1
|
Nemec-Venza Z, Greiff GRL, Harrison CJ. Diversification of CLE expression patterns and nonmeristematic roles for CLAVATA receptor-like kinases in a moss. THE NEW PHYTOLOGIST 2025. [PMID: 40329602 DOI: 10.1111/nph.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
The CLAVATA pathway controls meristematic cell proliferation and multiple nonmeristematic processes in Arabidopsis development. While CLAVATA ancestrally regulates meristematic proliferation in nonseed plant gametophytes, ancestral sporophytic and nonmeristematic functions in land plants are unknown. Here, we analysed the promoter activities of all peptide (PpCLE) and receptor-encoding (PpCLV1a, PpCLV1b and PpRPK2) genes throughout the moss (Physcomitrium patens) life cycle and validated our expression analyses using mutant phenotype data. In gametophore apices, PpCLE3 expression marked apical cells, and PpCLV1b and PpRPK2 overlapped. In nonmeristematic tissues, gametophytes showed highly focal PpCLE but broader receptor-encoding gene expression, and many genes were co-expressed. Mutant phenotype analysis revealed roles for PpCLV1a, PpCLV1b and PpRPK2 in fertility and male and female reproductive development. In sporophytes, no PpCLE expression specifically marked the apical cells, and PpCLV1b and PpRPK2 expression initially marked distinct apical and basal domains, but later overlapped at the intercalary meristem. Overall, fewer genes were co-expressed in sporophytes than in gametophytes, but all genes were co-expressed in guard cells. Our data indicate that nonmeristematic CLAVATA functions in gametangium development and stomatal development may be ancestral within land plants. Peptide encoding (CLE) gene copy numbers amplified in mosses, and promoter evolution was a likely driver of cell type diversification during moss evolution.
Collapse
Affiliation(s)
- Zoe Nemec-Venza
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Laboratoire Reproduction et Développement des Plantes, École Normale Supérieure de Lyon, Lyon, 69342, France
| | - George R L Greiff
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
2
|
Tsuda K. Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102594. [PMID: 38943830 DOI: 10.1016/j.pbi.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
3
|
Pietrykowska H, Alisha A, Aggarwal B, Watanabe Y, Ohtani M, Jarmolowski A, Sierocka I, Szweykowska-Kulinska Z. Conserved and non-conserved RNA-target modules in plants: lessons for a better understanding of Marchantia development. PLANT MOLECULAR BIOLOGY 2023; 113:121-142. [PMID: 37991688 PMCID: PMC10721683 DOI: 10.1007/s11103-023-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.
Collapse
Affiliation(s)
- Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Nara, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Kanagawa, Japan
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Renzaglia KS, Ashton NW, Suh DY. Sporogenesis in Physcomitrium patens: Intergenerational collaboration and the development of the spore wall and aperture. Front Cell Dev Biol 2023; 11:1165293. [PMID: 37123413 PMCID: PMC10133578 DOI: 10.3389/fcell.2023.1165293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Although the evolution of spores was critical to the diversification of plants on land, sporogenesis is incompletely characterized for model plants such as Physcomitrium patens. In this study, the complete process of P. patens sporogenesis is detailed from capsule expansion to mature spore formation, with emphasis on the construction of the complex spore wall and proximal aperture. Both diploid (sporophytic) and haploid (spores) cells contribute to the development and maturation of spores. During capsule expansion, the diploid cells of the capsule, including spore mother cells (SMCs), inner capsule wall layer (spore sac), and columella, contribute a locular fibrillar matrix that contains the machinery and nutrients for spore ontogeny. Nascent spores are enclosed in a second matrix that is surrounded by a thin SMC wall and suspended in the locular material. As they expand and separate, a band of exine is produced external to a thin foundation layer of tripartite lamellae. Dense globules assemble evenly throughout the locule, and these are incorporated progressively onto the spore surface to form the perine external to the exine. On the distal spore surface, the intine forms internally, while the spiny perine ornamentation is assembled. The exine is at least partially extrasporal in origin, while the perine is derived exclusively from outside the spore. Across the proximal surface of the polar spores, an aperture begins formation at the onset of spore development and consists of an expanded intine, an annulus, and a central pad with radiating fibers. This complex aperture is elastic and enables the proximal spore surface to cycle between being compressed (concave) and expanded (rounded). In addition to providing a site for water intake and germination, the elastic aperture is likely involved in desiccation tolerance. Based on the current phylogenies, the ancestral plant spore contained an aperture, exine, intine, and perine. The reductive evolution of liverwort and hornwort spores entailed the loss of perine in both groups and the aperture in liverworts. This research serves as the foundation for comparisons with other plant groups and for future studies of the developmental genetics and evolution of spores across plants.
