1
|
Gogoi N, Susila H, Leach J, Müllner M, Jones B, Pogson BJ. Developing frameworks for nanotechnology-driven DNA-free plant genome-editing. TRENDS IN PLANT SCIENCE 2025; 30:249-268. [PMID: 39477773 DOI: 10.1016/j.tplants.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 03/08/2025]
Abstract
The bottlenecks of conventional plant genome-editing methods gave an innovative rise to nanotechnology as a delivery tool to manipulate gene(s) of interest. Studies suggest a strong correlation between the physicochemical properties of nanomaterials and their efficiency in gene delivery to different plant species/tissues. In this opinion article we highlight the need for a deeper understanding of plant-nanomaterial interactions to align their full capabilities with the strategic goals of plant genome-editing. Additionally, we emphasize DNA-free plant genome-editing approaches to potentially mitigate concerns surrounding genetically modified organisms (GMOs). Lastly, we propose a strategic integration of the principles of responsible research and innovation (RRI) in R&D. We aim to initiate a dialogue on developing collaborative and socio-technical frameworks for nanotechnology and DNA-free plant genome-editing.
Collapse
Affiliation(s)
- Neelam Gogoi
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Hendry Susila
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Joan Leach
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia; Australian National Centre for the Public Awareness of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Markus Müllner
- Key Centre for Polymers & Colloids, School of Chemistry, Faculty of Science, The University of Sydney, NSW 2006, Australia; Sydney Institute of Agriculture, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| | - Brian Jones
- Sydney Institute of Agriculture, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Barry J Pogson
- ARC Training Centre for Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
2
|
Ma M, Zhang C, Yu L, Yang J, Li C. CRISPR/Cas9 ribonucleoprotein mediated DNA-free genome editing in larch. FORESTRY RESEARCH 2024; 4:e036. [PMID: 39552837 PMCID: PMC11564729 DOI: 10.48130/forres-0024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Here, a DNA-free genetic editing approach is presented for larch by delivering ribonucleoprotein complexes (RNPs) of CRISPR/Cas9 through particle bombardment. The detailed procedure encompasses creating a transgenic system via particle bombardment for the transformation of embryogenic callus, validating the functionality of RNPs, optimizing coating and delivery techniques, enhancing somatic embryo maturation, regenerating plantlets, and precisely identifying mutants. The optimal particle bombardment parameters were determined at 1,100 psi and a distance of 9 cm and the editing efficiency of the targets was verified in vitro. Subsequently, the RNPs were transferred into the embryogenic callus. Mutant plants were obtained in targets 1 and target 2. The efficiencies of obtaining albino somatic embryos were 1.423% and 2.136%, respectively. A DNA-free particle bombardment transformation method suitable for larch has been established. The present study demonstrates that the DNA-free editing technology has been successfully implemented in larch. This method can achieve targeted genome editing in the larch genome, avoiding the risks of genomic integration and the lengthy breeding cycles associated with traditional transgenic methods. Moreover, it may be widely applicable for producing genome-edited conifer plants and holds great promise for commercialization.
Collapse
Affiliation(s)
- Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Lijing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Levengood H, Zhou Y, Zhang C. Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species. PLANT CELL REPORTS 2024; 43:273. [PMID: 39467894 DOI: 10.1007/s00299-024-03359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
The ability to efficiently genetically modify plant species is crucial, driving the need for innovative technologies in plant biotechnology. Existing plant genetic transformation systems include Agrobacterium-mediated transformation, biolistics, protoplast-based methods, and nanoparticle techniques. Despite these diverse methods, many species exhibit resistance to transformation, limiting the applicability of most published methods to specific species or genotypes. Tissue culture remains a significant barrier for most species, although other barriers exist. These include the infection and regeneration stages in Agrobacterium, cell death and genomic instability in biolistics, the creation and regeneration of protoplasts for protoplast-based methods, and the difficulty of achieving stable transformation with nanoparticles. To develop species-independent transformation methods, it is essential to address these transformation bottlenecks. This review examines recent advancements in plant biotechnology, highlighting both new and existing techniques that have improved the success rates of plant transformations. Additionally, several newly emerged plant model systems that have benefited from these technological advancements are also discussed.
Collapse
Affiliation(s)
- Hannah Levengood
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cankui Zhang
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Chai R, Sun W, Xu Z, Yao X, Chen S, Wang H, Guo J, Zhang Q, Yang Y, Li T, Chen S, Qiu L. Gene editing by SSB/CRISPR-Cas9 ribonucleoprotein in bacteria. Int J Biol Macromol 2024; 278:135065. [PMID: 39187111 DOI: 10.1016/j.ijbiomac.2024.135065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
The application of CRISPR-Cas9 ribonucleoprotein (RNP) for gene editing is commonly used in plants and animals, but its application in bacteria has not been reported. In this study, we employed DNA single-strand binding protein (SSB) to construct an SSB/CRISPR-Cas9 RNP-editing system for non-homologous recombination and homologous recombination gene editing of the upp gene in bacteria. The RNP targeting the upp gene, along with SSB, was introduced into the protoplasts of Escherichia coli, Pseudomonas, and Bacillus subtilis. Transformants were obtained on plates containing 5-fluorouracil (5-FU) with gene editing efficiencies (percentage of transformants relative to the number of protoplasts) of 9.75 %, 5.02 %, and 8.37 %, respectively, and sequencing analysis confirmed 100 % non-homologous recombination. When RNP, SSB, and a 100-nucleotide single-stranded oligodeoxynucleotide (ssODN) donor were introduced into the protoplasts of these bacteria, transformants were obtained with editing efficiencies of 45.11 %, 30.13 %, and 27.18 %, respectively, and sequencing confirmed 100 % homologous recombination knockout of the upp gene. Additionally, introducing RNP, SSB, and a 100 base-pair double-stranded oligodeoxynucleotide (dsODN) donor containing a tetracycline resistance gene (tetR-dsODN) resulted in transformants on 5-FU plates with editing efficiencies of 35.94 %, 22.46 %, and 19.08 %, respectively, with sequencing confirming 100 % homologous recombination replacement of the upp gene with tetR. These results demonstrate that the SSB/CRISPR-Cas9 RNP system can efficiently, simply, and rapidly edit bacterial genomes without the need for plasmids. This study is the first to report the use of RNP-based gene editing in bacteria.
Collapse
Affiliation(s)
- Ran Chai
- Henan Engineering Technology Research Center of Green Coating Materials, Yellow River Conservancy Technical Institute, Kaifeng 475004, China; College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Wenying Sun
- Henan Vocational College of Agriculture, Zhengzhou 451450, China
| | - Zhixu Xu
- Luoyang Wopsen Bioengineering Co., Ltd., Luoyang 471000, China
| | - Xinding Yao
- Henan Engineering Technology Research Center of Green Coating Materials, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Shanshan Chen
- Henan Engineering Technology Research Center of Green Coating Materials, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Haifeng Wang
- Henan Engineering Technology Research Center of Green Coating Materials, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Jiaxiang Guo
- Henan Engineering Technology Research Center of Green Coating Materials, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Qi Zhang
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yanqing Yang
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Tao Li
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China
| | - Shichang Chen
- Henan Vocational College of Agriculture, Zhengzhou 451450, China.
| | - Liyou Qiu
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
6
|
Yamada H, Kato N, Ichikawa M, Mannen K, Kiba T, Osakabe Y, Sakakibara H, Matsui M, Okamoto T. DNA- and Selectable-Marker-Free Genome-Editing System Using Zygotes from Recalcitrant Maize Inbred B73. PLANT & CELL PHYSIOLOGY 2024; 65:729-736. [PMID: 38288629 DOI: 10.1093/pcp/pcae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/31/2024]
Abstract
Genome-editing tools such as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system have become essential tools for increasing the efficiency and accuracy of plant breeding. Using such genome-editing tools on maize, one of the most important cereal crops of the world, will greatly benefit the agriculture and the mankind. Conventional genome-editing methods typically used for maize involve insertion of a Cas9-guide RNA expression cassette and a selectable marker in the genome DNA; however, using such methods, it is essential to eliminate the inserted DNA cassettes to avoid legislative concerns on gene-modified organisms. Another major hurdle for establishing an efficient and broadly applicable DNA-free genome-editing system for maize is presented by recalcitrant genotypes/cultivars, since cell/tissue culture and its subsequent regeneration into plantlets are crucial for producing transgenic and/or genome-edited maize. In this study, to establish a DNA-free genome-editing system for recalcitrant maize genotypes/cultivars, Cas9-gRNA ribonucleoproteins were directly delivered into zygotes isolated from the pollinated flowers of the maize-B73 cultivar. The zygotes successfully developed and were regenerated into genome-edited plantlets by co-culture with phytosulfokine, a peptide phytohormone. The method developed herein made it possible to obtain DNA- and selectable-marker-free genome-edited recalcitrant maize genotypes/cultivars with high efficiency. This method can advance the molecular breeding of maize and other important cereals, regardless of their recalcitrant characteristics.
