1
|
Farinati S, Soria Garcia AF, Draga S, Vannozzi A, Palumbo F, Scariolo F, Gabelli G, Barcaccia G. Unlocking male sterility in horticultural crops through gene editing technology for precision breeding applications: presentation of a case study in tomato. FRONTIERS IN PLANT SCIENCE 2025; 16:1549136. [PMID: 40115958 PMCID: PMC11924944 DOI: 10.3389/fpls.2025.1549136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Plant male sterility (MS) refers to the failure of the production of functional anthers, viable pollen grains and/or fertile sperm cells. This feature has great potential in horticultural crops for the exploitation of heterosis through the development of F1 hybrid varieties. MS in plants can occur spontaneously or can be induced artificially by exploiting biotechnological tools, such as the editing of genes involved in spore formation or pollen development. The success of such an approach strongly depends both on preliminary knowledge of the involved genes and on effective procedures for in vitro transfection/regeneration of whole plants. Furthermore, according to previous studies based on CRISPR/Cas9 technology, the efficacy of targeting and the resulting mutation profile are critically influenced by intrinsic factors, such as the CRISPR target primary sequence sites and chromatin signatures, which are often associated with varying levels of chromatin accessibility across different genomic regions. This relationship underscores the complexity of CRISPR-based genome editing and highlights the need to identify a precise suitable target. Our paper reports the results obtained for site-specific in vivo mutagenesis via a CRISPR/Cas9-mediated strategy applied to the MYB80 gene, which is a promising target for implementing male sterility in horticultural crops. We highlight the main steps that play a key role in the whole experimental pipeline, which aims at the generation of CRISPR/Cas-edited DNA-free tomato plants. This goal was achieved via protoplast-based technology and by directly delivering a ribonucleoprotein complex consisting of the Cas9 protein and in vitro synthesized single guide RNAs that can target different positions of the gene under investigation. Overall findings and insights are presented and critically discussed.
Collapse
Affiliation(s)
- Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Adriana Fernanda Soria Garcia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Samela Draga
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Francesco Scariolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell'Università, Legnaro, Italy
| |
Collapse
|
2
|
Roychowdhury R, Das SP, Das S, Biswas S, Patel MK, Kumar A, Sarker U, Choudhary SP, Das R, Yogendra K, Gangurde SS. Advancing vegetable genetics with gene editing: a pathway to food security and nutritional resilience in climate-shifted environments. Funct Integr Genomics 2025; 25:31. [PMID: 39891757 DOI: 10.1007/s10142-025-01533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
As global populations grow and climate change increasingly disrupts agricultural systems, ensuring food security and nutritional resilience has become a critical challenge. In addition to grains and legumes, vegetables are very important for both human and animals because they contain vitamins, minerals, and fibre. Enhancing the ability of vegetables to withstand climate change threats is essential; however, traditional breeding methods face challenges due to the complexity of the genomic clonal multiplication process. In the postgenomic era, gene editing (GE) has emerged as a powerful tool for improving vegetables. GE can help to increase traits such as abiotic stress tolerance, herbicide tolerance, and disease resistance; improve agricultural productivity; and improve nutritional content and shelf-life by fine-tuning key genes. GE technologies such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR-Cas9) have revolutionized vegetable breeding by enabling specific gene modifications in the genome. This review highlights recent advances in CRISPR-mediated editing across various vegetable species, highlighting successful modifications that increase their resilience to climatic stressors. Additionally, it explores the potential of GE to address malnutrition by increasing the nutrient content of vegetable crops, thereby contributing to public health and food system sustainability. Additionally, it addresses the implementation of GE-guided breeding strategies in agriculture, considering regulatory, ethical, and public acceptance issues. Enhancing vegetable genetics via GE may provide a reliable and nutritious food supply for an expanding global population under more unpredictable environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Agricultural Research Organization (ARO), The Volcani Institute, Rishon Lezion, 7505101, Israel.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| | - Soumya Prakash Das
- School of Life Sciences, Seacom Skills University, Bolpur, 731236, West Bengal, India
| | - Siddhartha Das
- Department of Plant Pathology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, Odisha, India
| | - Sabarni Biswas
- Department of Botany, Sonarpur Mahavidyalaya, Rajpur, Kolkata, 700149, West Bengal, India
| | - Manish Kumar Patel
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Madrid, Spain
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sikander Pal Choudhary
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006, India
| | - Ranjan Das
- Department of Crop Physiology, College of Agriculture, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| |
Collapse
|
3
|
Wang C, Sun C, Shi L, Zhou J, Liu S, Bai Y, Yu W. Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax. CRISPR J 2025; 8:51-59. [PMID: 39804663 DOI: 10.1089/crispr.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated. The purpose of this study was to investigate the potential of genome editing in flax by establishing the clustered regularly interspaced short palindromic repeats (CR ISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) genome editing system using the phytoene desaturase (PDS) gene, which produces albino mutants that are easily identifiable. Four sgRNAs were designed from two PDS genes of Flax (LuPDS1 and LuPDS2), and CRISPR-Cas9 genome editing vectors were constructed. After gene transformation, albino phenotypes were observed in transformed callus and regenerated plantlets on selection media. Polymerase chain reaction (PCR) amplification and sequencing of the PDS genes revealed deletions and insertions in the albino tissues, indicating successful editing of the PDS genes. Potential off-target sites were analyzed, but no off-target mutations were found, indicating the specificity of the CRISPR-Cas9 system. The establishment of a flax genome editing system using the CRISPR-Cas9 technology opens up new possibilities for the genetic engineering of flax. This study demonstrates the potential of genome editing in creating elite cultivars that can be easily cultivated, which can have significant implications for the flax industry.