Collapse
Affiliation(s)
- Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
- *Correspondence: Karen S. Renzaglia,
| | - Neil W. Ashton
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
5
|
Fouracre JP, Harrison CJ. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. PLANT PHYSIOLOGY 2022; 190:100-112. [PMID: 35771646 PMCID: PMC9434304 DOI: 10.1093/plphys/kiac313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Land plant life cycles are separated into distinct haploid gametophyte and diploid sporophyte stages. Indeterminate apical growth evolved independently in bryophyte (moss, liverwort, and hornwort) and fern gametophytes, and tracheophyte (vascular plant) sporophytes. The extent to which apical growth in tracheophytes co-opted conserved gametophytic gene networks, or exploited ancestral sporophytic networks, is a long-standing question in plant evolution. The recent phylogenetic confirmation of bryophytes and tracheophytes as sister groups has led to a reassessment of the nature of the ancestral land plant. Here, we review developmental genetic studies of apical regulators and speculate on their likely evolutionary history.
Collapse
Affiliation(s)
- Jim P Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
Dierschke T, Flores-Sandoval E, Rast-Somssich MI, Althoff F, Zachgo S, Bowman JL. Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha. eLife 2021; 10:57088. [PMID: 34533136 PMCID: PMC8476127 DOI: 10.7554/elife.57088] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular chlorophyte alga Chlamydomonas, KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha, paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas a loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.
Collapse
Affiliation(s)
- Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne, Australia.,Botany Department, University of Osnabrück, Osnabrück, Germany
| | | | | | - Felix Althoff
- Botany Department, University of Osnabrück, Osnabrück, Germany
| | - Sabine Zachgo
- Botany Department, University of Osnabrück, Osnabrück, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Rabbi F, Renzaglia KS, Ashton NW, Suh DY. Reactive oxygen species are required for spore wall formation in Physcomitrella patens. BOTANY 2020; 98:575-587. [PMID: 34149972 PMCID: PMC8211148 DOI: 10.1139/cjb-2020-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A robust spore wall was a key requirement of terrestrialization by early plants. Sporopollenin in spore and pollen grain walls is thought to be polymerized and cross-linked to other macromolecular components partly through oxidative processes involving H2O2. Therefore, we investigated effects of scavengers of reactive oxygen species (ROS) on formation of spore walls in the moss, Physcomitrella patens. Exposure of sporophytes, containing spores in the process of forming walls, to ascorbate, dimethylthiourea or 4-hydroxy-TEMPO prevented normal wall development in a dose, chemical and stage-dependent manner. Mature spores, exposed while developing to a ROS scavenger, burst when mounted in water on a flat slide under a coverslip (a phenomenon we named "augmented osmolysis" since they did not burst in phosphate-buffered saline or in water on a depression slide). Additionally, walls of exposed spores were more susceptible to alkaline hydrolysis than those of control spores and some were characterized by discontinuities in the exine, anomalies in perine spine structure, abnormal intine and aperture and occasionally wall shedding. Our data support involvement of oxidative cross-linking in spore wall development, including sporopollenin polymerization or deposition, as well as a role for ROS in intine/aperture development.
Collapse
Affiliation(s)
- Fazle Rabbi
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Neil W Ashton
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
8
|
A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants. Curr Biol 2019; 29:2743-2750.e5. [DOI: 10.1016/j.cub.2019.06.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022]
|
9
|
Arun A, Coelho SM, Peters AF, Bourdareau S, Pérès L, Scornet D, Strittmatter M, Lipinska AP, Yao H, Godfroy O, Montecinos GJ, Avia K, Macaisne N, Troadec C, Bendahmane A, Cock JM. Convergent recruitment of TALE homeodomain life cycle regulators to direct sporophyte development in land plants and brown algae. eLife 2019; 8:e43101. [PMID: 30644818 PMCID: PMC6368402 DOI: 10.7554/elife.43101] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/13/2019] [Indexed: 01/21/2023] Open
Abstract
Three amino acid loop extension homeodomain transcription factors (TALE HD TFs) act as life cycle regulators in green algae and land plants. In mosses these regulators are required for the deployment of the sporophyte developmental program. We demonstrate that mutations in either of two TALE HD TF genes, OUROBOROS or SAMSARA, in the brown alga Ectocarpus result in conversion of the sporophyte generation into a gametophyte. The OUROBOROS and SAMSARA proteins heterodimerise in a similar manner to TALE HD TF life cycle regulators in the green lineage. These observations demonstrate that TALE-HD-TF-based life cycle regulation systems have an extremely ancient origin, and that these systems have been independently recruited to regulate sporophyte developmental programs in at least two different complex multicellular eukaryotic supergroups, Archaeplastida and Chromalveolata.