Collapse
Affiliation(s)
- Hajime Yamada
- Agri-Bio Research Center, KANEKA CORPORATION, Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
- Plant Innovation Center, Japan Tobacco, Inc., Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
| | - Norio Kato
- Plant Innovation Center, Japan Tobacco, Inc., Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0392 Japan
| | - Masako Ichikawa
- Agri-Bio Research Center, KANEKA CORPORATION, Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
- Plant Innovation Center, Japan Tobacco, Inc., Higashibara 700, Iwata, Shizuoka, 438-0802 Japan
| | - Keiko Mannen
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
| | - Takatoshi Kiba
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Yuriko Osakabe
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hitoshi Sakakibara
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Minami Matsui
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Takashi Okamoto
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0392 Japan
| |
Collapse
|
7
|
Canini D, Ceschi E, Perozeni F. Toward the Exploitation of Sustainable Green Factory: Biotechnology Use of Nannochloropsis spp. BIOLOGY 2024; 13:292. [PMID: 38785776 PMCID: PMC11117969 DOI: 10.3390/biology13050292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Securing food, energy, and raw materials for a growing population is one of the most significant challenges of our century. Algae play a central role as an alternative to plants. Wastewater and flue gas can secure nutrients and CO2 for carbon fixation. Unfortunately, algae domestication is necessary to enhance biomass production and reduce cultivation costs. Nannochloropsis spp. have increased in popularity among microalgae due to their ability to accumulate high amounts of lipids, including PUFAs. Recently, the interest in the use of Nannochloropsis spp. as a green bio-factory for producing high-value products increased proportionally to the advances of synthetic biology and genetic tools in these species. In this review, we summarized the state of the art of current nuclear genetic manipulation techniques and a few examples of their application. The industrial use of Nannochloropsis spp. has not been feasible yet, but genetic tools can finally lead to exploiting this full-of-potential microalga.
Collapse
Affiliation(s)
| | | | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (D.C.); (E.C.)
| |
Collapse
|
8
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, Feng Y, Wang W, Hu Z, Grosser JW, Wang N. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1385768. [PMID: 38595767 PMCID: PMC11002166 DOI: 10.3389/fpls.2024.1385768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Javier Dalmendray
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Zhuyuan Hu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
9
|
Hwarari D, Radani Y, Ke Y, Chen J, Yang L. CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Funct Integr Genomics 2024; 24:50. [PMID: 38441816 DOI: 10.1007/s10142-024-01314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
The CRISPR/Cas systems have emerged as transformative tools for precisely manipulating plant genomes and enhancement. It has provided unparalleled applications from modifying the plant genomes to resistant enhancement. This review manuscript summarises the mechanism, application, and current challenges in the CRISPR/Cas genome editing technology. It addresses the molecular mechanisms of different Cas genes, elucidating their applications in various plants through crop improvement, disease resistance, and trait improvement. The advent of the CRISPR/Cas systems has enabled researchers to precisely modify plant genomes through gene knockouts, knock-ins, and gene expression modulation. Despite these successes, the CRISPR/Cas technology faces challenges, including off-target effects, Cas toxicity, and efficiency. In this manuscript, we also discuss these challenges and outline ongoing strategies employed to overcome these challenges, including the development of novel CRISPR/Cas variants with improved specificity and specific delivery methods for different plant species. The manuscript will conclude by addressing the future perspectives of the CRISPR/Cas technology in plants. Although this review manuscript is not conclusive, it aims to provide immense insights into the current state and future potential of CRISPR/Cas in sustainable and secure plant production.
Collapse
Affiliation(s)
- Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongchao Ke
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Adedeji OS, Naing AH, Kang H, Xu J, Chung MY, Kim CK. Editing of the ethylene biosynthesis gene in carnation using CRISPR-Cas9 ribonucleoprotein complex. PLANT METHODS 2024; 20:20. [PMID: 38308305 PMCID: PMC10835871 DOI: 10.1186/s13007-024-01143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
The study aimed to edit ethylene (ET) biosynthesis genes [1-aminocyclopropane-1-carboxylic acid (ACC) synthetase 1 (ACS1) and ACC oxidase 1 (ACO1)] in carnation using the CRISPR/Cas9 ribonucleoprotein (RNP) complex system. Initially, the conserved regions of the target genes (ACS1 and ACO1) were validated for the generation of different single guide RNAs (sgRNAs), followed by the use of an in vitro cleavage assay to confirm the ability of the sgRNAs to cleave the target genes specifically. The in vitro cleavage assay revealed that the sgRNAs were highly effective in cleaving their respective target regions. The complex of sgRNA: Cas9 was directly delivered into the carnation protoplast, and the target genes in the protoplast were deep-sequenced. The results revealed that the sgRNAs were applicable for editing the ET biosynthesis genes, as the mutation frequency ranged from 8.8 to 10.8% for ACO1 and 0.2-58.5% for ACS1. When sequencing the target genes in the callus derived from the protoplasts transformed with sgRNA: Cas9, different indel patterns (+ 1, - 1, and - 8 bp) in ACO1 and (- 1, + 1, and + 11) in ACS1 were identified. This study highlighted the potential application of CRISPR/Cas9 RNP complex system in facilitating precise gene editing for ET biosynthesis in carnation.
Collapse
Affiliation(s)
| | - Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, 41566, South Korea.
| | - Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, 41566, South Korea
| | - Junping Xu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
11
|
Kharbikar L, Konwarh R, Chakraborty M, Nandanwar S, Marathe A, Yele Y, Ghosh PK, Sanan-Mishra N, Singh AP. 3Bs of CRISPR-Cas mediated genome editing in plants: exploring the basics, bioinformatics and biosafety landscape. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1825-1850. [PMID: 38222286 PMCID: PMC10784264 DOI: 10.1007/s12298-023-01397-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
The recent thrust in research has projected the type II clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR-Cas9) system as an avant-garde plant genome editing tool. It facilitates the induction of site-specific double-stranded DNA cleavage by the RNA-guided DNA endonuclease (RGEN), Cas9. Elimination, addition, or alteration of sections in DNA sequence besides the creation of a knockout genotype (CRISPRko) is aided by the CRISPR-Cas9 system in its wild form (wtCas9). The inactivation of the nuclease domain generates a dead Cas9 (dCas9), which is capable of targeting genomic DNA without scissoring it. The dCas9 system can be engineered by fusing it with different effectors to facilitate transcriptional activation (CRISPRa) and transcriptional interference (CRISPRi). CRISPR-Cas thus holds tremendous prospects as a genome-manipulating stratagem for a wide gamut of crops. In this article, we present a brief on the fundamentals and the general workflow of the CRISPR-Cas system followed by an overview of the prospects of bioinformatics in propelling CRISPR-Cas research with a special thrust on the available databases and algorithms/web-accessible applications that have aided in increasing the usage and efficiency of editing. The article also provides an update on the current regulatory landscape in different countries on the CRISPR-Cas edited plants to emphasize the far-reaching impact of the genomic editing technology. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01397-3.
Collapse
Affiliation(s)
- Lalit Kharbikar
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rocktotpal Konwarh
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Baba Kinaram Research Foundation (BKRF), Bramsthan, Mau, Uttar Pradesh India
| | - Monoswi Chakraborty
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Bengaluru, Karnataka India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shweta Nandanwar
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Ashish Marathe
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Yogesh Yele
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Probir Kumar Ghosh
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Anand Pratap Singh
- Baba Kinaram Research Foundation (BKRF), Bramsthan, Mau, Uttar Pradesh India
| |
Collapse
|
12
|
Subburaj S, Agapito-Tenfen SZ. Establishment of targeted mutagenesis in soybean protoplasts using CRISPR/Cas9 RNP delivery via electro-transfection. FRONTIERS IN PLANT SCIENCE 2023; 14:1255819. [PMID: 37841627 PMCID: PMC10570537 DOI: 10.3389/fpls.2023.1255819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The soybean (Glycine max L.) is an important crop with high agronomic value. The improvement of agronomic traits through gene editing techniques has broad application prospects in soybean. The polyethylene glycol (PEG)-mediated cell transfection has been successfully used to deliver the CRISPR/Cas9-based ribonucleoprotein (RNP) into soybean protoplasts. However, several downstream analyses or further cell regeneration protocols might be hampered by PEG contamination within the samples. Here in this study, we attempted to transfect CRISPR/Cas9 RNPs into trifoliate leaf-derived soybean protoplasts using Neon electroporation to overcome the need for PEG transfection for the first time. We investigated different electroporation parameters including pulsing voltage (V), strength and duration of pulses regarding protoplast morphology, viability, and delivery of CRISPR/Cas9. Electroporation at various pulsing voltages with 3 pulses and 10 ms per pulse was found optimal for protoplast electro-transfection. Following electro-transfection at various pulsing voltages (500 V, 700 V, 1,000 V, and 1,300 V), intact protoplasts were observed at all treatments. However, the relative frequency of cell viability and initial cell divisions decreased with increasing voltages. Confocal laser scanning microscopy (CLSM) confirmed that the green fluorescent protein (GFP)-tagged Cas9 was successfully internalized into the protoplasts. Targeted deep sequencing results revealed that on-target insertion/deletion (InDel) frequencies were increased with increasing voltages in protoplasts electro-transfected with CRISPR/Cas9 RNPs targeting constitutive pathogen response 5 (CPR5). InDel patterns ranged from +1 bp to -6 bp at three different target sites in CPR5 locus with frequencies ranging from 3.8% to 8.1% following electro-transfection at 1,300 V and 2.1% to 3.8% for 700 V and 1,000 V, respectively. Taken together, our results demonstrate that the CRISPR/Cas9 RNP system can be delivered into soybean protoplasts by the Neon electroporation system for efficient and effective gene editing. The electro-transfection system developed in this study would also further facilitate and serve as an alternative delivery method for DNA-free genome editing of soybean and other related species for genetic screens and potential trait improvement.
