1
|
Djehiche C, Benzidane N, Djeghim H, Tebboub M, Mebrek S, Abdelouhab K, Baghiani A, Charef N, Messaoudi M, Bensouici C, Lebsir R, Emran TB, Alsalme A, Cornu D, Bechelany M, Arrar L, Barhoum A. Ammodaucus Leucotrichus Seed Extract as a Potential Therapy in Animal Models of Rheumatoid Arthritis Induced by Complete Freund Adjuvant and Chicken Cartilage Collagen. Appl Biochem Biotechnol 2024; 196:8214-8238. [PMID: 38700618 DOI: 10.1007/s12010-024-04952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/23/2024]
Abstract
This study assessed the efficacy of an Ammodaucus leucotrichus seed extract to treat rheumatoid arthritis in rat models of this disease. Rheumatoid arthritis was induced in rats using two methods: immunization with 100 µL of Complete Freund Adjuvant (CFA) and immunization with 100 µL of a 3 mg/ml solution of type II collagen (CII) from chicken cartilage. The therapeutic potential of the extract was assessed at different doses (150, 300, and 600 mg/kg/day for 21 days in the CII-induced arthritis model and for 14 days in the CFA-induced arthritis model) and compared with methotrexate (MTX; 0.2 mg/kg for the same periods), a commonly used drug for rheumatoid arthritis treatment in humans. In both models (CII-induced arthritis and CFA-induced arthritis), walking distance, step length, intra-step distance and footprint area were improved following treatment with the A. leucotrichus seed extract (all concentrations) and MTX compared with untreated animals. Both treatments increased the serum concentration of glutathione and reduced that of complement C3, malondialdehyde and myeloperoxidase. Radiographic data and histological analysis indicated that cartilage destruction was reduced already with the lowest dose of the extract (100 mg/kg/dose) in both models. These results show the substantial antiarthritic potential of the A. leucotrichus seed extract, even at the lowest dose, suggesting that it may be a promising alternative therapy for rheumatoid arthritis and joint inflammation. They also emphasize its efficacy at various doses, providing impetus for more research on this extract as a potential therapeutic agent for arthritis.
Collapse
Affiliation(s)
- Cheima Djehiche
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Nadia Benzidane
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Hanene Djeghim
- Biochemistry Laboratory, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, 25000, Algeria
| | - Mehdi Tebboub
- Department of Mechanical Engineering, Faculty of Science of Technology, University Mentouri, Brothers Constantine 1, Constantine, Algeria
| | - Saad Mebrek
- Biochemistry Laboratory, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, 25000, Algeria
| | - Katia Abdelouhab
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University Abderrahmane Mira, Bejaia, 06000, Algeria
| | - Abderrahmane Baghiani
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Noureddine Charef
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, Djelfa, 17200, Algeria
| | - Chawki Bensouici
- Biochemistry Laboratory, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, 25000, Algeria
| | - Rabah Lebsir
- Department of Informatique, Faculté de Mathématiques et d'Informatique, Université de Guelma, Guelma, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Riyadh, 11451, Saudi Arabia
| | - David Cornu
- Institut Européen des Membranes (IEM), UMR 5635, Univ. Montpellier, ENSCM, CNRS, Place Eugène Bataillon, Montpellier, 34095, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, Univ. Montpellier, ENSCM, CNRS, Place Eugène Bataillon, Montpellier, 34095, France
- Gulf University for Science and Technology, GUST, Mubarak Al-Abdullah, P.O. Box 7207, Hawally, 32093, Kuwait
| | - Lekhmici Arrar
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Ahmed Barhoum
- Chemistry Department, Faculty of Science, NanoStruc Research Group, Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
2
|
Leblanc PO, Bourgoin SG, Poubelle PE, Tessier PA, Pelletier M. Metabolic regulation of neutrophil functions in homeostasis and diseases. J Leukoc Biol 2024; 116:456-468. [PMID: 38452242 DOI: 10.1093/jleuko/qiae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and play a role in the innate immune response by being the first cells attracted to the site of infection. While early studies presented neutrophils as almost exclusively glycolytic cells, recent advances show that these cells use several metabolic pathways other than glycolysis, such as the pentose phosphate pathway, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis, which they modulate to perform their functions. Metabolism shifts from fatty acid oxidation-mediated mitochondrial respiration in immature neutrophils to glycolysis in mature neutrophils. Tissue environments largely influence neutrophil metabolism according to nutrient sources, inflammatory mediators, and oxygen availability. Inhibition of metabolic pathways in neutrophils results in impairment of certain effector functions, such as NETosis, chemotaxis, degranulation, and reactive oxygen species generation. Alteration of these neutrophil functions is implicated in certain human diseases, such as antiphospholipid syndrome, coronavirus disease 2019, and bronchiectasis. Metabolic regulators such as AMPK, HIF-1α, mTOR, and Arf6 are linked to neutrophil metabolism and function and could potentially be targeted for the treatment of diseases associated with neutrophil dysfunction. This review details the effects of alterations in neutrophil metabolism on the effector functions of these cells.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Patrice E Poubelle
