1
|
Zeng J, Huang F, Zhang N, Wu C, Lin J, Lin S, Pan Z, Lei X, Zheng J, Guo J, Hu W. Overexpression of the cassava (Manihot esculenta) PP2C26 gene decreases drought tolerance and abscisic acid responses in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2025; 760:151715. [PMID: 40157287 DOI: 10.1016/j.bbrc.2025.151715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) stands as a pivotal food crop within tropical and subtropical regions. With its inherent drought-tolerant traits, cassava proves to be an ideal candidate for investigating drought tolerance mechanisms in staple crops. Although protein phosphatase 2C (PP2Cs) plays a critical role in drought stress responses in plants, the molecular mechanism of PP2Cs in cassava has yet to be elucidated. RESULTS In this research, we cloned MePP2C26, a member of group A PP2Cs, which exhibited significant upregulation following treatments with mannitol, NaCl, and ABA. Arabidopsis transgenic lines overexpressing MePP2C26 exhibited reduced drought tolerance, with survival rates of 39 %, 37 %, and 39 % for OV2, OV3, and OV6 lines, respectively, compared to 53 % in wild-type (WT) and 52 % in vector control (VC) plants. Additionally, these transgenic lines showed altered responses to exogenous ABA, as MePP2C26 overexpression significantly alleviated ABA-induced inhibition of seed germination and root growth. These lines displayed elevated levels of malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS), accompanied by reduced activities of catalase (CAT) and peroxidase (POD) as well as decreased proline accumulation compared to the wild type (WT) under drought stress conditions. Furthermore, MePP2C26 was shown to downregulate the expression of genes involved in the ABA signaling pathway (including AtSnRK2.6, ABF2, ABF3, RD26, and RD29B) under drought conditions, as evidenced by the transgenic line exhibiting consistently lower expression levels of these genes (despite their drought-induced upregulation in both transgenic and wild-type plants) compared to the WT. MePP2C26 was found to be localized in the nucleus and exhibited self-activation. Moreover, a number of MePYLs (MePYL1, MePYL4-9, MePYL11-13) were found to interact with MePP2C26 in the presence or absence of ABA. CONCLUSIONS In conclusion, the results of this study indicate that MePP2C26 acts as a negative regulator in both drought tolerance and ABA signaling pathways in Arabidopsis.
Collapse
Affiliation(s)
- Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China.
| | - Feifei Huang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Ning Zhang
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Chunlai Wu
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China; The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Jiamiao Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Suyan Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Zimo Pan
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Xinfang Lei
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China.
| | - Wei Hu
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China.
| |
Collapse
|
2
|
Wang M, Kang S, Wang Z, Jiang S, Yang Z, Xie Z, Tang H. Genome-wide analysis of the PYL-PP2C-SnRK2s family in the ABA signaling pathway of pitaya reveals its expression profiles under canker disease stress. BMC Genomics 2024; 25:749. [PMID: 39090531 PMCID: PMC11295335 DOI: 10.1186/s12864-024-10665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Abscisic acid (ABA) plays a crucial role in seed dormancy, germination, and growth, as well as in regulating plant responses to environmental stresses during plant growth and development. However, detailed information about the PYL-PP2C-SnRK2s family, a central component of the ABA signaling pathway, is not known in pitaya. RESULTS In this study, we identified 19 pyrabactin resistance-likes (PYLs), 70 type 2 C protein phosphatases (PP2Cs), and 14 SNF1-related protein kinase 2s (SnRK2s) from pitaya. In pitaya, tandem duplication was the primary mechanism for amplifying the PYL-PP2C-SnRK2s family. Co-linearity analysis revealed more homologous PYL-PP2C-SnRK2s gene pairs located in collinear blocks between pitaya and Beta vulgaris L. than that between pitaya and Arabidopsis. Transcriptome analysis showed that the PYL-PP2C-SnRK2s gene family plays a role in pitaya's response to infection by N. dimidiatum. By spraying ABA on pitaya and subsequently inoculating it with N. dimidiatum, we conducted qRT-PCR experiments to observe the response of the PYL-PP2C-SnRK2s gene family and disease resistance-related genes to ABA. These treatments significantly enhanced pitaya's resistance to pitaya canker. Further protein interaction network analysis helped us identify five key PYLs genes that were upregulated during the interaction between pitaya and N. dimidiatum, and their expression patterns were verified by qRT-PCR. Subcellular localization analysis revealed that the PYL (Hp1879) gene is primarily distributed in the nucleus. CONCLUSION This study enhances our understanding of the response of PYL-PP2C-SnRK2s to ABA and also offers a new perspective on pitaya disease resistance.