Collapse
Affiliation(s)
| | - Sarah Zanon Agapito-Tenfen
- NORCE Norwegian Research Centre AS, Climate & Environment Department, Siva Innovasjonssenter, Tromsø, Norway
| |
Collapse
|
13
|
Stajič E. Improvements in Protoplast Isolation Protocol and Regeneration of Different Cabbage ( Brassica oleracea var. capitata L.) Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:3074. [PMID: 37687321 PMCID: PMC10489862 DOI: 10.3390/plants12173074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Protoplasts are a versatile tool in plant biotechnology since they can be used for basic biological studies as well as for breeding strategies based on genome editing. An efficient protoplast isolation protocol is essential for conducting protoplast-based studies. To optimize the protoplast isolation protocol in cabbage (Brassica oleracea var. capitata L.), different enzyme solutions were tested for the isolation of leaf mesophyll protoplasts. In our experiments, the combination of 0.5% Cellulase Onozuka RS and 0.1% Macerozyme R-10 showed the best result. The optimized protocol proved suitable for the isolation of protoplasts from five different cabbage cultivars with yields ranging from 2.38 to 4.63 × 106 protoplasts/g fresh weight (fw) and a viability of 93% or more. After three weeks in culture, protoplasts from all of the tested cultivars formed micro-calli, but further callus growth and shoot regeneration depended strongly on the genotype and regeneration protocol used. For shoot formation, 1 mg/L BAP in combination with auxin 0.2 mg/L NAA showed the best results with a regeneration of 23.5%. The results obtained will contribute to the development of different applications of cabbage protoplasts and facilitate the breeding process of this important horticultural crop.
Collapse
Affiliation(s)
- Ester Stajič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Farinati S, Draga S, Betto A, Palumbo F, Vannozzi A, Lucchin M, Barcaccia G. Current insights and advances into plant male sterility: new precision breeding technology based on genome editing applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1223861. [PMID: 37521915 PMCID: PMC10382145 DOI: 10.3389/fpls.2023.1223861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Plant male sterility (MS) represents the inability of the plant to generate functional anthers, pollen, or male gametes. Developing MS lines represents one of the most important challenges in plant breeding programs, since the establishment of MS lines is a major goal in F1 hybrid production. For these reasons, MS lines have been developed in several species of economic interest, particularly in horticultural crops and ornamental plants. Over the years, MS has been accomplished through many different techniques ranging from approaches based on cross-mediated conventional breeding methods, to advanced devices based on knowledge of genetics and genomics to the most advanced molecular technologies based on genome editing (GE). GE methods, in particular gene knockout mediated by CRISPR/Cas-related tools, have resulted in flexible and successful strategic ideas used to alter the function of key genes, regulating numerous biological processes including MS. These precision breeding technologies are less time-consuming and can accelerate the creation of new genetic variability with the accumulation of favorable alleles, able to dramatically change the biological process and resulting in a potential efficiency of cultivar development bypassing sexual crosses. The main goal of this manuscript is to provide a general overview of insights and advances into plant male sterility, focusing the attention on the recent new breeding GE-based applications capable of inducing MS by targeting specific nuclear genic loci. A summary of the mechanisms underlying the recent CRISPR technology and relative success applications are described for the main crop and ornamental species. The future challenges and new potential applications of CRISPR/Cas systems in MS mutant production and other potential opportunities will be discussed, as generating CRISPR-edited DNA-free by transient transformation system and transgenerational gene editing for introducing desirable alleles and for precision breeding strategies.
Collapse
|
15
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, Calovic M, Zhang L, Feng Y, Vakulskas CA, Wang N. Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation. Nat Commun 2023; 14:3957. [PMID: 37402755 DOI: 10.1038/s41467-023-39714-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a destructive citrus disease worldwide. Generating disease-resistant cultivars is the most effective, environmentally friendly and economic approach for disease control. However, citrus traditional breeding is lengthy and laborious. Here, we develop transgene-free canker-resistant Citrus sinensis lines in the T0 generation within 10 months through transformation of embryogenic protoplasts with Cas12a/crRNA ribonucleoprotein to edit the canker susceptibility gene CsLOB1. Among the 39 regenerated lines, 38 are biallelic/homozygous mutants, demonstrating a 97.4% biallelic/homozygous mutation rate. No off-target mutations are detected in the edited lines. Canker resistance of the cslob1-edited lines results from both abolishing canker symptoms and inhibiting Xcc growth. The transgene-free canker-resistant C. sinensis lines have received regulatory approval by USDA APHIS and are exempted from EPA regulation. This study provides a sustainable and efficient citrus canker control solution and presents an efficient transgene-free genome-editing strategy for citrus and other crops.
Collapse
Affiliation(s)
- Hang Su
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Milica Calovic
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Liyang Zhang
- Integrated DNA Technologies, Inc, Coralville, IA, USA
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | | | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
16
|
Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, Zhou W, Rahman MU, Gill RA. Targeted genome editing in polyploids: lessons from Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1152468. [PMID: 37409308 PMCID: PMC10318174 DOI: 10.3389/fpls.2023.1152468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.
Collapse
Affiliation(s)
- Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qamar U. Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rana Muhammad Atif
- National Center of Genome Editing, Center of Advanced Studies, Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Weijun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Spectroscopy Sensing, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehboob-ur Rahman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Rafaqat Ali Gill
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
17
|
Bhattacharjee S, Bhowmick R, Kant L, Paul K. Strategic transgene-free approaches of CRISPR-based genome editing in plants. Mol Genet Genomics 2023; 298:507-520. [PMID: 36840794 PMCID: PMC9958309 DOI: 10.1007/s00438-023-01998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/11/2023] [Indexed: 02/26/2023]
Abstract
Genome editing through the alteration of nucleotide sequence has already revolutionized the field of site-directed mutagenesis for a decade. However, research in terms of precision and efficacy in targeting the loci and reduction in off-target mutation has always been a priority when DNA is involved. Therefore, recent research interest lies in utilizing the same precision technology but results in non-transgenic. In this review article, different technological advancements have been explained, which may provide a holistic concept of and need for transgene-free genome editing. The advantage and lacunas of each technology have been critically discussed to deliver a transparent view to the readers. A systematic analysis and evaluation of published research articles implied that researchers across the globe are putting continuous efforts in this direction to eliminate the hindrance of transgenic regulation. Nevertheless, this approach has severe implications legitimate for mitigating the conflict of acceptance, reliability, and generosity of gene-editing technology and sustainably retorting to the expanding global population feeding challenges.
Collapse
Affiliation(s)
- Sougata Bhattacharjee
- School of Crop Science, ICAR-Indian Agricultural Research Institute, Jharkhand, 825405, India.