Collapse
Affiliation(s)
- Chunming Wang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, China
| | - Chao Sun
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Li Shi
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yongsheng Bai
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- China Good Crop Company (Shenzhen) Limited, Shenzhen, China
| |
Collapse
|
4
|
Hoengenaert L, Anders C, Van Doorsselaere J, Vanholme R, Boerjan W. Transgene-free genome editing in poplar. THE NEW PHYTOLOGIST 2025. [PMID: 39841625 DOI: 10.1111/nph.20415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety. Here, we describe an efficient method for generating gene-edited Populus tremula × P. alba (poplar) trees without incorporating foreign DNA into its genome. Using Agrobacterium tumefaciens, we expressed a base-editing construct targeting CCoAOMT1 along with the ALS genes for positive selection on a chlorsulfuron-containing medium. About 50% of the regenerated shoots were derived from transient transformation and were free of T-DNA. Overall, 7% of the chlorsulfuron-resistant shoots were T-DNA free, edited in the CCoAOMT1 gene and nonchimeric. Long-read whole-genome sequencing confirmed the absence of any foreign DNA in the tested gene-edited lines. Additionally, we evaluated the CodA gene as a negative selection marker to eliminate lines that stably incorporated the T-DNA into their genome. Although the latter negative selection is not essential for selecting transgene-free, gene-edited Populus tremula × P. alba shoots, it may prove valuable for other genotypes or varieties.
Collapse
Affiliation(s)
- Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | | | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| |
Collapse
|
5
|
Liang Y, Gao Q, Li F, Du Y, Wu J, Pan W, Wang S, Zhang X, Zhang M, Song X, Zhong L, Zhang F, Li Y, Wang Z, Li D, Duan Q, Li S, Jin C, Zhang P, Gu Y, Chen ZH, Mayer KFX, Zhou X, Wang J, Zhang L. The giant genome of lily provides insights into the hybridization of cultivated lilies. Nat Commun 2025; 16:45. [PMID: 39747119 PMCID: PMC11696169 DOI: 10.1038/s41467-024-55545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Lilies are economically important monocots known for their ornamental flowers, bulbs, and large genomes. The absence of their genomic information has impeded evolutionary studies and genome-based breeding efforts. Here, we present reference genomes for Lilium sargentiae (lily, 35.66 Gb) and Gloriosa superba (flame lily, 5.09 Gb). The giant lily genome is shaped by recent long terminal repeat retroelements. Phylogenetic analysis reveals diverse, independent origins of lily cultivars. Gene families involved in sucrose and starch metabolism are significantly expanded in the lily genome. Key homologs of XTH22, SOC1, and AP1/FUL-like genes regulate the development, bud growth transition, and floral bud growth transition of lily bulbs. Colchicine biosynthetic gene clusters are identified in G. superba but are absent in L. sargentiae, highlighting independent colchicine evolution in Colchicaceae. These genomic insights enhance understanding of Liliales evolution, providing a foundation for future breeding and molecular research.
Collapse
Affiliation(s)
- Yuwei Liang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China
| | - Qiang Gao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China
| | - Fan Li
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Yunpeng Du
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Wenqiang Pan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Xiuhai Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoming Song
- Center for Genomics and Bio-computing, College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yan Li
- Qi Biodesign, Beijing, China
| | | | - Danqing Li
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Duan
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Chunlian Jin
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Peihua Zhang
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Yang Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany.