Collapse
Affiliation(s)
- Meng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shaoling Kang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhouwen Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Senrong Jiang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhuangjia Yang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhan Xie
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Hua Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Singh A, Rajput VD, Lalotra S, Agrawal S, Ghazaryan K, Singh J, Minkina T, Rajput P, Mandzhieva S, Alexiou A. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:148. [PMID: 38578547 DOI: 10.1007/s10653-024-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.
Collapse
Affiliation(s)
- Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Shivani Lalotra
- School of Agriculture, Lovely Professional University, Jalandhar, India
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
4
|
Zeng J, Wu C, Ye X, Zhou J, Chen Y, Li L, Lin M, Wang S, Liu S, Yan Y, Tie W, Yang J, Yan F, Zeng L, Liu Y, Hu W. MePP2C24, a cassava (Manihot esculenta) gene encoding protein phosphatase 2C, negatively regulates drought stress and abscisic acid responses in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108291. [PMID: 38141400 DOI: 10.1016/j.plaphy.2023.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Abscisic acid (ABA) signaling plays a crucial role in plant development and response to abiotic/biotic stress. However, the function and regulation of protein phosphatase 2C (PP2C), a key component of abscisic acid signaling, under abiotic stress are still unknown in cassava, a drought-tolerant crop. In this study, a cassava PP2C gene (MePP2C24) was cloned and characterized. The MePP2C24 transcripts increased in response to mannitol, NaCl, and ABA. Overexpression of MePP2C24 in Arabidopsis resulted in increased sensitivity to drought stress and decreased sensitivity to exogenous ABA. This was demonstrated by transgenic lines having higher levels of malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS), lower activities of catalase (CAT) and peroxidase (POD), and lower proline content than wild type (WT) under drought stress. Moreover, MePP2C24 overexpression caused decrease in expression of drought-responsive genes related to ABA signaling pathway. In addition, MePP2C24 was localized in the cell nucleus and showed self-activation. Furthermore, many MePYLs (MePYL1, MePYL4, MePYL7-9, and MePYL11-13) could interact with MePP2C24 in the presence of ABA, and MePYL1 interacted with MePP2C24 in both the presence and absence of ABA. Additionally, MebZIP11 interacted with the promoter of MePP2C24 and exerted a suppressive effect. Taken together, our results suggest that MePP2C24 acts as a negative regulator of drought tolerance and ABA response.
Collapse
Affiliation(s)
- Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China.
| | - Chunlai Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Jiewei Zhou
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Yingtong Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Lizhen Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Man Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Shuting Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Siwen Liu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Yan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Weiwei Tie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Jinghao Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Liwang Zeng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China.
| | - Yujia Liu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China.
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China.
| |
Collapse
|
5
|
Li C, Zhang H, Qi Y, Zhao Y, Duan C, Wang Y, Meng Z, Zhang Q. Genome-wide identification of PYL/PYR-PP2C (A)-SnRK2 genes in Eutrema and their co-expression analysis in response to ABA and abiotic stresses. Int J Biol Macromol 2023; 253:126701. [PMID: 37673165 DOI: 10.1016/j.ijbiomac.2023.126701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
ABA signaling core components PYR/PYL, group A PP2C and SnRK2 play important roles in various environmental stress responses of plants. This study identified 14 PYR/PYL, 9 PP2C (A), and 10 SnRK2 genes from halophytic Eutrema. Phylogenetic analysis showed 4 EsPYR/PYL, 4 EsPP2C (A) and 3 EsSnRK2 subfamilies characterized, which was supported by their gene structures and protein motifs. Large-scale segmental duplication event was demonstrated to be a major contributor to expansion of the EsPYL-PP2C (A)-SnRK2 gene families. Synteny relationship analysis revealed more orthologous PYL-PP2C (A)-SnRK2 gene pairs located in collinear blocks between Eutrema and Brassica than that between Eutrema and Arabidopsis. RNA-seq and qRT-PCR revealed EsABI1, EsABI2 and EsHAL2 showed a significantly up-regulated expression in leaves and roots in response to ABA, NaCl or cold stress. Three markedly co-expression modules of ABA/R-brown, NaCl/L-lightsteelblue1 and Cold/R-lightgreen were uncovered to contain EsPYL-PP2C (A)-SnRK2 genes by WGCNA analysis. GO and KEGG analysis indicated that the genes of ABA/R-brown module containing EsHAB1, EsHAI2 and EsSnRK2.6 were enriched in proteasome pathway. Further, EsHAI2-OE transgenic Arabidopsis lines showed significantly enhanced seeds germination and seedlings growth. This work provides a new insight for elucidating potential molecular functions of PYL-PP2C (A)-SnRK2 responding to ABA and abiotic stresses.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yujiao Wang
- Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China.
