known about bacteria inhabiting native maize landraces in agroecosystems, but for tunicate maize such knowledge is non-existent. This research described and profiled functional groups of culturable rhizobacteria from tunicate maize at two phenological stages (tasseling and maturity/senescence) in a polyculture system, highlighting potential PGPR for biotechnological purposes. Ninety-five rhizobacteria were isolated and molecularly identified, and their physiological activities such as plant growth promotion, production of exogenous lytic enzymes, and antagonism against fungal pathogens were determined. The culturable rhizobacterial community associated to tunicate maize comprised 42 genera, dominated by Bacillaceae, Comamonadaceae, Microbacteriaceae, Micrococcaceae, Oxalobacteraceae, Pseudomonadaceae, and Rhizobaceae families. At tasseling stage, the identified bacteria corresponded to Arthrobacter, Priestia, Herbaspirillum, Pseudomonas, and Rhizobium, and exhibited redundant capabilities for stimulating plant growth and nutrition, and inhibiting fungal phytopathogens. At maturity/senescence stage, the main genera Arthrobacter and Microbacterium displayed lytic capabilities to support mineralization process. We recorded potential novel rhizosphere functional bacteria such as Rhizobium, Sphingobium, and Arthrobacter which are not previously described associated to maize landraces, as well as their bioprospection as PGPR detected at plant phenological stages poorly explored (like maturity/senescence). This taxonomic and functional diversity was attributed to the application of agricultural practices as well as the rhizosphere effect during specific phenological stages. Results described the diversity and functionality of culturable rhizosphere bacteria from tunicate maize in polyculture systems that allowed us the detection of potential rhizobacteria for further developing of biofertilizers and biocontrollers directed as biotechnology for sustainable agriculture, and for generating strategies for conservation of native plants and their microbial genetic resources.
Collapse
|
3
|
Newberger DR, Minas IS, Manter DK, Vivanco JM. Shifts of the soil microbiome composition induced by plant-plant interactions under increasing cover crop densities and diversities. Sci Rep 2023; 13:17150. [PMID: 37816810 PMCID: PMC10564930 DOI: 10.1038/s41598-023-44104-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Interspecific and intraspecific competition and facilitation have been a focus of study in plant-plant interactions, but their influence on plant recruitment of soil microbes is unknown. In this greenhouse microcosm experiment, three cover crops (alfalfa, brassica, and fescue) were grown alone, in paired mixtures, and all together under different densities. For all monoculture trials, total pot biomass increased as density increased. Monoculture plantings of brassica were associated with the bacteria Azospirillum spp., fescue with Ensifer adhaerens, and alfalfa with both bacterial taxa. In the polycultures of cover crops, for all plant mixtures, total above-ground alfalfa biomass increased with density, and total above ground brassica biomass remained unchanged. For each plant mixture, differential abundances highlighted bacterial taxa which had not been previously identified in monocultures. For instance, mixtures of all three plants showed an increase in abundance of Planctomyces sp. SH-PL14 and Sandaracinus amylolyticus which were not represented in the monocultures. Facilitation was best supported for the alfalfa-fescue interaction as the total above ground biomass was the highest of any mixture. Additionally, the bulk soil microbiome that correlated with increasing plant densities showed increases in plant growth-promoting rhizobacteria such as Achromobacter xylosoxidans, Stentotrophomonas spp., and Azospirillum sp. In contrast, Agrobacterium tumefaciens, a previously known generalist phytopathogen, also increased with alfalfa-fescue plant densities. This could suggest a strategy by which, after facilitation, a plant neighbor could culture a pathogen that could be more detrimental to the other.