- School of Life Sciences, Technical University Munich, Munich, Germany.
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China.
| | - Jihua Wang
- Yunnan Seed Laboratory, Kunming, China.
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China.
| | - Liangsheng Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China.
- Yazhouwan National Laboratory, Sanya, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
6
|
Ahmad D, Ying Y, Bao J. Understanding starch biosynthesis in potatoes for metabolic engineering to improve starch quality: A detailed review. Carbohydr Polym 2024; 346:122592. [PMID: 39245484 DOI: 10.1016/j.carbpol.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.
Collapse
Affiliation(s)
- Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
7
|
Brant EJ, May D, Eid A, Altpeter F. Comparison of genotyping assays for detection of targeted CRISPR/Cas mutagenesis in highly polyploid sugarcane. Front Genome Ed 2024; 6:1505844. [PMID: 39726635 PMCID: PMC11669508 DOI: 10.3389/fgeed.2024.1505844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Sugarcane (Saccharum spp.) is an important biofuel feedstock and a leading source of global table sugar. Saccharum hybrid cultivars are highly polyploid (2n = 100-130), containing large numbers of functionally redundant hom(e)ologs in their genomes. Genome editing with sequence-specific nucleases holds tremendous promise for sugarcane breeding. However, identification of plants with the desired level of co-editing within a pool of primary transformants can be difficult. While DNA sequencing provides direct evidence of targeted mutagenesis, it is cost-prohibitive as a primary screening method in sugarcane and most other methods of identifying mutant lines have not been optimized for use in highly polyploid species. In this study, non-sequencing methods of mutant screening, including capillary electrophoresis (CE), Cas9 RNP assay, and high-resolution melt analysis (HRMA), were compared to assess their potential for CRISPR/Cas9-mediated mutant screening in sugarcane. These assays were used to analyze sugarcane lines containing mutations at one or more of six sgRNA target sites. All three methods distinguished edited lines from wild type, with co-mutation frequencies ranging from 2% to 100%. Cas9 RNP assays were able to identify mutant sugarcane lines with as low as 3.2% co-mutation frequency, and samples could be scored based on undigested band intensity. CE was highlighted as the most comprehensive assay, delivering precise information on both mutagenesis frequency and indel size to a 1 bp resolution across all six targets. This represents an economical and comprehensive alternative to sequencing-based genotyping methods which could be applied in other polyploid species.
Collapse
Affiliation(s)
- Eleanor J. Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - David May
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Ayman Eid
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| |
Collapse
|
8
|
Yuan P, Usman M, Liu W, Adhikari A, Zhang C, Njiti V, Xia Y. Advancements in Plant Gene Editing Technology: From Construct Design to Enhanced Transformation Efficiency. Biotechnol J 2024; 19:e202400457. [PMID: 39692063 DOI: 10.1002/biot.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Plant gene editing technology has significantly advanced in recent years, thereby transforming both biotechnological research and agricultural practices. This review provides a comprehensive summary of recent advancements in this rapidly evolving field, showcasing significant discoveries from improved transformation efficiency to advanced construct design. The primary focus is on the maturation of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)9 system, which has emerged as a powerful tool for precise gene editing in plants. Through a detailed exploration, we elucidate the intricacies of integrating genetic modifications into plant genomes, shedding light on transport mechanisms, transformation techniques, and optimization strategies specific to CRISPR constructs. Furthermore, we explore the initiatives aimed at extending the frontiers of gene editing to nonmodel plant species, showcasing the growing scope of this technology. Overall, this comprehensive review highlights the significant impact of recent advancements in plant gene editing, illuminating its transformative potential in driving agricultural innovation and biotechnological progress.
Collapse
Affiliation(s)
- Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Usman
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Victor Njiti
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Zhan X, Zhang F, Li N, Xu K, Wang X, Gao S, Yin Y, Yuan W, Chen W, Ren Z, Yao M, Wang F. CRISPR/Cas: An Emerging Toolbox for Engineering Virus Resistance in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3313. [PMID: 39683106 DOI: 10.3390/plants13233313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas have been recognized as powerful genome-editing tools in diverse eukaryotic species, including plants, and thus hold great promise for engineering virus resistance in plants. Nevertheless, further attention is required regarding various issues associated with applying new powerful technologies in the field. This mini-review focuses on the recent advances in using CRISPR/Cas9 and CRISPR/Cas13 systems to combat DNA and RNA viruses in plants. We explored the utility of CRISPR/Cas for targeting the viral genome and editing host susceptibility genes in plants. We also provide insights into the limitations and challenges of using CRISPR/Cas for plant virus interference and propose individual combinatorial solutions. In conclusion, CRISPR/Cas technology has the potential to offer innovative and highly efficient approaches for controlling viruses in important crops in the near future.