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Huang Y, Yang R, Luo H, Yuan Y, Diao Z, Li J, Gong S, Yu G, Yao H, Zhang H, Cai Y. Arabidopsis Protein Phosphatase PIA1 Impairs Plant Drought Tolerance by Serving as a Common Negative Regulator in ABA Signaling Pathway. PLANTS (BASEL, SWITZERLAND) 2023; 12:2716. [PMID: 37514328 PMCID: PMC10384177 DOI: 10.3390/plants12142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Reversible phosphorylation of proteins is a ubiquitous regulatory mechanism in vivo that can respond to external changes, and plays an extremely important role in cell signal transduction. Protein phosphatase 2C is the largest protein phosphatase family in higher plants. Recently, it has been found that some clade A members can negatively regulate ABA signaling pathways. However, the functions of several subgroups of Arabidopsis PP2C other than clade A have not been reported, and whether other members of the PP2C family also participate in the regulation of ABA signaling pathways remains to be studied. In this study, based on the previous screening and identification work of PP2C involved in the ABA pathway, the clade F member PIA1 encoding a gene of the PP2C family, which was down-regulated after ABA treatment during the screening, was selected as the target. Overexpression of PIA1 significantly down-regulated the expression of ABA marker gene RD29A in Arabidopsis protoplasts, and ABA-responsive elements have been found in the cis-regulatory elements of PIA1 by promoter analysis. When compared to Col-0, transgenic plants overexpressing PIA1 were less sensitive to ABA, whereas pia1 showed the opposite trait in seed germination, root growth, and stomatal opening experiments. Under drought stress, SOD, POD, CAT, and APX activities of PIA1 overexpression lines were lower than Col-0 and pia1, while the content of H2O2 was higher, leading to its lowest survival rate in test plants, which were consistent with the significant inhibition of the expression of ABA-dependent stress-responsive genes RD29B, ABI5, ABF3, and ABF4 in the PIA1 transgenic background after ABA treatment. Using yeast two-hybrid and luciferase complementation assays, PIA1 was found to interact with multiple ABA key signaling elements, including 2 RCARs and 6 SnRK2s. Our results indicate that PIA1 may reduce plant drought tolerance by functioning as a common negative regulator involved in ABA signaling pathway.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huiling Luo
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Yuan Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhihong Diao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Junhao Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Shihe Gong
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| |
Collapse
|
7
|
Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H, Zhang Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:843994. [PMID: 35392516 PMCID: PMC8981240 DOI: 10.3389/fpls.2022.843994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The area of salinized land is gradually expanding cross the globe. Salt stress seriously reduces the yield and quality of crops and endangers food supply to meet the demand of the increased population. The mechanisms underlying nano-enabled plant tolerance were discussed, including (1) maintaining ROS homeostasis, (2) improving plant's ability to exclude Na+ and to retain K+, (3) improving the production of nitric oxide, (4) increasing α-amylase activities to increase soluble sugar content, and (5) decreasing lipoxygenase activities to reduce membrane oxidative damage. The possible commonly employed mechanisms such as alleviating oxidative stress damage and maintaining ion homeostasis were highlighted. Further, the possible role of phytohormones and the molecular mechanisms in nano-enabled plant salt tolerance were discussed. Overall, this review paper aims to help the researchers from different field such as plant science and nanoscience to better understand possible new approaches to address salinity issues in agriculture.
Collapse
Affiliation(s)
- Zengqiang Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fameng Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangjun Kong
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
8
|
Krämer M, Dörfer E, Hickl D, Bellin L, Scherer V, Möhlmann T. Cytidine Triphosphate Synthase Four From Arabidopsis thaliana Attenuates Drought Stress Effects. FRONTIERS IN PLANT SCIENCE 2022; 13:842156. [PMID: 35360303 PMCID: PMC8960734 DOI: 10.3389/fpls.2022.842156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Cytidine triphosphate synthase (CTPS) catalyzes the final step in pyrimidine de novo synthesis. In Arabidopsis, this protein family consists of five members (CTPS1-5), and all of them localize to the cytosol. Specifically, CTPS4 showed a massive upregulation of transcript levels during abiotic stress, in line with increased staining of CTPS4 promoter:GUS lines in hypocotyl, root and to lesser extend leaf tissues. In a setup to study progressive drought stress, CTPS4 knockout mutants accumulated less fresh and dry weight at days 5-7 and showed impaired ability to recover from this stress after 3 days of rewatering. Surprisingly, a thorough physiological characterization of corresponding plants only revealed alterations in assimilation and accumulation of soluble sugars including those related to drought stress in the mutant. Bimolecular fluorescence complementation (BiFC) studies indicated the interaction of CTPS4 with other isoforms, possibly affecting cytoophidia (filaments formed by CTPS formation. Although the function of these structures has not been thoroughly investigated in plants, altered enzyme activity and effects on cell structure are reported in other organisms. CTPS activity is required for cell cycle progression and growth. Furthermore, drought can lead to the accumulation of reactive oxygen species (ROS) and by this, to DNA damage. We hypothesize that effects on the cell cycle or DNA repair might be relevant for the observed impaired reduced drought stress tolerance of CTPS4 mutants.