| | | | - Lakshmi Kant
- Crop Improvement Division, ICAR-VPKAS, Almora, 263601 India
| | - Krishnayan Paul
- National Institute for Plant Biotechnology, New Delhi, 110012 India
| |
Collapse
|
18
|
Sharma P, Pandey A, Malviya R, Dey S, Karmakar S, Gayen D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front Genome Ed 2023; 5:1094965. [PMID: 36911238 PMCID: PMC9998953 DOI: 10.3389/fgeed.2023.1094965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
19
|
Mahmood MA, Naqvi RZ, Rahman SU, Amin I, Mansoor S. Plant Virus-Derived Vectors for Plant Genome Engineering. Viruses 2023; 15:v15020531. [PMID: 36851743 PMCID: PMC9958682 DOI: 10.3390/v15020531] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Advances in genome engineering (GE) tools based on sequence-specific programmable nucleases have revolutionized precise genome editing in plants. However, only the traditional approaches are used to deliver these GE reagents, which mostly rely on Agrobacterium-mediated transformation or particle bombardment. These techniques have been successfully used for the past decades for the genetic engineering of plants with some limitations relating to lengthy time-taking protocols and transgenes integration-related regulatory concerns. Nevertheless, in the era of climate change, we require certain faster protocols for developing climate-smart resilient crops through GE to deal with global food security. Therefore, some alternative approaches are needed to robustly deliver the GE reagents. In this case, the plant viral vectors could be an excellent option for the delivery of GE reagents because they are efficient, effective, and precise. Additionally, these are autonomously replicating and considered as natural specialists for transient delivery. In the present review, we have discussed the potential use of these plant viral vectors for the efficient delivery of GE reagents. We have further described the different plant viral vectors, such as DNA and RNA viruses, which have been used as efficient gene targeting systems in model plants, and in other important crops including potato, tomato, wheat, and rice. The achievements gained so far in the use of viral vectors as a carrier for GE reagent delivery are depicted along with the benefits and limitations of each viral vector. Moreover, recent advances have been explored in employing viral vectors for GE and adapting this technology for future research.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot 51310, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saleem Ur Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74000, Pakistan
- Correspondence:
| |
Collapse
|
20
|
Toda E, Kato N, Higashiyama T, Okamoto T. Genome editing approaches using reproductive cells/tissues in flowering plants. Front Genome Ed 2023; 4:1085023. [PMID: 36714390 PMCID: PMC9873966 DOI: 10.3389/fgeed.2022.1085023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Targeted mutagenesis via programmable nucleases including the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system has been broadly utilized to generate genome-edited organisms including flowering plants. To date, specific expression of Cas9 protein and guide RNA (gRNA) in reproductive cells or tissues is considered one of the most effective genome-editing approaches for heritable targeted mutagenesis. In this report, we review recent advances in genome editing methods for reproductive cells or tissues, which have roles in transmitting genetic material to the next-generation, such as egg cells, pollen grains, zygotes, immature zygotic embryos, and shoot apical meristems (SAMs). Specific expression of Cas9 proteins in initiating cells efficiently induces targeted mutagenesis via Agrobacterium-mediated in planta transformation. In addition, genome editing by direct delivery of CRISPR/Cas9 components into pollen grains, zygotes, cells of embryos and SAMs has been successfully established to generate genome-edited plant lines. Notably, DNA-free genome editing by the delivery of Cas9-gRNA ribonucleoproteins (RNPs) is not associated with any legislative concerns about genetically modified organisms. In summary, the genome editing methods for reproductive cells or tissues have enormous potential for not only basic studies for plant reproduction but also applied sciences toward molecular plant breeding.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan,Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan,*Correspondence: Erika Toda,
| | - Norio Kato
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | | | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
21
|
Rustgi S, Naveed S, Windham J, Zhang H, Demirer GS. Plant biomacromolecule delivery methods in the 21st century. Front Genome Ed 2022; 4:1011934. [PMID: 36311974 PMCID: PMC9614364 DOI: 10.3389/fgeed.2022.1011934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The 21st century witnessed a boom in plant genomics and gene characterization studies through RNA interference and site-directed mutagenesis. Specifically, the last 15 years marked a rapid increase in discovering and implementing different genome editing techniques. Methods to deliver gene editing reagents have also attempted to keep pace with the discovery and implementation of gene editing tools in plants. As a result, various transient/stable, quick/lengthy, expensive (requiring specialized equipment)/inexpensive, and versatile/specific (species, developmental stage, or tissue) methods were developed. A brief account of these methods with emphasis on recent developments is provided in this review article. Additionally, the strengths and limitations of each method are listed to allow the reader to select the most appropriate method for their specific studies. Finally, a perspective for future developments and needs in this research area is presented.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Salman Naveed
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Jonathan Windham
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gözde S. Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
22
|
Ghose AK, Abdullah SNA, Md Hatta MA, Megat Wahab PE. DNA Free CRISPR/DCAS9 Based Transcriptional Activation System for UGT76G1 Gene in Stevia rebaudiana Bertoni Protoplasts. PLANTS (BASEL, SWITZERLAND) 2022; 11:2393. [PMID: 36145794 PMCID: PMC9501275 DOI: 10.3390/plants11182393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The UDP-glycosyltransferase 76G1 (UGT76G1) is responsible for the conversion of stevioside to rebaudioside A. Four single guide RNAs (sgRNAs) were designed from the UGT76G1 proximal promoter region of stevia by using the online-based tool, benchling. The dCas9 fused with VP64 as a transcriptional activation domain (TAD) was produced and purified for the formation of ribonucleoproteins (RNPs) by mixing with the in vitro transcribed sgRNAs. Protoplast yield was the highest from leaf mesophyll of in vitro grown stevia plantlets (3.16 × 106/g of FW) using ES5 (1.25% cellulase R-10 and 0.75% macerozyme R-10). The RNPs were delivered into the isolated protoplasts through the Polyethylene glycol (PEG)-mediated transfection method. The highest endogenous activation of the UGT76G1 gene was detected at 27.51-fold after 24 h of transfection with RNP30 consisting of CRISPR/dCas9-TAD with sgRNA30 and a similar activation level was obtained using RNP18, RNP33, and RNP34, produced using sgRNA18, sgRNA33, and sgRNA34, respectively. Activation of UGT76G1 by RNP18 led to a significant increase in the expression of the rate-limiting enzyme UGT85C2 by 2.37-fold and there was an increasing trend in the expression of UGT85C2 using RNP30, RNP33, and RNP34. Successful application of CRISPR/dCas9-TAD RNP in activating specific genes can avoid the negative integration effects of introduced DNA in the host genome.
Collapse
Affiliation(s)
- Asish Kumar Ghose
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Biotechnology Division, Bangladesh Sugarcrop Research Institute, Ishurdi, Pabna 6620, Bangladesh
| | - Siti Nor Akmar Abdullah
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Puteri Edaroyati Megat Wahab
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
23
|
Xia K, Zhang D, Xu X, Liu G, Yang Y, Chen Z, Wang X, Zhang GQ, Sun HX, Gu Y. Protoplast technology enables the identification of efficient multiplex genome editing tools in Phalaenopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111368. [PMID: 35780949 DOI: 10.1016/j.plantsci.2022.111368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phalaenopsis orchids are popular ornamental plants worldwide. The application and optimization of efficient CRISPR-Cas genome editing toolkits in Phalaenopsis greatly accelerate the development of orchid gene function and breeding research. However, these methods are greatly hindered by the deficiency of a rapid screening system. In this study, we established a fast and convenient Phalaenopsis protoplast technology for the identification of functional genome editing tools. Two multiplex genome editing tools, PTG-Cas9-HPG (PTG, polycistronic tRNA-gRNA) system and RMC-Cpf1-HPG (RMC, ribozyme-based multi-crRNA) system, were developed for Phalaenopsis genome editing and further evaluated by established protoplast technology. We successfully detected various editing events comprising substitution and indel at designed target sites of the PDS gene and MADS gene, showing that both PTG-Cas9-HPG and RMC-Cpf1-HPG multiplex genome editing systems are functional in Phalaenopsis. Additionally, by optimizing the promoter that drives Cpf1 expression, we found that Super promoter can significantly improve the editing efficiency of the RMC-Cpf1-HPG system. Altogether, we successfully developed two efficient multiplex genome editing systems, PTG-Cas9-HPG and RMC-Cpf1-HPG, for Phalaenopsis, and the established protoplast-based screening technology provides a valuable foundation for developing more diverse and efficient genome editing toolkits and facilitating the development of orchid precision breeding.
Collapse
Affiliation(s)
- Keke Xia
- BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Xiaojing Xu
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yong Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Guo-Qiang Zhang
- Laboratory for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, The National Orchid Conservation Center of China, Shenzhen 518114, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Beijing, Beijing 100101, China.
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| |
Collapse
|
24
|
Sirirungruang S, Markel K, Shih PM. Plant-based engineering for production of high-valued natural products. Nat Prod Rep 2022; 39:1492-1509. [PMID: 35674317 DOI: 10.1039/d2np00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to March 2022Plants are a unique source of complex specialized metabolites, many of which play significant roles in human society. In many cases, however, the availability of these metabolites from naturally occurring sources fails to meet current demands. Thus, there is much interest in expanding the production capacity of target plant molecules. Traditionally, plant breeding, chemical synthesis, and microbial fermentation are considered the primary routes towards large scale production of natural products. Here, we explore the advances, challenges, and future of plant engineering as a complementary path. Although plants are an integral part of our food and agricultural systems and sustain an extensive array of chemical constituents, their complex genetics and physiology have prevented the optimal exploitation of plants as a production chassis. We highlight emerging engineering tools and scientific advances developed in recent years that have improved the prospects of using plants as a sustainable and scalable production platform. We also discuss technological limitations and overall economic outlook of plant-based production of natural products.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
25
|