Collapse
Affiliation(s)
- Xiaohui Zhan
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kai Xu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaodi Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Weiling Yuan
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Weifang Chen
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhiyong Ren
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
10
|
Romero-Muñoz M, Pérez-Jiménez M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. PLANTS (BASEL, SWITZERLAND) 2024; 13:3247. [PMID: 39599456 PMCID: PMC11598112 DOI: 10.3390/plants13223247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Department of Biotechnology, Genomic and Plant Breeding, Institute for Agroenvironmental Research and Development of Murcia (IMIDA), c/Mayor s/n, E-30150 Murcia, Spain;
| | | |
Collapse
|
11
|
Ullah I, Toor MD, Yerlikaya BA, Mohamed HI, Yerlikaya S, Basit A, Rehman AU. High-temperature stress in strawberry: understanding physiological, biochemical and molecular responses. PLANTA 2024; 260:118. [PMID: 39419853 DOI: 10.1007/s00425-024-04544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
MAIN CONCLUSION Heat stress reduces strawberry growth and fruit quality by impairing photosynthesis, disrupting hormone regulation, and altering mineral nutrition. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic and metabolomic under high temperatures. Garden strawberry is a globally cultivated, economically important fruit crop highly susceptible to episodic heat waves and chronically rising temperatures associated with climate change. Heat stress negatively affects the growth, development, and quality of strawberries. Elevated temperatures affect photosynthesis, respiration, water balance, hormone signaling, and carbohydrate metabolism in strawberries. Heat stress reduces the size and number of leaves, the number of crowns, the differentiation of flower buds, and the viability of pollen and fruit set, ultimately leading to a lower yield. On a physiological level, heat stress reduces membrane stability, increases the production of reactive oxygen species, and reduces the antioxidant capacity of strawberries. Heat-tolerant varieties have better physiological and biochemical adaptation mechanisms compared to heat-sensitive varieties. Breeding heat-tolerant strawberry cultivars involves selection for traits such as increased leaf temperature, membrane thermostability, and chlorophyll content. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic, metabolomic, and ionomic reprogramming at high temperatures. Integrative-omics approaches combine multiple omics datasets to obtain a systemic understanding of the responses to heat stress in strawberries. This article summarizes the deciphering of strawberry responses to heat stress using physiological, biochemical, and molecular approaches that will enable the development of resilient adaptation strategies that sustain strawberry production under global climate change.
Collapse
Affiliation(s)
- Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Muhammad Danish Toor
- Department of Botany, Faculty of Science and Technology, İnstitute of Ecology and Earth Science's, Chair of Mycology, University of Tartu, Tartu, Estonia
- Department of Agrochemistry and Soil Science, Faculty of Agronomy, Agricultural University, Plovdiv, Bulgaria
| | - Bayram Ali Yerlikaya
- Department of Plant Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Seher Yerlikaya
- Department of Plant Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, 41566, Daegu, South Korea
| | - Attiq Ur Rehman
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, The University of Helsinki, 00790, Helsinki, Finland
| |
Collapse
|
12
|
Uranga M, Martín-Hernández AM, De Storme N, Pasin F. CRISPR-Cas systems and applications for crop bioengineering. Front Bioeng Biotechnol 2024; 12:1483857. [PMID: 39479297 PMCID: PMC11521923 DOI: 10.3389/fbioe.2024.1483857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
13
|
Shumbe L, Soares E, Muhovski Y, Smit I, Vanderschuren H. Mutation of the Vinv 5' UTR regulatory region reduces acrylamide levels in processed potato to reach EU food-safety standards. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2738-2740. [PMID: 38952066 PMCID: PMC11536440 DOI: 10.1111/pbi.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Affiliation(s)
- Leonard Shumbe
- Plant Genetics & Rhizospheric Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Emanoella Soares
- Plant Genetics & Rhizospheric Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Yordan Muhovski
- Biological Engineering Unit, Department of Life SciencesWalloon Agricultural Research CentreGemblouxBelgium
| | - Inga Smit
- Federal Research Institute for Nutrition and Food, Department of Safety and Quality of CerealsMax Rubner‐InstitutDetmoldGermany
| | - Hervé Vanderschuren
- Plant Genetics & Rhizospheric Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
- Laboratory of Tropical Crop Improvement, Department of BiosystemsKU LeuvenLeuvenBelgium
| |