Collapse
|
9
|
Patel R, Mehta K, Goswami D, Saraf M. An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Mol Biotechnol 2021; 64:109-129. [PMID: 34561838 DOI: 10.1007/s12033-021-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Phytohormones are the main regulatory molecules of core signalling networks associated with plant life cycle regulation. Manipulation of hormone signalling cascade enables the control over physiological traits of plant, which has major applications in field of agriculture and food sustainability. Hence, stable analogues of these hormones are long sought after and many of them are currently known, but the quest for more effective, stable and economically viable analogues is still going on. This search has been further strengthened by the identification of the components of signalling cascade such as receptors, downstream cascade members and transcription factors. Furthermore, many proteins of phytohormone cascades are available in crystallized forms. Such crystallized structures can provide the basis for identification of novel interacting compounds using in silico approach. Plenty of computational tools and bioinformatics software are now available that can aid in this process. Here, the metadata of all the major phytohormone signalling cascades are presented along with discussion on major protein-ligand interactions and protein components that may act as a potential target for manipulation of phytohormone signalling cascade. Furthermore, structural aspects of phytohormones and their known analogues are also discussed that can provide the basis for the synthesis of novel analogues.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Krina Mehta
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
10
|
Xu Y, Liu J, Jia C, Hu W, Song S, Xu B, Jin Z. Overexpression of a Banana Aquaporin Gene MaPIP1;1 Enhances Tolerance to Multiple Abiotic Stresses in Transgenic Banana and Analysis of Its Interacting Transcription Factors. FRONTIERS IN PLANT SCIENCE 2021; 12:699230. [PMID: 34512687 PMCID: PMC8424054 DOI: 10.3389/fpls.2021.699230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/21/2021] [Indexed: 05/31/2023]
Abstract
Aquaporins can improve the ability of plants to resist abiotic stresses, but the mechanism is still not completely clear. In this research, overexpression of MaPIP1;1 in banana improved tolerance to multiple stresses. The transgenic plants resulted in lower ion leakage and malondialdehyde content, while the proline, chlorophyll, soluble sugar, and abscisic acid (ABA) contents were higher. In addition, under high salt and recovery conditions, the content of Na+ and K+ is higher, also under recovery conditions, the ratio of K+/Na+ is higher. Finally, under stress conditions, the expression levels of ABA biosynthesis and response genes in the transgenic lines are higher than those of the wild type. In previous studies, we proved that the MaMADS3 could bind to the promoter region of MaPIP1;1, thereby regulating the expression of MaPIP1;1 and affecting the drought tolerance of banana plants. However, the mechanism of MaPIP1;1 gene response to stress under different adversity conditions might be regulated differently. In this study, we proved that some transcription factor genes, including MaERF14, MaDREB1G, MaMYB1R1, MaERF1/39, MabZIP53, and MaMYB22, showed similar expression patterns with MaPIP1;1 under salt or cold stresses, and their encoded proteins could bind to the promoter region of MaPIP1;1. Here we proposed a novel MaPIP1;1-mediated mechanism that enhanced salt and cold tolerance in bananas. The results of this study have enriched the stress-resistant regulatory network of aquaporins genes and are of great significance for the development of molecular breeding strategies for stress-resistant fruit crops.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
11
|
Xu P, Zhang X, Su H, Liu X, Wang Y, Hong G. Genome-wide analysis of PYL-PP2C-SnRK2s family in Camellia sinensis. Bioengineered 2020; 11:103-115. [PMID: 31903833 PMCID: PMC6961588 DOI: 10.1080/21655979.2019.1710932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/31/2023] Open
Abstract
Abscisic acid (ABA) signaling regulates plant growth and development and participates in response to abiotic stressors. However, details about the PYL-PP2C-SnRK2 gene family, which is the core component of ABA signaling in Camellia sinensis, are unknown. In this work, we identified 14 pyrabactin resistance-likes (PYLs), 84 type 2C protein phosphatase (PP2Cs), and 8 SNF1-related protein kinase 2s (SnRK2s) from C. sinensis. The transcriptomic analysis indicated that PYL-PP2C-SnRK2s were associated with changes of leaf color and the response of C. sinensis to drought and salt stressors. Changes of the expression of Snrk2s were not significant in the process of leaf color change or drought and salt stress response, suggesting that PYLs and PP2Cs may not interact with SnRK2s in C. sinensis during these processes. Finally, Gene Regulatory Network (GRN) construction and interaction networks analysis demonstrated that PYLs and PP2Cs were associated with multiple metabolic pathways during the changes of leaf color.