Collapse
Affiliation(s)
- Alok Arun
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Susana M Coelho
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | | | - Simon Bourdareau
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Laurent Pérès
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Delphine Scornet
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Martina Strittmatter
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Agnieszka P Lipinska
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Haiqin Yao
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Gabriel J Montecinos
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Komlan Avia
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Nicolas Macaisne
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Christelle Troadec
- Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-SudOrsayFrance
| | - Abdelhafid Bendahmane
- Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-SudOrsayFrance
| | - J Mark Cock
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| |
Collapse
|
10
|
Perroud PF, Haas FB, Hiss M, Ullrich KK, Alboresi A, Amirebrahimi M, Barry K, Bassi R, Bonhomme S, Chen H, Coates JC, Fujita T, Guyon-Debast A, Lang D, Lin J, Lipzen A, Nogué F, Oliver MJ, Ponce de León I, Quatrano RS, Rameau C, Reiss B, Reski R, Ricca M, Saidi Y, Sun N, Szövényi P, Sreedasyam A, Grimwood J, Stacey G, Schmutz J, Rensing SA. The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:168-182. [PMID: 29681058 DOI: 10.1111/tpj.13940] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Alessandro Alboresi
- Dipartimento di Biotecnologie, Università di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mojgan Amirebrahimi
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Kerrie Barry
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Haodong Chen
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Daniel Lang
- Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Junyan Lin
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Melvin J Oliver
- USDA-ARS-MWA, Plant Genetics Research Unit, University of Missouri, Columbia, MO, 652117, USA
| | - Inés Ponce de León
- Department of Molecular Biology, Clemente Estable Biological Research Institute, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Ralph S Quatrano
- Department of Biology, Washington University in St Louis, One Brookings Drive, St Louis, MO, 63130, USA
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Bernd Reiss
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Köln, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Mariana Ricca
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Younousse Saidi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ning Sun
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Jeremy Schmutz
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| |
Collapse
|
11
|
Harrison CJ, Morris JL. The origin and early evolution of vascular plant shoots and leaves. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160496. [PMID: 29254961 PMCID: PMC5745332 DOI: 10.1098/rstb.2016.0496] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 12/22/2022] Open
Abstract
The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo-devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in 'telome theory' hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jennifer L Morris
- School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
12
|
Frangedakis E, Saint‐Marcoux D, Moody LA, Rabbinowitsch E, Langdale JA. Nonreciprocal complementation of KNOX gene function in land plants. THE NEW PHYTOLOGIST 2017; 216:591-604. [PMID: 27886385 PMCID: PMC5637896 DOI: 10.1111/nph.14318] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/30/2016] [Indexed: 05/02/2023]
Abstract
Class I KNOTTED-LIKE HOMEOBOX (KNOX) proteins regulate development of the multicellular diploid sporophyte in both mosses and flowering plants; however, the morphological context in which they function differs. In order to determine how Class I KNOX function was modified as land plants evolved, phylogenetic analyses and cross-species complementation assays were performed. Our data reveal that a duplication within the charophyte sister group to land plants led to distinct Class I and Class II KNOX gene families. Subsequently, Class I sequences diverged substantially in the nonvascular bryophyte groups (liverworts, mosses and hornworts), with moss sequences being most similar to those in vascular plants. Despite this similarity, moss mutants were not complemented by vascular plant KNOX genes. Conversely, the Arabidopsis brevipedicellus (bp-9) mutant was complemented by the PpMKN2 gene from the moss Physcomitrella patens. Lycophyte KNOX genes also complemented bp-9 whereas fern genes only partially complemented the mutant. This lycophyte/fern distinction is mirrored in the phylogeny of KNOX-interacting BELL proteins, in that a gene duplication occurred after divergence of the two groups. Together, our results imply that the moss MKN2 protein can function in a broader developmental context than vascular plant KNOX proteins, the narrower scope having evolved progressively as lycophytes, ferns and flowering plants diverged.
Collapse
Affiliation(s)
| | - Denis Saint‐Marcoux
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Laura A. Moody
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Ester Rabbinowitsch
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
13
|
Jill Harrison C. Development and genetics in the evolution of land plant body plans. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150490. [PMID: 27994131 PMCID: PMC5182422 DOI: 10.1098/rstb.2015.0490] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
The colonization of land by plants shaped the terrestrial biosphere, the geosphere and global climates. The nature of morphological and molecular innovation driving land plant evolution has been an enigma for over 200 years. Recent phylogenetic and palaeobotanical advances jointly demonstrate that land plants evolved from freshwater algae and pinpoint key morphological innovations in plant evolution. In the haploid gametophyte phase of the plant life cycle, these include the innovation of mulitcellular forms with apical growth and multiple growth axes. In the diploid phase of the life cycle, multicellular axial sporophytes were an early innovation priming subsequent diversification of indeterminate branched forms with leaves and roots. Reverse and forward genetic approaches in newly emerging model systems are starting to identify the genetic basis of such innovations. The data place plant evo-devo research at the cusp of discovering the developmental and genetic changes driving the radiation of land plant body plans.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Abstract
The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-to-diploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-to-diploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle. Organisms, such as land plants, exhibiting a life cycle whereby multicellular bodies develop in both the haploid and diploid phases are often referred to as possessing an alternation of generations. We review recent progress on understanding the genetic basis for the land plant alternation of generations and highlight the roles that homeodomain-encoding genes may have played in the evolution of complex multicellularity in this lineage.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
- Department of Plant Biology, University of California, Davis, California 95616
| | - Keiko Sakakibara
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Chihiro Furumizu
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| |
Collapse
|
15
|
Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JA, Becker JD. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants. MOLECULAR PLANT 2016; 9:205-220. [PMID: 26687813 DOI: 10.1016/j.molp.2015.12.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/28/2015] [Accepted: 12/01/2015] [Indexed: 05/08/2023]
Abstract
Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryophyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, comparison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs.