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
3
|
Wu Q, Zhang W, Lu Y, Li H, Yang Y, Geng F, Liu J, Lin L, Pan Y, Li C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int Immunopharmacol 2024; 128:111558. [PMID: 38266446 DOI: 10.1016/j.intimp.2024.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weijia Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Lu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hongxia Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yaru Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
4
|
Triggianese P, Conigliaro P, De Martino E, Monosi B, Chimenti MS. Overview on the Link Between the Complement System and Auto-Immune Articular and Pulmonary Disease. Open Access Rheumatol 2023; 15:65-79. [PMID: 37214353 PMCID: PMC10198272 DOI: 10.2147/oarrr.s318826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Complement system (CS) dysregulation is a key factor in the pathogenesis of different autoimmune diseases playing a central role in many immune innate and adaptive processes. Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by ta breach of self-tolerance leading to a synovitis and extra-articular manifestations. The CS is activated in RA and seems not only to mediate direct tissue damage but also play a role in the initiation of RA pathogenetic mechanisms through interactions with citrullinated proteins. Interstitial lung disease (ILD) represents the most common extra-articular manifestation that can lead to progressive fibrosis. In this review, we focused on the evidence of CS dysregulation in RA and in ILD, and highlighted the role of the CS in both the innate and adaptive immune responses in the development of diseases, by using idiopathic pulmonary fibrosis as a model of lung disease. As a proof of concept, we dissected the evidence that several treatments used to treat RA and ILD such as glucocorticoids, pirfenidone, disease modifying antirheumatic drugs, targeted biologics such as tumor necrosis factor (TNF)-inhibitors, rituximab, tocilizumab, and nintedanib may act indirectly on the CS, suggesting that the CS might represent a potential therapeutic target in these complex diseases.
Collapse
Affiliation(s)
- Paola Triggianese
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Erica De Martino
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Benedetta Monosi
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Maria Sole Chimenti
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Chen T, Zhou Z, Peng M, Hu H, Sun R, Xu J, Zhu C, Li Y, Zhang Q, Luo Y, Yang B, Dai L, Liu Y, Muñoz LE, Meng L, Herrmann M, Zhao Y. Glutathione peroxidase 3 is a novel clinical diagnostic biomarker and potential therapeutic target for neutrophils in rheumatoid arthritis. Arthritis Res Ther 2023; 25:66. [PMID: 37087463 PMCID: PMC10122307 DOI: 10.1186/s13075-023-03043-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Neutrophils have a critical role in the pathogenesis of rheumatoid arthritis (RA) with immune system dysfunction. However, the molecular mechanisms of this process mediated by neutrophils still remain elusive. The purpose of the present study is to identify hub genes in neutrophils for diagnosis and treatment of RA utilizing publicly available datasets. METHODS Gene expression profiles were downloaded from the Gene Expression Omnibus, and batch-corrected and normalized expression data were obtained using the ComBat package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to conduct significantly functional analysis and crucial pathways. The resulting co-expression genes modules and hub genes were generated based on the weighted gene co-expression network analysis and visualization by Cytoscape. Flow cytometry was conducted to detect reactive oxygen species (ROS) levels in neutrophils. RESULTS Neutrophils underwent transcriptional changes in synovial fluid (SF) of RA patients, different from peripheral blood of healthy controls or patients with RA. Especially, glycolysis, HIF-1 signaling, NADH metabolism, and oxidative stress were affected. These hub genes were strongly linked with classical glycolysis-related genes (ENO1, GAPDH, and PKM) responsible for ROS production. The antioxidant enzyme glutathione peroxidase 3 (GPX3), a ROS scavenger, was first identified as a hub gene in RA neutrophils. Neutrophils from patients with autoinflammatory and autoimmune diseases had markedly enhanced ROS levels, most notably in RA SF. CONCLUSION This research recognized hub genes and explored the characteristics of neutrophils in RA. Our findings suggest that the novel hub gene GPX3 is involved in the neutrophil-driven oxidative stress-mediated pathogenesis of RA. It has the potency to be a target for neutrophil-directed RA therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhen Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Minge Peng
- Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiayi Xu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenxi Zhu
- Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lunzhi Dai
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Shaanxi, Xi'an 710061, China