Collapse
Affiliation(s)
- Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hui Su
- Department of Tea Science, Zhejiang University, Hangzhou, China
| | - Xiaofen Liu
- National Engineering Laboratory of Cold Chain Logistics Technology and Facility for Horticultural Produce, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, Hangzhou, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
12
|
Tan X, Li S, Hu L, Zhang C. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC PLANT BIOLOGY 2020; 20:81. [PMID: 32075594 PMCID: PMC7032001 DOI: 10.1186/s12870-020-2286-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs' response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought stress and rehydration treatment at the seedling stage. RESULTS A total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with 7824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up- regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA-mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. CONCLUSIONS The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Su Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Liyong Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
13
|
Xu Y, Hu W, Liu J, Song S, Hou X, Jia C, Li J, Miao H, Wang Z, Tie W, Xu B, Jin Z. An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:66-76. [PMID: 31841963 DOI: 10.1016/j.plaphy.2019.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/30/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Aquaporins (AQPs) transport water and other small molecules; however, their precise role in abiotic stress responses is not fully understood. In this study, we cloned and characterized the PIP2 group AQP gene, MaPIP2-7, in banana. MaPIP2-7 expression was upregulated after osmotic (mannitol), cold, and salt treatments. Overexpression of MaPIP2-7 in banana improved tolerance to multiple stresses such as drought, cold, and salt. MaPIP2-7 transgenic plants showed lower levels of malondialdehyde (MDA) and ion leakage (IL), but higher contents of chlorophyll, proline, soluble sugar, and abscisic acid (ABA) compared with wild type (WT) plants under stress and recovery conditions. Additionally, MaPIP2-7 overexpression decreased cellular contents of Na+ and K+ under salt and recovery conditions, and produced an elevated K+/Na+ ratio under recovery conditions. Finally, ABA biosynthetic and responsive genes exhibited higher expression levels in transgenic lines relative to WT under stress conditions. Taken together, our results demonstrate that MaPIP2-7 confers tolerance to drought, cold, and salt stresses by maintaining osmotic balance, reducing membrane injury, and improving ABA levels.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, 571101, China.
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, 571101, China.
| | - Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Xiaowan Hou
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China.
| | - Caihong Jia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, 571101, China.
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Hongxia Miao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, 571101, China.
| | - Zhuo Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, 571101, China.
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, 571101, China.
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, 571101, China.
| | - Zhiqiang Jin
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; Hainan Academy of Tropical Agricultural Resource, Haikou, Hainan, 571101, China.