Collapse
Affiliation(s)
- Carlos Ortiz-Ramírez
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Anna Thamm
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Bruno Catarino
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Mingyi Wang
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - José A Feijó
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
16
|
Daku RM, Rabbi F, Buttigieg J, Coulson IM, Horne D, Martens G, Ashton NW, Suh DY. PpASCL, the Physcomitrella patens Anther-Specific Chalcone Synthase-Like Enzyme Implicated in Sporopollenin Biosynthesis, Is Needed for Integrity of the Moss Spore Wall and Spore Viability. PLoS One 2016; 11:e0146817. [PMID: 26752629 PMCID: PMC4709238 DOI: 10.1371/journal.pone.0146817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpASCL, and phenotypically characterized ascl sporophytes and spores at different developmental stages. Ascl plants developed normally until late in sporophytic development, when the spores produced were structurally aberrant and inviable. The development of the ascl spore cell wall appeared to be arrested early in microspore development, resulting in small, collapsed spores with altered surface morphology. The typical stratification of the spore cell wall was absent with only an abnormal perine recognisable above an amorphous layer possibly representing remnants of compromised intine and/or exine. Equivalent resistance of the spore walls of ascl mutants and the control strain to acetolysis suggests the presence of chemically inert, defective sporopollenin in the mutants. Anatomical abnormalities of late-stage ascl sporophytes include a persistent large columella and an air space incompletely filled with spores. Our results indicate that the evolutionarily conserved PpASCL gene is needed for proper construction of the spore wall and for normal maturation and viability of moss spores.
Collapse
Affiliation(s)
- Rhys M. Daku
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Fazle Rabbi
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Josef Buttigieg
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Ian M. Coulson
- Department of Geology, University of Regina, Regina, Saskatchewan, Canada
| | - Derrick Horne
- BioImaging Facility, University of British Colombia, Vancouver, British Columbia, Canada
| | - Garnet Martens
- BioImaging Facility, University of British Colombia, Vancouver, British Columbia, Canada
| | - Neil W. Ashton
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
- * E-mail: (DYS); (NWA)
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
- * E-mail: (DYS); (NWA)
| |
Collapse
|
17
|
Frank MH, Scanlon MJ. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:743-51. [PMID: 26123849 DOI: 10.1111/tpj.12928] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 05/18/2023]
Abstract
Haploid moss gametophytes harbor distinct stem cell types, including tip cells that divide in single planes to generate filamentous protonemata, and bud cells that divide in three planes to yield axial gametophore shoots. This transition from filamentous to triplanar growth occurs progressively during the moss life cycle, and is thought to mirror evolution of the first terrestrial plants from Charophycean green algal ancestors. The innovation of morphologically complex plant body plans facilitated colonization of the vertical landscape, and enabled development of complex vegetative and reproductive plant morphologies. Despite its profound evolutionary significance, the molecular programs involved in this transition from filamentous to triplanar meristematic plant growth are poorly understood. In this study, we used single-cell type transcriptomics to identify more than 4000 differentially expressed genes that distinguish uniplanar protonematal tip cells from multiplanar gametophore bud cells in the moss Physcomitrella patens. While the transcriptomes of both tip and bud cells show molecular signatures of proliferative cells, the bud cell transcriptome exhibits a wider variety of genes with significantly increased transcript abundances. Our data suggest that combined expression of genes involved in shoot patterning and asymmetric cell division accompanies the transition from uniplanar to triplanar meristematic growth in moss.
Collapse
Affiliation(s)
- Margaret H Frank
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Scanlon
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Frank MH, Scanlon MJ. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs. Mol Biol Evol 2014; 32:355-67. [PMID: 25371433 DOI: 10.1093/molbev/msu303] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alternation of generations, in which the haploid and diploid stages of the life cycle are each represented by multicellular forms that differ in their morphology, is a defining feature of the land plants (embryophytes). Anciently derived lineages of embryophytes grow predominately in the haploid gametophytic generation from apical cells that give rise to the photosynthetic body of the plant. More recently evolved plant lineages have multicellular shoot apical meristems (SAMs), and photosynthetic shoot development is restricted to the sporophyte generation. The molecular genetic basis for this evolutionary shift from gametophyte-dominant to sporophyte-dominant life cycles remains a major question in the study of land plant evolution. We used laser microdissection and next generation RNA sequencing to address whether angiosperm meristem patterning genes expressed in the sporophytic SAM of Zea mays are expressed in the gametophytic apical cells, or in the determinate sporophytes, of the model bryophytes Marchantia polymorpha and Physcomitrella patens. A wealth of upregulated genes involved in stem cell maintenance and organogenesis are identified in the maize SAM and in both the gametophytic apical cell and sporophyte of moss, but not in Marchantia. Significantly, meiosis-specific genetic programs are expressed in bryophyte sporophytes, long before the onset of sporogenesis. Our data suggest that this upregulated accumulation of meiotic gene transcripts suppresses indeterminate cell fate in the Physcomitrella sporophyte, and overrides the observed accumulation of meristem patterning genes. A model for the evolution of indeterminate growth in the sporophytic generation through the concerted selection of ancestral meristem gene programs from gametophyte-dominant lineages is proposed.