Collapse
Affiliation(s)
- Derek R Newberger
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture and Pomology Research, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel K Manter
- USDA, Agricultural Research Services, Soil Management and Sugar Beet Research Unit, Fort Collins, CO, 80526, USA
| | - Jorge M Vivanco
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
4
|
Kumar A, Rithesh L, Kumar V, Raghuvanshi N, Chaudhary K, Abhineet, Pandey AK. Stenotrophomonas in diversified cropping systems: friend or foe? Front Microbiol 2023; 14:1214680. [PMID: 37601357 PMCID: PMC10437078 DOI: 10.3389/fmicb.2023.1214680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
In the current scenario, the use of synthetic fertilizers is at its peak, which is an expensive affair, possesses harmful effects to the environment, negatively affecting soil fertility and beneficial soil microfauna as well as human health. Because of this, the demand for natural, chemical-free, and organic foods is increasing day by day. Therefore, in the present circumstances use of biofertilizers for plant growth-promotion and microbe-based biopesticides against biotic stresses are alternative options to reduce the risk of both synthetic fertilizers and pesticides. The plant growth promoting rhizobacteria (PGPR) and microbial biocontrol agents are ecologically safe and effective. Owning their beneficial properties on plant systems without harming the ecosystem, they are catching the widespread interest of researchers, agriculturists, and industrialists. In this context, the genus Stenotrophomonas is an emerging potential source of both biofertilizer and biopesticide. This genus is particularly known for producing osmoprotective substances which play a key role in cellular functions, i.e., DNA replication, DNA-protein interactions, and cellular metabolism to regulate the osmotic balance, and also acts as effective stabilizers of enzymes. Moreover, few species of this genus are disease causing agents in humans that is why; it has become an emerging field of research in the present scenario. In the past, many studies were conducted on exploring the different applications of Stenotrophomonas in various fields, however, further researches are required to explore the various functions of Stenotrophomonas in plant growth promotion and management of pests and diseases under diverse growth conditions and to demonstrate its interaction with plant and soil systems. The present review discusses various plant growth and biocontrol attributes of the genus Stenotrophomonas in various food crops along with knowledge gaps. Additionally, the potential risks and challenges associated with the use of Stenotrophomonas in agriculture systems have also been discussed along with a call for further research in this area.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
- Department of Agriculture, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Lellapalli Rithesh
- Department of Plant Pathology, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - Vikash Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Nikhil Raghuvanshi
- Department of Agronomy, Institute of Agriculture and Natural Science, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Kautilya Chaudhary
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Abhineet
- Department of Agriculture, Integral Institute of Agricultural Sciences & Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Abhay K. Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R&D Center, Nagrakata, West Bengal, India
| |
Collapse
|
5
|
Chen M, Liu Y, Bao X, Yue Y, Tong B, Yang X, Yu H, Yang Y, Liu Y, Yu Y. Potential of Chinese Yam ( Dioscorea polystachya Turczaninow) By-Product as a Feed Additive in Largemouth Bass ( Micropterus salmoides): Turning Waste into Valuable Resources. AQUACULTURE NUTRITION 2023; 2023:9983499. [PMID: 37234450 PMCID: PMC10208758 DOI: 10.1155/2023/9983499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Chinese yam (Dioscorea polystachya Turczaninow) by-product produced in the water extraction process is commonly directly discarded resulting in a waste of resources and environmental pollution. However, the value of Chinese yam by-product which still contains effective ingredients is far from being fully realized; hence, it has the potential to be a safe and effective feed additive in aquaculture. To investigate the impacts of Chinese yam by-product on growth performance, antioxidant ability, histomorphology, and intestinal microbiota of Micropterus salmoides, juvenile fish (initial weight 13.16 ± 0.05 g) were fed diets supplemented with 0% (control), 0.1% (S1), 0.4% (S2), and 1.6% (S3) of Chinese yam by-product for 60 days. The results showed that no significant difference was found in weight gain, specific growth rate, and survival among all the experimental groups (P > 0.05). Feed conversion ratios of the S1 and S3 groups were significantly lower than those in the control group (P < 0.05). SOD activity of the S3 group and GSH contents of Chinese yam by-product groups were significantly higher than those in the control group (P < 0.05). MDA levels of the S2 and S3 groups were significantly lower than those in the control group and the S1 group (P < 0.05). Besides, Chinese yam by-product could protect liver and intestine health, as well as increase the abundance of beneficial bacteria and decrease the abundance of potential pathogens. This study suggests that Chinese yam by-product has the potential to be used as a functional feed additive in aquaculture, providing a reference for efficient recovery and utilization of by-products from plant sources during processing and culturing high-quality aquatic products.