Touzdjian Pinheiro Kohlrausch Távora F, de Assis dos Santos Diniz F, de Moraes Rêgo-Machado C, Chagas Freitas N, Barbosa Monteiro Arraes F, Chumbinho de Andrade E, Furtado LL, Osiro KO, Lima de Sousa N, Cardoso TB, Márcia Mertz Henning L, Abrão de Oliveira Molinari P, Feingold SE, Hunter WB, Fátima Grossi de Sá M, Kobayashi AK, Lima Nepomuceno A, Santiago TR, Correa Molinari HB. CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Front Bioeng Biotechnol 2022; 10:913728. [PMID: 35837551 PMCID: PMC9274005 DOI: 10.3389/fbioe.2022.913728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are powerful technologies capable of revolutionizing plant research and breeding. In recent years, the use of these modern technologies has been explored in various sectors of agriculture, introducing or improving important agronomic traits in plant crops, such as increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However, the limitations of each technique, public perception, and regulatory aspects are hindering its wide adoption for the development of new crop varieties or products. In an attempt to reverse these mishaps, scientists have been researching alternatives to increase the specificity, uptake, and stability of the CRISPR and RNAi system components in the target organism, as well as to reduce the chance of toxicity in nontarget organisms to minimize environmental risk, health problems, and regulatory issues. In this review, we discuss several aspects related to risk assessment, toxicity, and advances in the use of CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The present study also highlights the advantages and possible drawbacks of each technology, provides a brief overview of how to circumvent the off-target occurrence, the strategies to increase on-target specificity, the harm/benefits of association with nanotechnology, the public perception of the available techniques, worldwide regulatory frameworks regarding topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of biotechnological solutions derived from both technologies, raising potential challenges to reach the market and being social and environmentally safe.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karen Ofuji Osiro
- Department of Phytopathology, University of Brasília, Brasília, Brazil
- Embrapa Agroenergy, Brasília, Brazil
| | | | | | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | | | | | | | | | | |
Collapse
|
26
|
Sirohi U, Kumar M, Sharma VR, Teotia S, Singh D, Chaudhary V, Yadav MK. CRISPR/Cas9 System: A Potential Tool for Genetic Improvement in Floricultural Crops. Mol Biotechnol 2022; 64:1303-1318. [PMID: 35751797 PMCID: PMC9244459 DOI: 10.1007/s12033-022-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Demand of flowers is increasing with time worldwide. Floriculture has become one of the most important commercial trades in agriculture. Although traditional breeding methods like hybridization and mutation breeding have contributed significantly to the development of important flower varieties, flower production and quality of flowers can be significantly improved by employing modern breeding approaches. Novel traits of significance have interest to consumers and producers, such as fragrance, new floral color, change in floral architecture and morphology, vase life, aroma, and resistance to biotic and abiotic stresses, have been introduced by genetic manipulation. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has recently emerged as a powerful genome-editing tool for accurately changing DNA sequences at specific locations. It provides excellent means of genetically improving floricultural crops. CRISPR/Cas system has been utilized in gene editing in horticultural cops. There are few reports on the utilization of the CRISPR/Cas9 system in flowers. The current review summarizes the research work done by employing the CRISPR/Cas9 system in floricultural crops including improvement in flowering traits such as color modification, prolonging the shelf life of flowers, flower initiation, and development, changes in color of ornamental foliage by genome editing. CRISPR/Cas9 gene editing could be useful in developing novel cultivars with higher fragrance and enhanced essential oil and many other useful traits. The present review also highlights the basic mechanism and key components involved in the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Ujjwal Sirohi
- Present Address: National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
- Department of Agricultural Biotechnology, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| | - Mukesh Kumar
- Department of Horticulture, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| | - Vinukonda Rakesh Sharma
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201306 India
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201308 India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar Pradesh 250003 India
| | - Manoj Kumar Yadav
- Department of Agricultural Biotechnology, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| |
Collapse
|
27
|
A Robust Expression and Purification Method for Production of SpCas9-GFP-MBP Fusion Protein for In Vitro Applications. Methods Protoc 2022; 5:mps5030044. [PMID: 35736545 PMCID: PMC9228339 DOI: 10.3390/mps5030044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Genome editing using the CRISPR/Cas9 system is one of the trendiest methodologies in the scientific community. Many genome editing approaches require recombinant Streptococcus pyogenes Cas9 (SpCas9) at some point during their application, for instance, for in vitro validation of single guide RNAs (SgRNAs) or for the DNA-free editing of genes of interest. Hereby, we provide a simple and detailed expression and purification protocol for SpCas9 as a protein fused to GFP and MBP. This protocol improves protein yield and simplifies the purification process by overcoming the frequently occurring obstacles such as plasmid loss, inconsistent protein expression levels, or inadequate protein binding to affinity resins. On average, this protocol yields 10 to 30 mg of purified, active, His6−MBP−SpCas9 NLS−GFP protein. The purity addressed through SDS-PAGE is > 80%.
Collapse
|
28
|
Das D, Singha DL, Paswan RR, Chowdhury N, Sharma M, Reddy PS, Chikkaputtaiah C. Recent advancements in CRISPR/Cas technology for accelerated crop improvement. PLANTA 2022; 255:109. [PMID: 35460444 DOI: 10.1007/s00425-022-03894-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Precise genome engineering approaches could be perceived as a second paradigm for targeted trait improvement in crop plants, with the potential to overcome the constraints imposed by conventional CRISPR/Cas technology. The likelihood of reduced agricultural production due to highly turbulent climatic conditions increases as the global population expands. The second paradigm of stress-resilient crops with enhanced tolerance and increased productivity against various stresses is paramount to support global production and consumption equilibrium. Although traditional breeding approaches have substantially increased crop production and yield, effective strategies are anticipated to restore crop productivity even further in meeting the world's increasing food demands. CRISPR/Cas, which originated in prokaryotes, has surfaced as a coveted genome editing tool in recent decades, reshaping plant molecular biology in unprecedented ways and paving the way for engineering stress-tolerant crops. CRISPR/Cas is distinguished by its efficiency, high target specificity, and modularity, enables precise genetic modification of crop plants, allowing for the creation of allelic variations in the germplasm and the development of novel and more productive agricultural practices. Additionally, a slew of advanced biotechnologies premised on the CRISPR/Cas methodologies have augmented fundamental research and plant synthetic biology toolkits. Here, we describe gene editing tools, including CRISPR/Cas and its imitative tools, such as base and prime editing, multiplex genome editing, chromosome engineering followed by their implications in crop genetic improvement. Further, we comprehensively discuss the latest developments of CRISPR/Cas technology including CRISPR-mediated gene drive, tissue-specific genome editing, dCas9 mediated epigenetic modification and programmed self-elimination of transgenes in plants. Finally, we highlight the applicability and scope of advanced CRISPR-based techniques in crop genetic improvement.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
29
|
Kumari C, Sharma M, Kumar V, Sharma R, Kumar V, Sharma P, Kumar P, Irfan M. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss. Bioengineering (Basel) 2022; 9:bioengineering9040176. [PMID: 35447736 PMCID: PMC9028506 DOI: 10.3390/bioengineering9040176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 01/13/2023] Open
Abstract
Food security and crop production are challenged worldwide due to overpopulation, changing environmental conditions, crop establishment failure, and various kinds of post-harvest losses. The demand for high-quality foods with improved nutritional quality is also growing day by day. Therefore, production of high-quality produce and reducing post-harvest losses of produce, particularly of perishable fruits and vegetables, are vital. For many decades, attempts have been made to improve the post-harvest quality traits of horticultural crops. Recently, modern genetic tools such as genome editing emerged as a new approach to manage and overcome post-harvest effectively and efficiently. The different genome editing tools including ZFNs, TALENs, and CRISPR/Cas9 system effectively introduce mutations (In Dels) in many horticultural crops to address and resolve the issues associated with post-harvest storage quality. Henceforth, we provide a broad review of genome editing applications in horticulture crops to improve post-harvest stability traits such as shelf life, texture, and resistance to pathogens without compromising nutritional value. Moreover, major roadblocks, challenges, and their possible solutions for employing genome editing tools are also discussed.
Collapse
Affiliation(s)
- Chanchal Kumari
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Megha Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Vinay Kumar
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Vinay Kumar
- Department of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Parul Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
- Correspondence: (P.S.); (M.I.)
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (P.S.); (M.I.)
| |
Collapse
|
30
|
Haroon M, Wang X, Afzal R, Zafar MM, Idrees F, Batool M, Khan AS, Imran M. Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1052. [PMID: 35448780 PMCID: PMC9025237 DOI: 10.3390/plants11081052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 06/01/2023]
Abstract
Cereals are the main source of human food on our planet. The ever-increasing food demand, continuously changing environment, and diseases of cereal crops have made adequate production a challenging task for feeding the ever-increasing population. Plant breeders are striving their hardest to increase production by manipulating conventional breeding methods based on the biology of plants, either self-pollinating or cross-pollinating. However, traditional approaches take a decade, space, and inputs in order to make crosses and release improved varieties. Recent advancements in genome editing tools (GETs) have increased the possibility of precise and rapid genome editing. New GETs such as CRISPR/Cas9, CRISPR/Cpf1, prime editing, base editing, dCas9 epigenetic modification, and several other transgene-free genome editing approaches are available to fill the lacuna of selection cycles and limited genetic diversity. Over the last few years, these technologies have led to revolutionary developments and researchers have quickly attained remarkable achievements. However, GETs are associated with various bottlenecks that prevent the scaling development of new varieties that can be dealt with by integrating the GETs with the improved conventional breeding methods such as speed breeding, which would take plant breeding to the next level. In this review, we have summarized all these traditional, molecular, and integrated approaches to speed up the breeding procedure of cereals.
Collapse
Affiliation(s)
- Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Rabail Afzal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdul Saboor Khan
- Institute of Plant Sciences, University of Cologne, 50667 Cologne, Germany
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
31
|
Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. FRONTIERS IN PLANT SCIENCE 2022; 13:843575. [PMID: 35463432 PMCID: PMC9024397 DOI: 10.3389/fpls.2022.843575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/08/2023]
Abstract
The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.