Collapse
|
19
|
Tomescu AMF, Wyatt SE, Hasebe M, Rothwell GW. Early evolution of the vascular plant body plan - the missing mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:126-36. [PMID: 24507504 DOI: 10.1016/j.pbi.2013.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 05/03/2023]
Abstract
The complex body plan of modern vascular plants evolved by modification of simple systems of branching axes which originated from the determinate vegetative axis of a bryophyte-grade ancestor. Understanding body plan evolution and homologies has implications for land plant phylogeny and requires resolution of the specific developmental changes and their evolutionary sequence. The branched sporophyte may have evolved from a sterilized bryophyte sporangium, but prolongation of embryonic vegetative growth is a more parsimonious explanation. Research in the bryophyte model system Physcomitrella points to mechanisms regulating sporophyte meristem maintenance, indeterminacy, branching and the transition to reproductive development. These results can form the basis for hypotheses to identify and refine the nature and sequence of changes in development that occurred during the evolution of the indeterminate branched sporophyte from an unbranched bryophyte-grade sporophyte.
Collapse
Affiliation(s)
- Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA.
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology and Department of Basic Biology, School of Life Science, The Graduate School for Advanced Studies, Okazaki 444-8585, Japan
| | - Gar W Rothwell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
20
|
Gleason EJ, Kramer EM. Conserved roles for Polycomb Repressive Complex 2 in the regulation of lateral organ development in Aquilegia x coerulea 'Origami'. BMC PLANT BIOLOGY 2013; 13:185. [PMID: 24256402 PMCID: PMC3840678 DOI: 10.1186/1471-2229-13-185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Epigenetic regulation is necessary for maintaining gene expression patterns in multicellular organisms. The Polycomb Group (PcG) proteins form several complexes with important and deeply conserved epigenetic functions in both the plant and animal kingdoms. One such complex, the Polycomb Repressive Complex 2 (PRC2), is critical to many developmental processes in plants including the regulation of major developmental transitions. In addition, PRC2 restricts the expression domain of various transcription factor families in Arabidopsis, including the class I KNOX genes and several of the ABCE class MADS box genes. While the functions of these transcription factors are known to be deeply conserved, whether or not their regulation by PRC2 is similarly conserved remains an open question. RESULTS Here we use virus-induced gene silencing (VIGS) to characterize the function of the PRC2 complex in lateral organ development of Aquilegia x coerulea 'Origami', a member of the lower eudicot order Ranunculales. Leaves with PRC2 down-regulation displayed a range of phenotypes including ruffled or curled laminae, additional lobing, and an increased frequency of higher order branching. Sepals and petals were also affected, being narrowed, distorted, or, in the case of the sepals, exhibiting partial homeotic transformation. Many of the petal limbs also had a particularly intense yellow coloration due to an accumulation of carotenoid pigments. We show that the A. x coerulea floral MADS box genes AGAMOUS1 (AqAG1), APETALA3-3 (AqAP3-3) and SEPALLATA3 (AqSEP3) are up-regulated in many tissues, while expression of the class I KNOX genes and several candidate genes involved in carotenoid production or degradation are largely unaffected. CONCLUSIONS PRC2 targeting of several floral MADS box genes may be conserved in dicots, but other known targets do not appear to be. In the case of the type I KNOX genes, this may reflect a regulatory shift associated with the evolution of compound leaves.
Collapse
Affiliation(s)
- Emily J Gleason
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Sakakibara K, Ando S, Yip HK, Tamada Y, Hiwatashi Y, Murata T, Deguchi H, Hasebe M, Bowman JL. KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science 2013; 339:1067-70. [PMID: 23449590 DOI: 10.1126/science.1230082] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Unlike animals, land plants undergo an alternation of generations, producing multicellular bodies in both haploid (1n: gametophyte) and diploid (2n: sporophyte) generations. Plant body plans in each generation are regulated by distinct developmental programs initiated at either meiosis or fertilization, respectively. In mosses, the haploid gametophyte generation is dominant, whereas in vascular plants-including ferns, gymnosperms, and angiosperms-the diploid sporophyte generation is dominant. Deletion of the class 2 KNOTTED1-LIKE HOMEOBOX (KNOX2) transcription factors in the moss Physcomitrella patens results in the development of gametophyte bodies from diploid embryos without meiosis. Thus, KNOX2 acts to prevent the haploid-specific body plan from developing in the diploid plant body, indicating a critical role for the evolution of KNOX2 in establishing an alternation of generations in land plants.