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Gaimari A, Fusaroli M, Raschi E, Baldin E, Vignatelli L, Nonino F, De Ponti F, Mandrioli J, Poluzzi E. Amyotrophic Lateral Sclerosis as an Adverse Drug Reaction: A Disproportionality Analysis of the Food and Drug Administration Adverse Event Reporting System. Drug Saf 2022; 45:663-673. [PMID: 35610460 DOI: 10.1007/s40264-022-01184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis is a fatal progressive disease with a still unclear multi-factorial etiology. This study focused on the potential relationship between drug exposure and the development of amyotrophic lateral sclerosis by performing a detailed analysis of events reported in the FDA Adverse Event Reporting System database. METHODS The FDA Adverse Event Reporting System quarterly data (January 2004-June 2020) were downloaded and deduplicated. The reporting odds ratios and their 95% confidence intervals were calculated as a disproportionality measure. The robustness of the disproportion was assessed accounting for major confounders (i.e., using a broader query, restricting to suspect drugs, and excluding reports with amyotrophic lateral sclerosis as an indication). Disproportionality signals were prioritized based on their consistency across analyses (reporting odds ratio stability). RESULTS We retained 1188 amyotrophic lateral sclerosis cases. Sixty-two drugs showed significant disproportionality for amyotrophic lateral sclerosis onset in at least one analysis, and 31 had consistent reporting odds ratio stability, including tumor necrosis factor-alpha inhibitors and statins. Disproportionality signals from ustekinumab, an immunomodulator against interleukins 12-23 used in autoimmune diseases, and the anti-IgE omalizumab were consistent among analyses and unexpected. CONCLUSIONS For each drug emerging as possibly associated with amyotrophic lateral sclerosis onset, biological plausibility, underlying disease, and reverse causality could be argued. Our findings strengthened the plausibility of a precipitating role of drugs primarily through immunomodulation (e.g., tumor necrosis factor-alpha, ustekinumab, and omalizumab), but also by impacting metabolism and the musculoskeletal integrity (e.g., statins and bisphosphonates). Complement and NF-kB dysregulation could represent interesting topics for planning translational mechanistic studies on amyotrophic lateral sclerosis as an adverse drug effect.
Collapse
Affiliation(s)
- Anna Gaimari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Michele Fusaroli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epidemiology and Statistics Unit, Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epidemiology and Statistics Unit, Bologna, Italy
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epidemiology and Statistics Unit, Bologna, Italy
| | - Fabrizio De Ponti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Neurology Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Elisabetta Poluzzi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Cavalli S, Lonati PA, Gerosa M, Caporali R, Cimaz R, Chighizola CB. Beyond Systemic Lupus Erythematosus and Anti-Phospholipid Syndrome: The Relevance of Complement From Pathogenesis to Pregnancy Outcome in Other Systemic Rheumatologic Diseases. Front Pharmacol 2022; 13:841785. [PMID: 35242041 PMCID: PMC8886148 DOI: 10.3389/fphar.2022.841785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Evidence about the relevance of the complement system, a highly conserved constituent of the innate immunity response that orchestrates the elimination of pathogens and the inflammatory processes, has been recently accumulated in many different rheumatologic conditions. In rheumatoid arthritis, complement, mainly the classical pathway, contributes to tissue damage especially in seropositive subjects, with complement activation occurring in the joint. Data about complement pathways in psoriatic arthritis are dated and poorly consistent; among patients with Sjögren syndrome, hypocomplementemia exerts a prognostic role, identifying patients at risk of extra-glandular manifestations. Hints about complement involvement in systemic sclerosis have been recently raised, following the evidence of complement deposition in affected skin and in renal samples from patients with scleroderma renal crisis. In vasculitides, complement plays a dual role: on one hand, stimulation of neutrophils with anti-neutrophil cytoplasmic antibodies (ANCA) results in the activation of the alternative pathway, on the other, C5a induces translocation of ANCA antigens, favouring the detrimental role of antibodies. Complement deposition in the kidneys identifies patients with more aggressive renal disease; patients with active disease display low serum levels of C3 and C4. Even though in dermatomyositis sC5b-9 deposits are invariably present in affected muscles, data on C3 and C4 fluctuation during disease course are scarce. C3 and C1q serum levels have been explored as potential markers of disease activity in Takayasu arteritis, whereas data in Behçet disease are limited to in vitro observations. Pregnancies in women with rheumatologic conditions are still burdened by a higher rate of pregnancy complications, thus the early identification of women at risk would be invaluable. A fine-tuning of complement activation is required from a physiological progression of pregnancy, from pre-implantation stages, through placentation to labour. Complement deregulation has been implicated in several pregnancy complications, such as recurrent abortion, eclampsia and premature birth; low complement levels have been shown to reliably identify women at risk of complications. Given its physiologic role in orchestrating pregnancy progression and its involvement as pathogenic effector in several rheumatologic conditions, complement system is an attractive candidate biomarker to stratify the obstetric risk among women with rheumatologic conditions.