| |
Collapse
|
14
|
Cifuentes‐Esquivel N, Celiz‐Balboa J, Henriquez‐Valencia C, Mitina I, Arraño‐Salinas P, Moreno AA, Meneses C, Blanco‐Herrera F, Orellana A. bZIP17 regulates the expression of genes related to seed storage and germination, reducing seed susceptibility to osmotic stress. J Cell Biochem 2018; 119:6857-6868. [DOI: 10.1002/jcb.26882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 02/02/2023]
Affiliation(s)
| | - Jonathan Celiz‐Balboa
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | | | - Irina Mitina
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | - Paulina Arraño‐Salinas
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
| | - Adrián A. Moreno
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| | - Claudio Meneses
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| | - Francisca Blanco‐Herrera
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB)SantiagoChile
| | - Ariel Orellana
- Centro de Biotecnología VegetalFacultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
- FONDAP Center for Genome RegulationCentro de Biotecnología VegetalUniversidad Andres BelloSantiagoChile
| |
Collapse
|
15
|
Hu W, Yan Y, Shi H, Liu J, Miao H, Tie W, Ding Z, Ding X, Wu C, Liu Y, Wang J, Xu B, Jin Z. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. BMC PLANT BIOLOGY 2017; 17:145. [PMID: 28851274 PMCID: PMC5576091 DOI: 10.1186/s12870-017-1093-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 08/17/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. RESULTS In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. CONCLUSIONS This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Hongxia Miao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - XuPo Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Yang Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Jiashui Wang
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| |
Collapse
|
16
|
Zhang H, Wei C, Yang X, Chen H, Yang Y, Mo Y, Li H, Zhang Y, Ma J, Yang J, Zhang X. Genome-wide identification and expression analysis of calcium‑dependent protein kinase and its related kinase gene families in melon (Cucumis melo L.). PLoS One 2017; 12:e0176352. [PMID: 28437432 PMCID: PMC5402965 DOI: 10.1371/journal.pone.0176352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
The calcium-dependent protein kinase (CDPK) is a ser/thr protein kinase that plays vital roles in plant growth, development, and responses to multiple stresses. Despite an important member of the stress responsive gene family, little is known about the evolutionary history and expression patterns of CDPK genes in melon. Herein, a total of 18 CDPK genes and 7 CDPK-related protein kinases (CRK) genes were identified in the melon genome via bioinformatic analysis, which were unevenly distributed across eleven chromosomes with an apparent exception for chromosome 3. Comparative syntenic analysis between Cucumis melo L. and Arabidopsis thaliana revealed that 13 CmCDPKs and 19 AtCPKs existed in 20 corresponding syntenic blocks. In addition, based on gene structure and phylogenetic analyses, all CmCDPKs were divided into four groups (CDPK I-IV) and CmCRKs clustered into one group (CRK I). Interestingly, group CDPK IV was clearly distinct from the other three CDPK groups, but clustered with CRK I on the phylogenetic tree, implying their origination from a common ancestor. Furthermore, CmCDPKand CmCRK genes were differentially expressed in response to various stimuli, such as biotic stress (Podosphaera xanthii), abiotic stress (salt and cold), and hormone (abscisic acid) treatment. To our knowledge, this is the first report on CDPK and CRK gene families in melon, which provides a basic foundation for functional characterizations of CmCDPK and CmCRK genes in the future.
Collapse
Affiliation(s)
- Haifei Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Chunhua Wei
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaozhen Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Hejie Chen
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Yongchao Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
- Wenshan Academy of Agricultural Sciences, Wenshan, China
| | - Yanling Mo
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Hao Li
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Jianxiang Ma
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Jianqiang Yang
- Department of Horticulture, Northwest A&F University, Yangling, China
| | - Xian Zhang
- Department of Horticulture, Northwest A&F University, Yangling, China
- * E-mail:
| |
Collapse
|
17
|
Qiao Z, Li CL, Zhang W. WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 91:53-65. [PMID: 26820136 DOI: 10.1007/s11103-016-0441-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/16/2016] [Indexed: 05/19/2023]
Abstract
A key response of plants to moisture stress is stomatal closure, a process mediated by the phytohormone abscisic acid (ABA). Closure is affected by changes in the turgor of the stomatal guard cell. The transcription factor WRKY1 is a part of the regulatory machinery underlying stomatal movements, and through this, in the plant's response to drought stress. The loss-of-function T-DNA insertion mutant wrky1 was particularly sensitive to ABA, with respect to both ion channel regulation and stomatal movements, and less sensitive to drought than the wild type. Complementation of the wrky1 mutant resulted in the recovery of the wild type phenotype. The WRKY1 product localized to the nucleus, and was shown able to bind to the W-box domain in the promoters of MYB2, ABCG40, DREB1A and ABI5, and thereby to control their transcription in response to drought stress or ABA treatment. WRKY1 is thought to act as a negative regulator in guard cell ABA signalling.