Collapse
Affiliation(s)
- Keiko Sakakibara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bonhomme S, Nogué F, Rameau C, Schaefer DG. Usefulness of Physcomitrella patens for studying plant organogenesis. Methods Mol Biol 2013; 959:21-43. [PMID: 23299666 DOI: 10.1007/978-1-62703-221-6_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we review the main organogenesis features and associated regulation processes of the moss Physcomitrella patens (P. patens), the model plant for the Bryophytes. We highlight how the study of this descendant of the earliest plant species that colonized earth, brings useful keys to understand the mechanisms that determine and control both vascular and non vascular plants organogenesis. Despite its simple morphogenesis pattern, P. patens still requires the fine tuning of organogenesis regulators, including hormone signalling, common to the whole plant kingdom, and which study is facilitated by a high number of molecular tools, among which the powerful possibility of gene targeting/replacement. The recent discovery of moss cells reprogramming capacity completes the picture of an excellent model for studying plant organogenesis.
Collapse
Affiliation(s)
- Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France.
| | | | | | | |
Collapse
|
23
|
Ligrone R, Duckett JG, Renzaglia KS. The origin of the sporophyte shoot in land plants: a bryological perspective. ANNALS OF BOTANY 2012; 110:935-41. [PMID: 22875816 PMCID: PMC3448429 DOI: 10.1093/aob/mcs176] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/31/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts, mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilophytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in hornworts and polysporangiophytes develops predominantly by post-embryonic meristematic activity. SCOPE This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization. Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced a sporangium-supporting seta, we postulate that in the hornwort-polysporangiophyte lineage the basal meristem acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic programme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polysporangiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth. CONCLUSIONS The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e. an anticipation and a delay, respectively, in the development of the sporangium. In either case the result was a pedomorphic sporophyte permanently retaining juvenile characters.
Collapse
Affiliation(s)
- Roberto Ligrone
- Dipartimento di Scienze ambientali, Seconda Università di Napoli, Caserta, Italy.
| | | | | |
Collapse
|
24
|
Ligrone R, Duckett JG, Renzaglia KS. Major transitions in the evolution of early land plants: a bryological perspective. ANNALS OF BOTANY 2012; 109:851-71. [PMID: 22356739 PMCID: PMC3310499 DOI: 10.1093/aob/mcs017] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/06/2012] [Indexed: 05/02/2023]
Abstract
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.
Collapse
Affiliation(s)
- Roberto Ligrone
- Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta, Italy.
| | | | | |
Collapse
|
25
|
The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nat Commun 2011; 2:544. [PMID: 22109518 DOI: 10.1038/ncomms1552] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/18/2011] [Indexed: 01/28/2023] Open
Abstract
Gibberellin (GA) controls pollen development in flowering plants via the GAMYB transcription factor. Here we show that GAMYB is conserved in Selaginella moellendorffii (lycophyte) and Physcomitrella patens (moss), although the former contains the GA signalling pathway, the latter does not. In the lycophyte, GA treatment promotes the outer wall development on microspores, whereas treatment with GA biosynthesis inhibitors disturbs its development. Contrary, in the moss, GAMYB homologue knockouts also produce abnormal spores that resemble Selaginella microspores treated with GA biosynthesis inhibitors and pollen grains of rice gamyb mutant. Moreover, the knockouts fail to develop male organs, instead ectopically forming female organs. Thus, before the establishment of the GA signalling pathway, basal land plants, including mosses, contained a GAMYB-based system for spore and sexual organ development. Subsequently, during the evolution from mosses to basal vascular plants including lycophytes, GA signalling might have merged to regulate this pre-existing GAMYB-based system.
Collapse
|
26
|
Shaw AJ, Szövényi P, Shaw B. Bryophyte diversity and evolution: windows into the early evolution of land plants. AMERICAN JOURNAL OF BOTANY 2011; 98:352-69. [PMID: 21613131 DOI: 10.3732/ajb.1000316] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The "bryophytes" comprise three phyla of plants united by a similar haploid-dominant life cycle and unbranched sporophytes bearing one sporangium: the liverworts (Marchantiophyta), mosses (Bryophyta), and hornworts (Anthocerophyta). Combined, these groups include some 20000 species. As descendents of embryophytes that diverged before tracheophytes appeared, bryophytes offer unique windows into the early evolution of land plants. We review insights into the evolution of plant life cycles, in particular the elaboration of the sporophyte generation, the major lineages within bryophyte phyla, and reproductive processes that shape patterns of bryophyte evolution. Recent transcriptomic work suggests extensive overlap in gene expression in bryophyte sporophytes vs. gametophytes, but also novel patterns in the sporophyte, supporting Bower's antithetic hypothesis for origin of alternation of generations. Major lineages of liverworts, mosses, and hornworts have been resolved and general patterns of morphological evolution can now be inferred. The life cycles of bryophytes, arguably more similar to those of early embryophytes than are those in any other living plant group, provide unique insights into gametophyte mating patterns, sexual conflicts, and the efficacy and effects of spore dispersal during early land plant evolution.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
27
|
Hay A, Tsiantis M. KNOX genes: versatile regulators of plant development and diversity. Development 2010; 137:3153-65. [PMID: 20823061 DOI: 10.1242/dev.030049] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Knotted1-like homeobox (KNOX) proteins are homeodomain transcription factors that maintain an important pluripotent cell population called the shoot apical meristem, which generates the entire above-ground body of vascular plants. KNOX proteins regulate target genes that control hormone homeostasis in the meristem and interact with another subclass of homeodomain proteins called the BELL family. Studies in novel genetic systems, both at the base of the land plant phylogeny and in flowering plants, have uncovered novel roles for KNOX proteins in sculpting plant form and its diversity. Here, we discuss how KNOX proteins influence plant growth and development in a versatile context-dependent manner.