Collapse
Affiliation(s)
- Silvia Cavalli
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Paola Adele Lonati
- Experimental Laboratory of Immunorheumatological Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Maria Gerosa
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Pediatric Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Pediatric Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| |
Collapse
|
8
|
Lu Q, Jiang H, Zhu Q, Xu J, Cai Y, Huo G, Yuan K, Huang G, Xu A. Tetrandrine Ameliorates Rheumatoid Arthritis in Mice by Alleviating Neutrophil Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8589121. [PMID: 35222675 PMCID: PMC8865980 DOI: 10.1155/2022/8589121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease worldwide. Neutrophils play critical roles in the onset and development of RA and are the promising target for RA treatment. Tetrandrine is a bis-benzyl isoquinoline alkaloid derived from the traditional Chinese herbal Stephania tetrandra S. Moore. Tetrandrine is effective in alleviating RA by inhibiting macrophage inflammatory response, fibroblast overproliferation, and pannus formation. However, whether tetrandrine regulates the activities of neutrophils in RA is largely unknown. In this study, we adopted adjuvant-induced arthritis (AA) murine model to explore the effect of tetrandrine on RA and neutrophils. Twenty-eight mice were divided into four groups. The control group was injected with PBS in the limbs and treated with PBS by intraperitoneal injection (i.p.) from Day 10 to Day 37. The arthritis murine model was induced by injecting FCA into the ankle joints of hind limbs. The AA group, the AA + TET group, and the AA + DEX group mice were treated with PBS, tetrandrine (6 mg/kg), or dexamethasone (1 mg/kg) i.p. daily, respectively. Arthritic scores were evaluated, and the joint diameter was measured every three days. A cytometric bead assay was performed to measure the concentrations of IFN-γ, TNF-α, and IL-6 in the serum. H&E staining and Safranin O-fast staining were adopted to monitor the tissue changes in the joint. Immunohistochemistry assays were applied to detect the MPO, NE, CitH3, and PAD4 expression levels. To assess the effect of tetrandrine on neutrophil activities in vitro, CCK8 tests were applied to determine cell viability. The qPCR and ELISA were performed to determine IL-1β and IL-6 expression levels. Immunofluorescence assays were performed to measure the formation of NETs. The results indicated that tetrandrine significantly alleviated the symptoms of RA in terms of the ankle diameter (from 4.629 ± 2.729 to 3.957 ± 0.257; P < 0.01) and ankle score (from 4.000 ± 0.000 to 3.286 ± 0.756; P < 0.05). Tetrandrine treatment significantly increased the cartilage areas and decreased serum IL-6 significantly (from 5.954 ± 2.127 to 2.882 ± 2.013; P < 0.01). The immunohistochemistry assays also showed decreased expression levels of NE, MPO, PAD4, and CitH3 induced by tetrandrine in comparison with the AA group (P < 0.01). The qPCR assays and ELISAs showed that tetrandrine had an anti-inflammatory effect in vitro by significantly inhibiting IL-6 (P < 0.01). The immunofluorescence assays showed that NET formation induced by PMA could be reduced by tetrandrine (P < 0.01). In conclusion, tetrandrine has good efficacy in treating RA by regulating neutrophil-involved inflammation and NET formation.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qingqing Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Cai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Yuan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Correa LB, Pádua TA, Alabarse PVG, Saraiva EM, Garcia EB, Amendoeira FC, Ferraris FK, Fukada SY, Rosas EC, Henriques MG. Protective effect of methyl gallate on murine antigen-induced arthritis by inhibiting inflammatory process and bone erosion. Inflammopharmacology 2022; 30:251-266. [PMID: 35112275 DOI: 10.1007/s10787-021-00922-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Methyl gallate (MG) is a plant-derived phenolic compound known to present remarkable anti-inflammatory effect in different experimental models, such as paw oedema, pleurisy, zymosan-induced arthritis and colitis. Herein we investigated the effect of MG in the mice model of antigen-induced arthritis (AIA), a