Collapse
Affiliation(s)
- Mingshi Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Xiaoxue Bao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yuhua Yue
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Binbin Tong
- Sinopharm Group Dezhong (Foshan) Pharmaceutical Co., Ltd., Foshan 528225, China
| | - Xionghui Yang
- Sinopharm Group Dezhong (Foshan) Pharmaceutical Co., Ltd., Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| |
Collapse
|
6
|
Lara-Moreno A, Merchán F, Morillo E, Zampolli J, Di Gennaro P, Villaverde J. Genome analysis for the identification of genes involved in phenanthrene biodegradation pathway in Stenotrophomonas indicatrix CPHE1. Phenanthrene mineralization in soils assisted by integrated approaches. Front Bioeng Biotechnol 2023; 11:1158177. [PMID: 37214282 PMCID: PMC10192627 DOI: 10.3389/fbioe.2023.1158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Phenanthrene (PHE) is a highly toxic compound, widely present in soils. For this reason, it is essential to remove PHE from the environment. Stenotrophomonas indicatrix CPHE1 was isolated from an industrial soil contaminated by polycyclic aromatic hydrocarbons (PAHs) and was sequenced to identify the PHE degrading genes. Dioxygenase, monooxygenase, and dehydrogenase gene products annotated in S. indicatrix CPHE1 genome were clustered into different trees with reference proteins. Moreover, S. indicatrix CPHE1 whole-genome sequences were compared to genes of PAHs-degrading bacteria retrieved from databases and literature. On these basis, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis pointed out that cysteine dioxygenase (cysDO), biphenyl-2,3-diol 1,2-dioxygenase (bphC), and aldolase hydratase (phdG) were expressed only in the presence of PHE. Therefore, different techniques have been designed to improve the PHE mineralization process in five PHE artificially contaminated soils (50 mg kg-1), including biostimulation, adding a nutrient solution (NS), bioaugmentation, inoculating S. indicatrix CPHE1 which was selected for its PHE-degrading genes, and the use of 2-hydroxypropyl-β-cyclodextrin (HPBCD) as a bioavailability enhancer. High percentages of PHE mineralization were achieved for the studied soils. Depending on the soil, different treatments resulted to be successful; in the case of a clay loam soil, the best strategy was the inoculation of S. indicatrix CPHE1 and NS (59.9% mineralized after 120 days). In sandy soils (CR and R soils) the highest percentage of mineralization was achieved in presence of HPBCD and NS (87.3% and 61.3%, respectively). However, the combination of CPHE1 strain, HPBCD, and NS showed to be the most efficient strategy for sandy and sandy loam soils (LL and ALC soils showed 35% and 74.6%, respectively). The results indicated a high degree of correlation between gene expression and the rates of mineralization.
Collapse
Affiliation(s)
- Alba Lara-Moreno
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Francisco Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Esmeralda Morillo
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Jaime Villaverde
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
7
|
Ayilara MS, Adeleke BS, Babalola OO. Bioprospecting and Challenges of Plant Microbiome Research for Sustainable Agriculture, a Review on Soybean Endophytic Bacteria. MICROBIAL ECOLOGY 2023; 85:1113-1135. [PMID: 36319743 PMCID: PMC10156819 DOI: 10.1007/s00248-022-02136-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 05/04/2023]
Abstract
This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. Soybean is one of the most important oilseed crops with about 20-25% protein content and 20% edible oil production. The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabolite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.
Collapse
Affiliation(s)
- Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Bartholomew Saanu Adeleke
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
8
|
Adeleke BS, Babalola OO. Meta-omics of endophytic microbes in agricultural biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Abstract
The findings on the strategies employed by endophytic microbes have provided salient information to the researchers on the need to maximally explore them as bio-input in agricultural biotechnology. Biotic and abiotic factors are known to influence microbial recruitments from external plant environments into plant tissues. Endophytic microbes exhibit mutualism or antagonism association with host plants. The beneficial types contribute to plant growth and soil health, directly or indirectly. Strategies to enhance the use of endophytic microbes are desirable in modern agriculture, such that these microbes can be applied individually or combined as bioinoculants with bioprospecting in crop breeding systems. Scant information is available on the strategies for shaping the endophytic microbiome; hence, the need to unravel microbial strategies for yield enhancement and pathogen suppressiveness have become imperative. Therefore, this review focuses on the endophytic microbiome, mechanisms, factors influencing endophyte recruitment, and strategies for possible exploration as bioinoculants.
Collapse
|