Collapse
Affiliation(s)
- Angela Hay
- Plant Sciences Department, University of Oxford, Oxford, UK.
| | | |
Collapse
|
28
|
Szovenyi P, Rensing SA, Lang D, Wray GA, Shaw AJ. Generation-Biased Gene Expression in a Bryophyte Model System. Mol Biol Evol 2010; 28:803-12. [DOI: 10.1093/molbev/msq254] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
29
|
Wiedemann G, Hermsen C, Melzer M, Büttner-Mainik A, Rennenberg H, Reski R, Kopriva S. Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development. FEBS Lett 2010; 584:2271-8. [PMID: 20347810 DOI: 10.1016/j.febslet.2010.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 01/16/2023]
Abstract
A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the DeltaSiR1 mutants. While DeltaSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized.
Collapse
Affiliation(s)
- Gertrud Wiedemann
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Plant development depends on the activity of a group of dividing cells called the meristem. Extensive genetic analyses have identified the major regulators of the shoot apical meristem (SAM), which control the development of all aerial organs. Among them, the three-amino-acid-loop-extension (TALE) class of homeoproteins has been shown to control meristem formation and/or maintenance, organ morphogenesis, organ position, and several aspects of the reproductive phase. This family contains the KNOTTED-like homeodomain (KNOX) and BEL1-like Homeodomain (BELL) members, which function as heterodimers. In this review, we have reported the functions of the TALE members throughout the Arabidopsis life cycle. Genetic analyses revealed a complex network, as TALE members exhibit both overlapping and antagonistic activities. The characterization of a new KNOX member (KNATM), which lacks a homeodomain and interacts with other members to modulate their activities, adds another layer of complexity to this network. While the mode of action of these transcription factors is still largely unknown, they have been implicated in the regulation of several hormonal pathways, providing a link between gene regulatory networks and signaling in the SAM.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire de reproduction et développement des plantes, Institut National de la Recherche Agronomique, CNRS/ENS, université de Lyon, 46 Allée d'Italie, Lyon cedex 07, France
| | | |
Collapse
|
31
|
Floyd SK, Bowman JL. Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? JOURNAL OF PLANT RESEARCH 2010; 123:43-55. [PMID: 19784716 DOI: 10.1007/s10265-009-0256-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 07/06/2009] [Indexed: 05/08/2023]
Abstract
The fossil record reveals that seed plant leaves evolved from ancestral lateral branch systems. Over time, the lateral branch systems evolved to become determinate, planar and eventually laminar. Considering their evolutionary histories, it is instructive to compare the developmental genetics of shoot apical meristems (SAMs) and leaves in extant seed plants. Genetic experiments in model angiosperm species have assigned functions of meristem maintenance, specification of stem cell identity, boundary formation, polarity establishment and primordium initiation to specific genes. Investigation of roles of the same or homologous genes during leaf development has revealed strikingly similar functions in leaves compared to SAMs. Specifically, the marginal blastozone that characterizes many angiosperm leaves appears to function in a manner mechanistically similar to the SAM. We argue here that the similarities may be homologous due to descent from ancestral roles in an ancestral shoot system. Molecular aspects of SAM and leaf development in gymnosperms is largely neglected and could provide insight into seed plant leaf evolution.
Collapse
|
32
|
Hay A, Tsiantis M. A KNOX family TALE. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:593-8. [PMID: 19632142 DOI: 10.1016/j.pbi.2009.06.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/19/2009] [Indexed: 05/03/2023]
Abstract
Knotted1 defined the first homeobox gene family to be isolated in plants and was identified from dominant maize mutants that produced 'knots' of mis-specified tissue on the leaf. The Knotted1-like homeobox (KNOX) gene family expanded last year to include members lacking the defining homeobox with exciting implications for KNOX gene regulation and function. Recent evidence for direct KNOX regulation by myb-related ARP proteins and epigenetic silencing by polycomb repressive complexes have also shed light on the mechanisms defining KNOX gene expression.