model with complex inflammatory response, driven primally by immune process and that cause bone and cartilage erosion similarly found in rheumatoid arthritis. Arthritis was induced by intra-articular injection of albumin methylated from bovine serum (mBSA) in C57BL/6 male mice previously immunized. The dose-response analysis of MG (0.7-70 mg/kg; p.o) showed that maximum inhibition was reached with the dose of 7 mg/kg on paw oedema and cell infiltration induced by AIA at 7 h. Treatment with MG (7 mg/kg; p.o) or with the positive control, dexamethasone (Dexa, 10 mg/kg, ip) reduced AIA oedema formation, leukocyte infiltration, release of extracellular DNA and cytokine production 7 and 24 h (acute response). Mice treated daily with MG for 7 days showed no significant weight loss or liver and kidney toxicity contrary to dexamethasone that induced some degree of toxicity. Prolonged treatment with MG inhibited the late inflammatory response (28 days) reducing oedema formation, cell infiltration, synovial hyperplasia, pannus formation and cartilage degradation as observed in histopathological analyses. Ultimately, MG reduced bone resorption as evidenced by a decrease in tartrate-resistant acid phosphate (TRAP)-positive cells number in femur histology. Altogether, we demonstrate that MG ameliorates the inflammatory reaction driven primarily by the immune process, suggesting a potential therapeutic application in arthritis treatment.
Collapse
Affiliation(s)
- Luana Barbosa Correa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tatiana Almeida Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Vinicius Gil Alabarse
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elvira Maria Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Esdras Barbosa Garcia
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fabio Coelho Amendoeira
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fausto Klabund Ferraris
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sandra Yasuyo Fukada
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. .,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Wright HL, Lyon M, Chapman EA, Moots RJ, Edwards SW. Rheumatoid Arthritis Synovial Fluid Neutrophils Drive Inflammation Through Production of Chemokines, Reactive Oxygen Species, and Neutrophil Extracellular Traps. Front Immunol 2021; 11:584116. [PMID: 33469455 PMCID: PMC7813679 DOI: 10.3389/fimmu.2020.584116] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting synovial joints. Neutrophils are believed to play an important role in both the initiation and progression of RA, and large numbers of activated neutrophils are found within both synovial fluid (SF) and synovial tissue from RA joints. In this study we analyzed paired blood and SF neutrophils from patients with severe, active RA (DAS28>5.1, n=3) using RNA-seq. 772 genes were significantly different between blood and SF neutrophils. IPA analysis predicted that SF neutrophils had increased expression of chemokines and ROS production, delayed apoptosis, and activation of signaling cascades regulating the production of NETs. This activated phenotype was confirmed experimentally by incubating healthy control neutrophils in cell-free RA SF, which was able to delay apoptosis and induce ROS production in both unprimed and TNFα primed neutrophils (p<0.05). RA SF significantly increased neutrophil migration through 3μM transwell chambers (p<0.05) and also increased production of NETs by healthy control neutrophils (p<0.001), including exposure of myeloperoxidase (MPO) and citrullinated histone-H3-positive DNA NETs. IPA analysis predicted NET production was mediated by signaling networks including AKT, RAF1, SRC, and NF-κB. Our results expand the understanding of the molecular changes that take place in the neutrophil transcriptome during migration into inflamed joints in RA, and the altered phenotype in RA SF neutrophils. Specifically, RA SF neutrophils lose their migratory properties, residing within the joint to generate signals that promote joint damage, as well as inflammation via recruitment and activation of both innate and adaptive immune cells. We propose that this activated SF neutrophil phenotype contributes to the chronic inflammation and progressive damage to cartilage and bone observed in patients with RA.