Collapse
Affiliation(s)
- Banavath Jayanna Naik
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | - Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Seong-Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | | | | | | | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, South Korea
| |
Collapse
|
32
|
Ali Q, Yu C, Hussain A, Ali M, Ahmar S, Sohail MA, Riaz M, Ashraf MF, Abdalmegeed D, Wang X, Imran M, Manghwar H, Zhou L. Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:860281. [PMID: 35371164 PMCID: PMC8968944 DOI: 10.3389/fpls.2022.860281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 05/15/2023]
Abstract
Crop production worldwide is under pressure from multiple factors, including reductions in available arable land and sources of water, along with the emergence of new pathogens and development of resistance in pre-existing pathogens. In addition, the ever-growing world population has increased the demand for food, which is predicted to increase by more than 100% by 2050. To meet these needs, different techniques have been deployed to produce new cultivars with novel heritable mutations. Although traditional breeding continues to play a vital role in crop improvement, it typically involves long and laborious artificial planting over multiple generations. Recently, the application of innovative genome engineering techniques, particularly CRISPR-Cas9-based systems, has opened up new avenues that offer the prospects of sustainable farming in the modern agricultural industry. In addition, the emergence of novel editing systems has enabled the development of transgene-free non-genetically modified plants, which represent a suitable option for improving desired traits in a range of crop plants. To date, a number of disease-resistant crops have been produced using gene-editing tools, which can make a significant contribution to overcoming disease-related problems. Not only does this directly minimize yield losses but also reduces the reliance on pesticide application, thereby enhancing crop productivity that can meet the globally increasing demand for food. In this review, we describe recent progress in genome engineering techniques, particularly CRISPR-Cas9 systems, in development of disease-resistant crop plants. In addition, we describe the role of CRISPR-Cas9-mediated genome editing in sustainable agriculture.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Yu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Dyaaaldin Abdalmegeed
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Muhammad Imran
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
33
|
Song H, Ahn JY, Yan F, Ran Y, Koo O, Lee GJ. Genetic Dissection of CRISPR-Cas9 Mediated Inheritance of Independently Targeted Alleles in Tobacco α-1,3-Fucosyltransferase 1 and β-1,2-Xylosyltransferase 1 Loci. Int J Mol Sci 2022; 23:2450. [PMID: 35269602 PMCID: PMC8910323 DOI: 10.3390/ijms23052450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
We determined the specificity of mutations induced by the CRISPR-Cas9 gene-editing system in tobacco (Nicotiana benthamiana) alleles and subsequent genetic stability. For this, we prepared 248 mutant plants using an Agrobacterium-delivered CRISPR-Cas9 system targeting α-1,3-fucosyltransferase 1 (FucT1) and β-1,2-xylosyltransferase1 (XylT1) genes, for which the mutation rates were 22.5% and 25%, respectively, with 20.5% for both loci. Individuals with wild-type (WT) alleles at the NbFucT1 locus in T0 were further segregated into chimeric progeny (37-54%) in the next generation, whereas homozygous T0 mutants tended to produce more (~70%) homozygotes than other bi-allelic and chimeric progenies in the T1 generation. Approximately 81.8% and 77.4% of the homozygous and bi-allelic mutations in T0 generation, respectively, were stably inherited in the next generation, and approximately 50% of the Cas9-free mutants were segregated in T2 generation. One homozygous mutant (Ta 161-1) with a +1 bp insertion in NbFucT1 and a -4 bp deletion in NbXylT1 was found to produce T2 progenies with the same alleles, indicating no activity of the integrated Cas9 irrespective of the insertion or deletion type. Our results provide empirical evidence regarding the genetic inheritance of alleles at CRISPR-targeted loci in tobacco transformants and indicate the potential factors contributing to further mutagenesis.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea;
| | - Ju-Young Ahn
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (J.-Y.A.); (F.Y.)
| | - Fanzhuang Yan
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (J.-Y.A.); (F.Y.)
| | - Yidong Ran
- Genovo Biotechnology Co., Ltd., Tianjin 301700, China;
| | | | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea;
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (J.-Y.A.); (F.Y.)
| |
Collapse
|
34
|
Tomasiak A, Zhou M, Betekhtin A. Buckwheat in Tissue Culture Research: Current Status and Future Perspectives. Int J Mol Sci 2022; 23:2298. [PMID: 35216414 PMCID: PMC8876565 DOI: 10.3390/ijms23042298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Buckwheat is a member of a genus of 23 species, where the two most common species are Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). This pseudocereal is a source of micro and macro nutrients, such as gluten-free proteins and amino acids, fatty acids, bioactive compounds, dietary fibre, fagopyrins, vitamins and minerals. It is gaining increasing attention due to its health-promoting properties. Buckwheat is widely susceptible to in vitro conditions which are used to study plantlet regeneration, callus induction, organogenesis, somatic embryogenesis, and the synthesis of phenolic compounds. This review summarises the development of buckwheat in in vitro culture and describes protocols for the regeneration of plantlets from various explants and differing concentrations of plant growth regulators. It also describes callus induction protocols as well as the role of calli in plantlet regeneration. Protocols for establishing hairy root cultures with the use of Agrobacterium rhizogens are useful in the synthesis of secondary metabolites, as well as protocols used for transgenic plants. The review also focuses on the future prospects of buckwheat in tissue culture and the challenges researchers are addressing.
Collapse
Affiliation(s)
- Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St., 40-032 Katowice, Poland;
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 405, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China;
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St., 40-032 Katowice, Poland;
| |
Collapse
|
35
|
Yasukawa T, Oda AH, Nakamura T, Masuo N, Tamura M, Yamasaki Y, Imura M, Yamada T, Ohta K. TAQing2.0 for genome reorganization of asexual industrial yeasts by direct protein transfection. Commun Biol 2022; 5:144. [PMID: 35177796 PMCID: PMC8854394 DOI: 10.1038/s42003-022-03093-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Genomic rearrangements often generate phenotypic diversification. We previously reported the TAQing system where genomic rearrangements are induced via conditional activation of a restriction endonuclease in yeast and plant cells to produce mutants with marked phenotypic changes. Here we developed the TAQing2.0 system based on the direct delivery of endonucleases into the cell nucleus by cell-penetrating peptides. Using the optimized procedure, we introduce a heat-reactivatable endonuclease TaqI into an asexual industrial yeast (torula yeast), followed by a transient heat activation of TaqI. TAQing2.0 leads to generation of mutants with altered flocculation and morphological phenotypes, which exhibit changes in chromosomal size. Genome resequencing suggested that torula yeast is triploid with six chromosomes and the mutants have multiple rearrangements including translocations having the TaqI recognition sequence at the break points. Thus, TAQing2.0 is expected as a useful method to obtain various mutants with altered phenotypes without introducing foreign DNA into asexual industrial microorganisms. The TAQing system is upgraded and optimised as the foreign-DNA-free genome engineering technology, TAQing2.0. Genomic rearrangements are randomly induced by introducing the TaqI restriction endonuclease into non-sporulating industrial yeast with cell-penetrating peptides, leading to generation of mutants with altered phenotypes.
Collapse
Affiliation(s)
- Taishi Yasukawa
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F., 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Arisa H Oda
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takahiro Nakamura
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F., 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuriko Yamasaki
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F., 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Makoto Imura
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F., 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Takatomi Yamada
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan. .,The Universal Biology Institute of The University of Tokyo, Hongo 7-3-1, Tokyo, 113-0033, Japan.
| |
Collapse
|
36
|
Shiels D, Prestwich BD, Koo O, Kanchiswamy CN, O'Halloran R, Badmi R. Hemp Genome Editing-Challenges and Opportunities. Front Genome Ed 2022; 4:823486. [PMID: 35187530 PMCID: PMC8847435 DOI: 10.3389/fgeed.2022.823486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hemp (Cannabis sativa L.) is a multipurpose crop with many important uses including medicine, fibre, food and biocomposites. This plant is currently gaining prominence and acceptance for its valuable applications. Hemp is grown as a cash crop for its novel cannabinoids which are estimated to be a multibillion-dollar downstream market. Hemp cultivation can play a major role in carbon sequestration with good CO2 to biomass conversion in low input systems and can also improve soil health and promote phytoremediation. The recent advent of genome editing tools to produce non-transgenic genome-edited crops with no trace of foreign genetic material has the potential to overcome regulatory hurdles faced by genetically modified crops. The use of Artificial Intelligence - mediated trait discovery platforms are revolutionizing the agricultural industry to produce desirable crops with unprecedented accuracy and speed. However, genome editing tools to improve the beneficial properties of hemp have not yet been deployed. Recent availability of high-quality Cannabis genome sequences from several strains (cannabidiol and tetrahydrocannabinol balanced and CBD/THC rich strains) have paved the way for improving the production of valuable bioactive molecules for the welfare of humankind and the environment. In this context, the article focuses on exploiting advanced genome editing tools to produce non-transgenic hemp to improve the most industrially desirable traits. The challenges, opportunities and interdisciplinary approaches that can be adopted from existing technologies in other plant species are highlighted.
Collapse
Affiliation(s)
- Donal Shiels
- School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Barbara Doyle Prestwich
- School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | - Roisin O'Halloran
- School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Raghuram Badmi
- School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
- Plantedit Pvt Ltd, Cork, Ireland
| |
Collapse
|
37
|
A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1535-1546. [PMID: 35122622 PMCID: PMC8817169 DOI: 10.1007/s11427-021-2058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/04/2022]
Abstract
Gene-edited pigs for agricultural and biomedical applications are typically generated using somatic cell nuclear transfer (SCNT). However, SCNT requires the use of monoclonal cells as donors, and the time-consuming and laborious monoclonal selection process limits the production of large populations of gene-edited animals. Here, we developed a rapid and efficient method named RE-DSRNP (reporter RNA enriched dual-sgRNA/CRISPR-Cas9 ribonucleoproteins) for generating gene-edited donor cells. RE-DSRNP takes advantage of the precise and efficient editing features of dual-sgRNA and the high editing efficiency, low off-target effects, transgene-free nature, and low cytotoxic characteristics of reporter RNA enriched RNPs (CRISPR-Cas9 ribonucleoproteins), thus eliminating the need for the selection of monoclonal cells and thereby greatly reducing the generation time of donor cells from 3–4 weeks to 1 week, while also reducing the extent of apoptosis and chromosomal aneuploidy of donor cells. We applied RE-DSRNP to produce cloned pigs bearing a deletion edit of the wild-type p53-induced phosphatase 1 (WIP1) gene: among 32 weaned cloned pigs, 31 (97%) carried WIP1 edits, and 15 (47%) were homozygous for the designed fragment deletion, and no off-target event was detected. The WIP1 knockout (KO) pigs exhibited male reproductive disorders, illustrating the utility of RE-DSRNP for rapidly generating precisely edited animals for functional genomics and disease research. RE-DSRNP’s strong editing performance in a large animal and its marked reduction in the required time for producing SCNT donor cells support its application prospects for rapidly generating populations of transgene-free cloned animals.