Collapse
Affiliation(s)
- Angela Hay
- Plant Sciences Department, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
33
|
Rosin FM, Kramer EM. Old dogs, new tricks: Regulatory evolution in conserved genetic modules leads to novel morphologies in plants. Dev Biol 2009; 332:25-35. [DOI: 10.1016/j.ydbio.2009.05.542] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/27/2009] [Accepted: 05/01/2009] [Indexed: 01/17/2023]
|
34
|
The peach (Prunus persica [L.] Batsch) homeobox gene KNOPE3, which encodes a class 2 knotted-like transcription factor, is regulated during leaf development and triggered by sugars. Mol Genet Genomics 2009; 282:47-64. [PMID: 19333623 DOI: 10.1007/s00438-009-0445-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
Class 1 KNOTTED1-like transcription factors (KNOX) are known to regulate plant development, whereas information on class 2 KNOX has been limited. The peach KNOPE3 gene was cloned, belonged to a family of few class 2 members and was located at 66 cM in the Prunus spp. G1 linkage-group. The mRNA localization was diversified in leaf, stem, flower and drupe, but recurred in all organ sieves, suggesting a role in sap nutrient transport. During leaf development, the mRNA earliest localized to primordia sieves and subsequently to mesophyll cells of growing leaves. Consistently, its abundance augmented with leaf expansion. The transcription was monitored in leaves responding to darkening, supply and transport block of sugars. It peaked at 4 h after darkness and dropped under prolonged obscurity, showing a similar kinetic to that of sucrose content variation. Feeding leaflets via the transpiration stream caused KNOPE3 up-regulation at 3 h after fructose, glucose and sucrose absorption and at 12 h after sorbitol. In girdling experiments, leaf KNOPE3 was triggered from 6 h onwards along with sucrose and sorbitol raise. Both the phloem-associated expression and sugar-specific gene modulation suggest that KNOPE3 may play a role in sugar translocation during the development of agro-relevant organs such as drupe.
Collapse
|
35
|
Dolan L. Body building on land: morphological evolution of land plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:4-8. [PMID: 19112042 DOI: 10.1016/j.pbi.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/25/2008] [Accepted: 12/03/2008] [Indexed: 05/19/2023]
Abstract
Land plants are derived from green algal ancestors and made their first appearance on land 460 million years ago. The life cycle of the land plant body comprises two multicellular stages -- one haploid (gametophyte) and the other diploid (sporophyte). Recent discoveries suggest that the genes controlling diploid development in ancestral green algal zygotes diversified in the land plant lineage where they control the development of the diploid body plan. There are also numerous examples of the independent recruitment of sets of genes to control the development of structures that are morphologically and functionally similar. These discoveries are giving insights into the mechanism by which land plant morphologies changed over the past 460 million years.
Collapse
Affiliation(s)
- Liam Dolan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
36
|
Tomescu AMF. Megaphylls, microphylls and the evolution of leaf development. TRENDS IN PLANT SCIENCE 2009; 14:5-12. [PMID: 19070531 DOI: 10.1016/j.tplants.2008.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 10/16/2008] [Accepted: 10/22/2008] [Indexed: 05/05/2023]
Abstract
Originally coined to emphasize morphological differences, 'microphyll' and 'megaphyll' became synonymous with the idea that vascular plant leaves are not homologous. Although it is now accepted that leaves evolved independently in several euphyllophyte lineages, 'megaphyll' has grown to reflect another type of homology, that of euphyllophyte leaf precursor structures. However, evidence from the fossil record and developmental pathways fails to indicate homology and suggests homoplasy of precursor structures. Thus, as I discuss here, 'megaphyll' should be abandoned because it perpetuates an unsupported idea of homology, leading to misconceptions that pervade plant biology thinking and can bias hypothesis and inference in developmental and phylogenetic studies. Alternative definitions are needed that are based on development and phylogeny for different independently evolved leaf types.
Collapse
Affiliation(s)
- Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA.
| |
Collapse
|
37
|
Corrêa LGG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 2008; 3:e2944. [PMID: 18698409 PMCID: PMC2492810 DOI: 10.1371/journal.pone.0002944] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 07/22/2008] [Indexed: 01/07/2023] Open
Abstract
Background Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. Methodology/Principal Findings We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. Conclusions/Significance Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments.
Collapse
Affiliation(s)
- Luiz Gustavo Guedes Corrêa
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- Cooperative Research Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Diego Mauricio Riaño-Pachón
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- GabiPD Team, Bioinformatics Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Carlos Guerra Schrago
- Laboratório de Biodiversidade Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Vicentini dos Santos
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- Cooperative Research Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- * E-mail:
| |
Collapse
|
38
|
Langdale JA. Evolution of developmental mechanisms in plants. Curr Opin Genet Dev 2008; 18:368-73. [PMID: 18573341 DOI: 10.1016/j.gde.2008.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/26/2008] [Accepted: 05/26/2008] [Indexed: 11/29/2022]
Abstract
As our understanding of developmental mechanisms in flowering plant species has become more advanced, an appreciation of the need to understand how distinct plant morphologies are generated has grown. This has led to an awareness of the key morphological differences in distinct land plant groups and to an assessment of the major innovations that occurred during land plant evolution. Recent advances demonstrate how developmental toolkits have been recruited for related purposes in different land plant groups, but the limited number of examples highlights both the infancy of the field and the difficulty of working with non-flowering plants.
Collapse
Affiliation(s)
- Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom.
| |
Collapse
|
39
|
Abstract
TALE homeodomain proteins regulate development in many eukaryotes. Now, Lee et al. (2008) report that two TALE homeodomain proteins control zygote development of the unicellular green alga Chlamydomonas. This implicates TALE gene loss and diversification in the evolution of new diploid body plans that appeared when land plants evolved from algal ancestors over 450 million years ago.
Collapse
Affiliation(s)
- Liam Dolan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|