Collapse
Affiliation(s)
- Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Chun-Long Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
18
|
Henriquez-Valencia C, Moreno AA, Sandoval-Ibañez O, Mitina I, Blanco-Herrera F, Cifuentes-Esquivel N, Orellana A. bZIP17 and bZIP60 Regulate the Expression of BiP3 and Other Salt Stress Responsive Genes in an UPR-Independent Manner in Arabidopsis thaliana. J Cell Biochem 2016; 116:1638-45. [PMID: 25704669 DOI: 10.1002/jcb.25121] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
Plants can be severely affected by salt stress. Since these are sessile organisms, they have developed different cellular responses to cope with this problem. Recently, it has been described that bZIP17 and bZIP60, two ER-located transcription factors, are involved in the cellular response to salt stress. On the other hand, bZIP60 is also involved in the unfolded protein response (UPR), a signaling pathway that up-regulates the expression of ER-chaperones. Coincidentally, salt stress produces the up-regulation of BiP, one of the main chaperones located in this organelle. Then, it has been proposed that UPR is associated to salt stress. Here, by using insertional mutant plants on bZIP17 and bZIP60, we show that bZIP17 regulate the accumulation of the transcript for the chaperone BiP3 under salt stress conditions, but does not lead to the accumulation of UPR-responding genes such as the chaperones Calnexin, Calreticulin, and PDIL under salt treatments. In contrast, DTT, a known inducer of UPR, leads to the up-regulation of all these chaperones. On the other hand, we found that bZIP60 regulates the expression of some bZIP17 target genes under conditions were splicing of bZIP60 does not occur, suggesting that the spliced and unspliced forms of bZIP60 play different roles in the physiological response of the plant. Our results indicate that the ER-located transcription factors bZIP17 and bZIP60 play a role in salt stress but this response goes through a signaling pathway that is different to that triggered by the unfolded protein response.
Collapse
Affiliation(s)
- Carlos Henriquez-Valencia
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Omar Sandoval-Ibañez
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Irina Mitina
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Nicolas Cifuentes-Esquivel
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
19
|
Ma B, Yin CC, He SJ, Lu X, Zhang WK, Lu TG, Chen SY, Zhang JS. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet 2014; 10:e1004701. [PMID: 25330236 PMCID: PMC4199509 DOI: 10.1371/journal.pgen.1004701] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/22/2014] [Indexed: 11/19/2022] Open
Abstract
Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.
Collapse
Affiliation(s)
- Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Si-Jie He
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
González-Guzmán M, Rodríguez L, Lorenzo-Orts L, Pons C, Sarrión-Perdigones A, Fernández MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodríguez PL. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4451-64. [PMID: 24863435 PMCID: PMC4112642 DOI: 10.1093/jxb/eru219] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications.
Collapse
Affiliation(s)
- Miguel González-Guzmán
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Lesia Rodríguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Laura Lorenzo-Orts
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Clara Pons
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Alejandro Sarrión-Perdigones
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Maria A Fernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Marta Peirats-Llobet
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Maria Moreno-Alvero
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Sean R Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| | - Armando Albert
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Pedro L Rodríguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| |
Collapse
|
21
|
Lumba S, Toh S, Handfield LF, Swan M, Liu R, Youn JY, Cutler SR, Subramaniam R, Provart N, Moses A, Desveaux D, McCourt P. A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis. Dev Cell 2014; 29:360-72. [PMID: 24823379 DOI: 10.1016/j.devcel.2014.04.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/21/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022]
Abstract
The sesquiterpenoid abscisic acid (ABA) mediates an assortment of responses across a variety of kingdoms including both higher plants and animals. In plants, where most is known, a linear core ABA signaling pathway has been identified. However, the complexity of ABA-dependent gene expression suggests that ABA functions through an intricate network. Here, using systems biology approaches that focused on genes transcriptionally regulated by ABA, we defined an ABA signaling network of over 500 interactions among 138 proteins. This map greatly expanded ABA core signaling but was still manageable for systematic analysis. For example, functional analysis was used to identify an ABA module centered on two sucrose nonfermenting (SNF)-like kinases. We also used coexpression analysis of interacting partners within the network to uncover dynamic subnetwork structures in response to different abiotic stresses. This comprehensive ABA resource allows for application of approaches to understanding ABA functions in higher plants.