Collapse
|
38
|
Banakar R, Schubert M, Kurgan G, Rai KM, Beaudoin SF, Collingwood MA, Vakulskas CA, Wang K, Zhang F. Efficiency, Specificity and Temperature Sensitivity of Cas9 and Cas12a RNPs for DNA-free Genome Editing in Plants. Front Genome Ed 2022; 3:760820. [PMID: 35098208 PMCID: PMC8790294 DOI: 10.3389/fgeed.2021.760820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Delivery of genome editing reagents using CRISPR-Cas ribonucleoproteins (RNPs) transfection offers several advantages over plasmid DNA-based delivery methods, including reduced off-target editing effects, mitigation of random integration of non-native DNA fragments, independence of vector constructions, and less regulatory restrictions. Compared to the use in animal systems, RNP-mediated genome editing is still at the early development stage in plants. In this study, we established an efficient and simplified protoplast-based genome editing platform for CRISPR-Cas RNP delivery, and then evaluated the efficiency, specificity, and temperature sensitivity of six Cas9 and Cas12a proteins. Our results demonstrated that Cas9 and Cas12a RNP delivery resulted in genome editing frequencies (8.7-41.2%) at various temperature conditions, 22°C, 26°C, and 37°C, with no significant temperature sensitivity. LbCas12a often exhibited the highest activities, while AsCas12a demonstrated higher sequence specificity. The high activities of CRISPR-Cas RNPs at 22° and 26°C, the temperature preferred by plant transformation and tissue culture, led to high mutagenesis efficiencies (34.0-85.2%) in the protoplast-regenerated calli and plants with the heritable mutants recovered in the next generation. This RNP delivery approach was further extended to pennycress (Thlaspi arvense), soybean (Glycine max) and Setaria viridis with up to 70.2% mutagenesis frequency. Together, this study sheds light on the choice of RNP reagents to achieve efficient transgene-free genome editing in plants.
Collapse
Affiliation(s)
- Raviraj Banakar
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | | | - Gavin Kurgan
- Integrated DNA Technologies, Coralville, IA, United States
| | - Krishan Mohan Rai
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | | | | | | | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
39
|
Gong Z, Cheng M, Botella JR. Non-GM Genome Editing Approaches in Crops. Front Genome Ed 2022; 3:817279. [PMID: 34977860 PMCID: PMC8715957 DOI: 10.3389/fgeed.2021.817279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas-based genome editing technologies have the potential to fast-track large-scale crop breeding programs. However, the rigid cell wall limits the delivery of CRISPR/Cas components into plant cells, decreasing genome editing efficiency. Established methods, such as Agrobacterium tumefaciens-mediated or biolistic transformation have been used to integrate genetic cassettes containing CRISPR components into the plant genome. Although efficient, these methods pose several problems, including 1) The transformation process requires laborious and time-consuming tissue culture and regeneration steps; 2) many crop species and elite varieties are recalcitrant to transformation; 3) The segregation of transgenes in vegetatively propagated or highly heterozygous crops, such as pineapple, is either difficult or impossible; and 4) The production of a genetically modified first generation can lead to public controversy and onerous government regulations. The development of transgene-free genome editing technologies can address many problems associated with transgenic-based approaches. Transgene-free genome editing have been achieved through the delivery of preassembled CRISPR/Cas ribonucleoproteins, although its application is limited. The use of viral vectors for delivery of CRISPR/Cas components has recently emerged as a powerful alternative but it requires further exploration. In this review, we discuss the different strategies, principles, applications, and future directions of transgene-free genome editing methods.
Collapse
Affiliation(s)
- Zheng Gong
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Ming Cheng
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Subburaj S, Zanatta CB, Nunn JAL, Hoepers AM, Nodari RO, Agapito-Tenfen SZ. A DNA-Free Editing Platform for Genetic Screens in Soybean via CRISPR/Cas9 Ribonucleoprotein Delivery. FRONTIERS IN PLANT SCIENCE 2022; 13:939997. [PMID: 35903231 PMCID: PMC9315425 DOI: 10.3389/fpls.2022.939997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 05/06/2023]
Abstract
CRISPR/Cas9-based ribonucleoprotein (RNP)-mediated system has the property of minimizing the effects related to the unwanted introduction of vector DNA and random integration of recombinant DNA. Here, we describe a platform based on the direct delivery of Cas9 RNPs to soybean protoplasts for genetic screens in knockout gene-edited soybean lines without the transfection of DNA vectors. The platform is based on the isolation of soybean protoplasts and delivery of Cas RNP complex. To empirically test our platform, we have chosen a model gene from the soybean genetic toolbox. We have used five different guide RNA (gRNA) sequences that targeted the constitutive pathogen response 5 (CPR5) gene associated with the growth of trichomes in soybean. In addition, efficient protoplast transformation, concentration, and ratio of Cas9 and gRNAs were optimized for soybean for the first time. Targeted mutagenesis insertion and deletion frequency and sequences were analyzed using both Sanger and targeted deep sequencing strategies. We were able to identify different mutation patterns within insertions and deletions (InDels) between + 5 nt and -30 bp and mutation frequency ranging from 4.2 to 18.1% in the GmCPR5 locus. Our results showed that DNA-free delivery of Cas9 complexes to protoplasts is a useful approach to perform early-stage genetic screens and anticipated analysis of Cas9 activity in soybeans.
Collapse
Affiliation(s)
- Saminathan Subburaj
- NORCE Norwegian Research Centre AS, Department of Climate & Environment, Tromsø, Norway
| | - Caroline Bedin Zanatta
- NORCE Norwegian Research Centre AS, Department of Climate & Environment, Tromsø, Norway
- Department of Crop Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jennifer A. L. Nunn
- NORCE Norwegian Research Centre AS, Department of Climate & Environment, Tromsø, Norway
| | - Aline Martins Hoepers
- Department of Crop Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rubens Onofre Nodari
- Department of Crop Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sarah Zanon Agapito-Tenfen
- NORCE Norwegian Research Centre AS, Department of Climate & Environment, Tromsø, Norway
- *Correspondence: Sarah Zanon Agapito-Tenfen,
| |
Collapse
|
41
|
Son S, Park SR. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:902413. [PMID: 35677236 PMCID: PMC9169250 DOI: 10.3389/fpls.2022.902413] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 05/18/2023]
Abstract
The development of plant varieties with desired traits is imperative to ensure future food security. The revolution of genome editing technologies based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has ushered in a new era in plant breeding. Cas9 and the single-guide RNA (sgRNA) form an effective targeting complex on a locus or loci of interest, enabling genome editing in all plants with high accuracy and efficiency. Therefore, CRISPR/Cas9 can save both time and labor relative to what is typically associated with traditional breeding methods. However, despite improvements in gene editing, several challenges remain that limit the application of CRISPR/Cas9-based genome editing in plants. Here, we focus on four issues relevant to plant genome editing: (1) plant organelle genome editing; (2) transgene-free genome editing; (3) virus-induced genome editing; and (4) editing of recalcitrant elite crop inbred lines. This review provides an up-to-date summary on the state of CRISPR/Cas9-mediated genome editing in plants that will push this technique forward.
Collapse
|
42
|
Gaba Y, Pareek A, Singla-Pareek SL. Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Curr Genomics 2021; 22:450-467. [PMID: 35340361 PMCID: PMC8886625 DOI: 10.2174/1389202922666210928151247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/29/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background In order to meet the demands of the ever-increasing human population, it has become necessary to raise climate-resilient crops. Plant breeding, which involves crossing and selecting superior gene pools, has contributed tremendously towards achieving this goal during the past few decades. The relatively newer methods of crop improvement based on genetic engineering are relatively simple, and targets can be achieved in an expeditious manner. More recently emerged genome editing technique using CRISPR has raised strong hopes among plant scientists for precise integration of valuable traits and removal of undesirable ones. Conclusion Genome editing using Site-Specific Nucleases (SSNs) is a good alternative to the plant breeding and genetic engineering approaches as it can modify the genomes specifically and precisely at the target site in the host genome. Another added advantage of the genome editing approach is the simpler biosafety regulations that have been adopted by many countries for commercialization of the products thus generated. This review provides a critical assessment of the available methods for improving the stress tolerance in crop plants. Special emphasis has been given on genome editing approach in light of the diversity of tools, which are being discovered on an everyday basis and the practical applications of the same. This information will serve as a beginner's guide to initiate the crop improvement programs as well as giving technical insight to the expert to plan the research strategically to tackle even multigenic traits in crop plants.