Collapse
Affiliation(s)
- Helen L. Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Max Lyon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Elinor A. Chapman
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Robert J. Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool, United Kingdom
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, United Kingdom
| | - Steven W. Edwards
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Albiero LR, de Andrade MF, Marchi LF, Landi-Librandi AP, de Figueiredo-Rinhel ASG, Carvalho CA, Kabeya LM, de Oliveira RDR, Azzolini AECS, Pupo MT, da Silva Emery F, Lucisano-Valim YM. Immunomodulating action of the 3-phenylcoumarin derivative 6,7-dihydroxy-3-[3',4'-methylenedioxyphenyl]-coumarin in neutrophils from patients with rheumatoid arthritis and in rats with acute joint inflammation. Inflamm Res 2019; 69:115-130. [PMID: 31786615 DOI: 10.1007/s00011-019-01298-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 09/25/2019] [Accepted: 11/06/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To examine whether free (3-PD-5free) and/or liposomal (3-PD-5lipo) 6,7-dihydroxy-3-[3',4'-methylenedioxyphenyl]-coumarin (3-PD-5) (1) modulate the effector functions of neutrophils from patients with rheumatoid arthritis under remission (i-RA) and with active disease (a-RA), in vitro; and (2) exert anti-inflammatory effect in a rat model of zymosan-induced acute joint inflammation. METHODS AND RESULTS Incorporation of 3-PD-5 into unilamellar liposomes of soya phosphatidylcholine and cholesterol was efficient (57.5 ± 7.9%) and yielded vesicles with low diameter (133.7 ± 18.4 nm), polydispersity index (0.39 ± 0.06), and zeta potential (- 1.22 ± 0.34 mV). 3-PD-5free (1 µM) and 3-PD-5lipo (3 µM) equally suppressed elastase release and reactive oxygen species generation in neutrophils from healthy subjects and i-RA and a-RA patients, stimulated with immune complexes. 3-PD-5free (20 µM) suppressed the release of neutrophil extracellular traps and chemotaxis in vitro, without clear signs of cytotoxicity. 3-PD-5lipo (1.5 mg/kg, i.p.) diminished joint edema and synovial infiltration of total leukocytes and neutrophils, without changing the synovial levels of TNF-α, IL-1β, and IL-6. CONCLUSION Altogether, the results reported herein indicate that 3-PD-5 is a promising modulator of the early stages of acute joint inflammation that can help to diminish not only excessive neutrophil infiltration in the synovia but also neutrophil activation and its outcomes in RA patients.
Collapse
Affiliation(s)
- Lucinéia Reuse Albiero
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil. .,Federal University of Mato Grosso, Sinop, MT, Brazil.
| | - Micássio Fernandes de Andrade
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil. .,School of Health Sciences, The State University of Rio Grande do Norte, Mossoró, RN, Brazil.
| | - Larissa Fávaro Marchi
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Ana Paula Landi-Librandi
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Andréa Silva Garcia de Figueiredo-Rinhel
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Camila Andressa Carvalho
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciana Mariko Kabeya
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Renê Donizeti Ribeiro de Oliveira
- Division of Rheumatology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Ana Elisa Caleiro Seixas Azzolini
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Mônica Tallarico Pupo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Flávio da Silva Emery
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Yara Maria Lucisano-Valim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
12
|
Neutrophil Function in an Inflammatory Milieu of Rheumatoid Arthritis. J Immunol Res 2018; 2018:8549329. [PMID: 30622982 PMCID: PMC6304923 DOI: 10.1155/2018/8549329] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by the presence of autoantibodies against citrullinated protein antigens and proinflammatory cytokines which cause chronic synovitis, bone erosion, and eventual deformity; however, the precise etiology of RA is unclear. In the early stage of RA, neutrophils migrate into the articular cavity, become activated, and exert their function in an inflammatory process, suggesting an essential role of neutrophils in the initial events contributing to the pathogenesis of RA. Solid evidence exists that supports the contribution of neutrophil extracellular traps (NETs) to the production of autoantibodies against citrullinated proteins which can trigger the immune reaction in RA. Concurrently, proinflammatory cytokines regulate the neutrophil migration, apoptosis, and NET formation. As a result, the inflammatory neutrophils produce more cytokines and influence other immune cells thereby perpetuating the inflammatory condition in RA. In this review, we summarize the advances made in improving our understanding of neutrophil migration, apoptosis, and NET formation in the presence of an RA inflammatory milieu. We will also discuss the most recent strategies in modulating the inflammatory microenvironment that have an impact on neutrophil function which may provide alternative novel therapies for RA.
Collapse
|