Collapse
Affiliation(s)
- Shelley Lumba
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Shigeo Toh
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | | | - Michael Swan
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Raymond Liu
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Ji-Young Youn
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sean R Cutler
- Botany and Plant Sciences, Chemistry Genomics Building, University of California, Riverside, Riverside, CA 92521, USA
| | | | - Nicholas Provart
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Alan Moses
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Darrell Desveaux
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Peter McCourt
- Cell & Systems Biology, University of Toronto and the Centre for The Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
22
|
He Y, Hao Q, Li W, Yan C, Yan N, Yin P. Identification and characterization of ABA receptors in Oryza sativa. PLoS One 2014; 9:e95246. [PMID: 24743650 PMCID: PMC3990689 DOI: 10.1371/journal.pone.0095246] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 03/24/2014] [Indexed: 11/27/2022] Open
Abstract
Abscisic acid (ABA) is an essential phytohormone that regulates plant stress responses. ABA receptors in Arabidopsis thaliana (AtPYLs) have been extensively investigated by structural, biochemical, and in vivo studies. In contrast, relatively little is known about the ABA signal transduction cascade in rice. Besides, the diversities of AtPYLs manifest that the information accumulated in Arabidopsis cannot be simply adapted to rice. Thus, studies on rice ABA receptors are compulsory. By taking a bioinformatic approach, we identified twelve ABA receptor orthologs in Oryza sativa (japonica cultivar-group) (OsPYLs), named OsPYL1–12. We have successfully expressed and purified OsPYL1–3, 6 and 10–12 to homogeneity, tested the inhibitory effects on PP2C in Oryza sativa (OsPP2C), and measured their oligomerization states. OsPYL1–3 mainly exhibit as dimers and require ABA to inhibit PP2C’s activity. On the contrary, OsPYL6 retains in the monomer-dimer equilibrium state and OsPYL10–11 largely exist as monomers, and they all display an ABA-independent phosphatase inhibition manner. Interestingly, although OsPYL12 seems to be a dimer, it abrogates the phosphatase activity of PP2Cs in the absence of ABA. Toward a further understanding of OsPYLs on the ABA binding and PP2C inhibition, we determined the crystal structure of ABA-OsPYL2-OsPP2C06 complex. The bioinformatic, biochemical and structural analysis of ABA receptors in rice provide important foundations for designing rational ABA-analogues and breeding the stress-resistant rice for commercial agriculture.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Beijing, China; Center for Structural Biology, School of Medicine, Beijing, China
| | - Qi Hao
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Beijing, China; Center for Structural Biology, School of Medicine, Beijing, China
| | - Wenqi Li
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Beijing, China; Center for Structural Biology, School of Medicine, Beijing, China
| | - Chuangye Yan
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Beijing, China; Center for Structural Biology, School of Medicine, Beijing, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, China; College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Stokes ME, McCourt P. Towards personalized agriculture: what chemical genomics can bring to plant biotechnology. FRONTIERS IN PLANT SCIENCE 2014; 5:344. [PMID: 25183965 PMCID: PMC4135236 DOI: 10.3389/fpls.2014.00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/27/2014] [Indexed: 05/14/2023]
Abstract
In contrast to the dominant drug paradigm in which compounds were developed to "fit all," new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis, when wedded to accessible large chemical space, should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to "personalize" agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early stage research and development, a situation that has proven very fruitful for Big Pharma.
Collapse
Affiliation(s)
| | - Peter McCourt
- *Correspondence: Peter McCourt, Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada e-mail:
| |
Collapse
|
24
|
Radhakrishnan R, Khan AL, Lee IJ. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J Microbiol 2013; 51:850-7. [PMID: 24385364 DOI: 10.1007/s12275-013-3168-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022]
Abstract
In the present study, four endophytic fungi (GM-1, GM-2, GM-3, and GM-4) were tested for their ability to improve soybean plant growth under salinity stress conditions. The seed germination and plant growth were higher in seeds pretreated with endophytic fungal cultures than their controls. The positive influence of fungi on plant growth was supported by gibberellins analysis of culture filtrate (CF), which showed wide diversity and various concentrations of GAs. Specifically, GA4, GA7, GA8, GA9, GA12, and GA20 were found in fungal CFs. Under salinity stress conditions, GM-1 significantly enhanced the length and fresh weight of soybean plants relative to other fungal treatments. GM-1 effectively mitigated the adverse effects of salinity by limiting lipid peroxidation and accumulating protein content. GM-2, GM-3, and GM-4 also counteracted the salinity induced oxidative stress in soybean plants through reduction of lipid peroxidation and enhancement of protein content, maintaining the length and fresh weight of shoots. The activities of the antioxidant enzymes catalase, superoxide dismutase and peroxidase were inhibited in salinity exposed plants, while GM-1 significantly enhanced these antioxidant enzyme activities in plants under salt stress. GM-1 treatment also showed lower levels of abscisic acid and elevated levels of salicylic acid in plants under salinity stress. Hence, GM-1 was identified as Fusarium verticillioides (teleomorph Gibberella moniliformis) isolate RK01 based on its DNA sequence homology. These results suggest that endophytic fungal (F. verticillioides) pre-treatment of soybean seeds would be an effective method to promote soybean plant growth under salinity stress conditions.
Collapse
|
25
|
Singh R, Jwa NS. The rice MAPKK-MAPK interactome: the biological significance of MAPK components in hormone signal transduction. PLANT CELL REPORTS 2013; 32:923-31. [PMID: 23571660 DOI: 10.1007/s00299-013-1437-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK-MAPKK-MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK-MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | | |
Collapse
|