Collapse
Affiliation(s)
- Yashika Gaba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
43
|
Gu X, Liu L, Zhang H. Transgene-free Genome Editing in Plants. Front Genome Ed 2021; 3:805317. [PMID: 34927134 PMCID: PMC8678605 DOI: 10.3389/fgeed.2021.805317] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 01/29/2023] Open
Abstract
Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding.
Collapse
Affiliation(s)
- Xiaoyong Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huawei Zhang
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| |
Collapse
|
44
|
Klimek-Chodacka M, Gieniec M, Baranski R. Multiplex Site-Directed Gene Editing Using Polyethylene Glycol-Mediated Delivery of CRISPR gRNA:Cas9 Ribonucleoprotein (RNP) Complexes to Carrot Protoplasts. Int J Mol Sci 2021; 22:10740. [PMID: 34639081 PMCID: PMC8509836 DOI: 10.3390/ijms221910740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 01/25/2023] Open
Abstract
The aim of this work was to show an efficient, recombinant DNA-free, multiplex gene-editing method using gRNA:Cas9 ribonucleoprotein (RNP) complexes delivered directly to plant protoplasts. For this purpose, three RNPs were formed in the tube, their activity was confirmed by DNA cleavage in vitro, and then they were delivered to carrot protoplasts incubated with polyethylene glycol (PEG). After 48 h of incubation, single nucleotide deletions and insertions and small deletions at target DNA sites were identified by using fluorescent-PCR capillary electrophoresis and sequencing. When two or three RNPs were delivered simultaneously, long deletions of 33-152 nt between the gRNA target sites were generated. Such mutations occurred with an efficiency of up to 12%, while the overall editing effectiveness was very high, reaching 71%. This highly efficient multiplex gene-editing method, without the need for recombinant DNA technology, can be adapted to other plants for which protoplast culture methods have been established.
Collapse
Affiliation(s)
- Magdalena Klimek-Chodacka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425 Krakow, Poland;
| | | | - Rafal Baranski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425 Krakow, Poland;
| |
Collapse
|
45
|
Reed KM, Bargmann BOR. Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Front Genome Ed 2021; 3:734951. [PMID: 34713266 PMCID: PMC8525371 DOI: 10.3389/fgeed.2021.734951] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes. Hence, it is of importance to develop and improve multiple strategies for delivery and regeneration in order to be able to approach each application from various angles. The use of transient transformation and regeneration of plant protoplasts is one such strategy that carries unique advantages and challenges. Here, we will discuss the use of protoplast regeneration in the application of new plant breeding technologies and review pertinent literature on successful protoplast regeneration.
Collapse
Affiliation(s)
| | - Bastiaan O. R. Bargmann
- School of Plant and Environmental Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
46
|
Xia X, Cheng X, Li R, Yao J, Li Z, Cheng Y. Advances in application of genome editing in tomato and recent development of genome editing technology. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2727-2747. [PMID: 34076729 PMCID: PMC8170064 DOI: 10.1007/s00122-021-03874-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Genome editing, a revolutionary technology in molecular biology and represented by the CRISPR/Cas9 system, has become widely used in plants for characterizing gene function and crop improvement. Tomato, serving as an excellent model plant for fruit biology research and making a substantial nutritional contribution to the human diet, is one of the most important applied plants for genome editing. Using CRISPR/Cas9-mediated targeted mutagenesis, the re-evaluation of tomato genes essential for fruit ripening highlights that several aspects of fruit ripening should be reconsidered. Genome editing has also been applied in tomato breeding for improving fruit yield and quality, increasing stress resistance, accelerating the domestication of wild tomato, and recently customizing tomato cultivars for urban agriculture. In addition, genome editing is continuously innovating, and several new genome editing systems such as the recent prime editing, a breakthrough in precise genome editing, have recently been applied in plants. In this review, these advances in application of genome editing in tomato and recent development of genome editing technology are summarized, and their leaving important enlightenment to plant research and precision plant breeding is also discussed.
Collapse
Affiliation(s)
- Xuehan Xia
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xinhua Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
47
|
Poovaiah C, Phillips L, Geddes B, Reeves C, Sorieul M, Thorlby G. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don). BMC PLANT BIOLOGY 2021; 21:363. [PMID: 34376154 PMCID: PMC8353756 DOI: 10.1186/s12870-021-03143-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND To meet increasing demand for forest-based products and protect natural forests from further deforestation requires increased productivity from planted forests. Genetic improvement of conifers by traditional breeding is time consuming due to the long juvenile phase and genome complexity. Genetic modification (GM) offers the opportunity to make transformational changes in shorter time frames but is challenged by current genetically modified organism (GMO) regulations. Genome editing, which can be used to generate site-specific mutations, offers the opportunity to rapidly implement targeted improvements and is globally regulated in a less restrictive way than GM technologies. RESULTS We have demonstrated CRISPR/Cas9 genome editing in P. radiata targeting a single-copy cell wall gene GUX1 in somatic embryogenic tissue and produced plantlets from the edited tissue. We generated biallelic INDELs with an efficiency of 15 % using a single gRNA. 12 % of the transgenic embryogenic tissue was edited when two gRNAs were used and deletions of up to 1.3 kb were identified. However, the regenerated plants did not contain large deletions but had single nucleotide insertions at one of the target sites. We assessed the use of CRISPR/Cas9 ribonucleoproteins (RNPs) for their ability to accomplish DNA-free genome editing in P. radiata. We chose a hybrid approach, with RNPs co-delivered with a plasmid-based selectable marker. A two-gRNA strategy was used which produced an editing efficiency of 33 %, and generated INDELs, including large deletions. Using the RNP approach, deletions found in embryogenic tissue were also present in the plantlets. But, all plants produced using the RNP strategy were monoallelic. CONCLUSIONS We have demonstrated the generation of biallelic and monoallelic INDELs in the coniferous tree P. radiata with the CRISPR/Cas9 system using plasmid expressed Cas9 gRNA and RNPs respectively. This opens the opportunity to apply genome editing in conifers to rapidly modify key traits of interest.
Collapse
|
48
|
Yu J, Tu L, Subburaj S, Bae S, Lee GJ. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. PLANT CELL REPORTS 2021; 40:1037-1045. [PMID: 32959126 DOI: 10.1007/s00299-020-02593-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/26/2020] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE We obtained a complete mutant line of Petunia having mutations in both F3H genes via Cas9-ribonucleoproteins delivery, which exhibited a pale purplish pink flower color. The CRISPR-Cas system is now revolutionizing agriculture by allowing researchers to generate various desired mutations in plants at will. In particular, DNA-free genome editing via Cas9-ribonucleoproteins (RNPs) delivery has many advantages in plants; it does not require codon optimization or specific promoters for expression in plant cells; furthermore, it can bypass GMO regulations in some countries. Here, we have performed site-specific mutagenesis in Petunia to engineer flower color modifications. We determined that the commercial Petunia cultivar 'Madness Midnight' has two F3H coding genes and designed one guide RNA that targets both F3H genes at once. Among 67 T0 plants regenerated from Cas9-RNP transfected protoplasts, we obtained seven mutant lines that contain mutations in either F3HA or F3HB gene and one complete mutant line having mutations in both F3H genes without any selectable markers. It is noteworthy that only the f3ha f3hb exhibited a clearly modified, pale purplish pink flower color (RHS 69D), whereas the others, including the single copy gene knock-out plants, displayed purple violet (RHS 93A) flowers similar to the wild-type Petunia. To the best of our knowledge, we demonstrated a precedent of ornamental crop engineering by DNA-free CRISPR method for the first time, which will greatly accelerate a transition from a laboratory to a farmer's field.
Collapse
Affiliation(s)
- Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Luhua Tu
- Department of Horticulture & Department of Smart Agriculture systems, Chungnam National University, Daejeon, 34134, South Korea
| | - Saminathan Subburaj
- Department of Horticulture & Department of Smart Agriculture systems, Chungnam National University, Daejeon, 34134, South Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea.
| | - Geung-Joo Lee
- Department of Horticulture & Department of Smart Agriculture systems, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
49
|
Mushtaq M, Ahmad Dar A, Skalicky M, Tyagi A, Bhagat N, Basu U, Bhat BA, Zaid A, Ali S, Dar TUH, Rai GK, Wani SH, Habib-Ur-Rahman M, Hejnak V, Vachova P, Brestic M, Çığ A, Çığ F, Erman M, EL Sabagh A. CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes (Basel) 2021; 12:797. [PMID: 34073848 PMCID: PMC8225059 DOI: 10.3390/genes12060797] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Anshika Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Nancy Bhagat
- School of Biotechnology, University of Jammu, Jammu 180006, India;
| | - Umer Basu
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India;
| | | | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany Aligarh Muslim University, Aigarh 202002, India;
| | - Sajad Ali
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India;
| | | | - Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu 192101, India
| | - Muhammad Habib-Ur-Rahman
- Department of Crop Science, Institute of Crop Science and Resource Conservation (INRES), University Bonn, 53115 Bonn, Germany;
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
| | - Arzu Çığ
- Department of Horticulture, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey;
| | - Fatih Çığ
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
| | - Murat Erman
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
50
|
Genome editing in fruit, ornamental, and industrial crops. Transgenic Res 2021; 30:499-528. [PMID: 33825100 DOI: 10.1007/s11248-021-00240-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/24/2023]
Abstract
The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.
Collapse
|