Collapse
|
14
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Mishra S, Nayak S, Tuteja N, Poosapati S, Swain DM, Sahoo RK. CRISPR/Cas-Mediated Genome Engineering in Plants: Application and Prospectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1884. [PMID: 39065411 PMCID: PMC11279650 DOI: 10.3390/plants13141884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Genetic engineering has become an essential element in developing climate-resilient crops and environmentally sustainable solutions to respond to the increasing need for global food security. Genome editing using CRISPR/Cas [Clustered regulatory interspaced short palindromic repeat (CRISPR)-associated protein (Cas)] technology is being applied to a variety of organisms, including plants. This technique has become popular because of its high specificity, effectiveness, and low production cost. Therefore, this technology has the potential to revolutionize agriculture and contribute to global food security. Over the past few years, increasing efforts have been seen in its application in developing higher-yielding, nutrition-rich, disease-resistant, and stress-tolerant "crops", fruits, and vegetables. Cas proteins such as Cas9, Cas12, Cas13, and Cas14, among others, have distinct architectures and have been used to create new genetic tools that improve features that are important for agriculture. The versatility of Cas has accelerated genomic analysis and facilitated the use of CRISPR/Cas to manipulate and alter nucleic acid sequences in cells of different organisms. This review provides the evolution of CRISPR technology exploring its mechanisms and contrasting it with traditional breeding and transgenic approaches to improve different aspects of stress tolerance. We have also discussed the CRISPR/Cas system and explored three Cas proteins that are currently known to exist: Cas12, Cas13, and Cas14 and their potential to generate foreign-DNA-free or non-transgenic crops that could be easily regulated for commercialization in most countries.
Collapse
Affiliation(s)
- Swetaleena Mishra
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - Subhendu Nayak
- Vidya USA Corporation, Otis Stone Hunter Road, Bunnell, FL 32100, USA;
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India;
| | - Sowmya Poosapati
- Plant Biology Laboratory, Salk Institute for Biological Studies, San Diego, CA 92037, USA
| | - Durga Madhab Swain
- MU Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| |
Collapse
|
16
|
Nie H, Yang X, Zheng S, Hou L. Gene-Based Developments in Improving Quality of Tomato: Focus on Firmness, Shelf Life, and Pre- and Post-Harvest Stress Adaptations. HORTICULTURAE 2024; 10:641. [DOI: 10.3390/horticulturae10060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tomato (Solanum lycopersicum) is a widely consumed vegetable crop with significant economic and nutritional importance. This review paper discusses the recent advancements in gene-based approaches to enhance the quality of tomatoes, particularly focusing on firmness, shelf life, and adaptations to pre- and post-harvest stresses. Utilizing genetic engineering techniques, such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins 9 (CRISPR/Cas9) and Transcription Activator-like Effector Nucleases (TALENs), researchers have made remarkable progress in developing tomatoes with improved traits that address key challenges faced during cultivation, storage, and transportation. We further highlighted the potential of genetic modifications in enhancing tomato firmness, thereby reducing post-harvest losses and improving consumer satisfaction. Furthermore, strategies to extend tomato shelf life through genetic interventions are discussed, emphasizing the importance of maintaining quality and freshness for sustainable food supply chains. Furthermore, the review delves into the ways in which gene-based adaptations can bolster tomatoes against environmental stresses, pests, and diseases, thereby enhancing crop resilience and ensuring stable yields. Emphasizing these crucial facets, this review highlights the essential contribution of genetic advancements in transforming tomato production, elevating quality standards, and promoting the sustainability of tomato cultivation practices.
Collapse
Affiliation(s)
- Hongmei Nie
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiu Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Shaowen Zheng
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
17
|
Akanmu AO, Asemoloye MD, Marchisio MA, Babalola OO. Adoption of CRISPR-Cas for crop production: present status and future prospects. PeerJ 2024; 12:e17402. [PMID: 38860212 PMCID: PMC11164064 DOI: 10.7717/peerj.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Global food systems in recent years have been impacted by some harsh environmental challenges and excessive anthropogenic activities. The increasing levels of both biotic and abiotic stressors have led to a decline in food production, safety, and quality. This has also contributed to a low crop production rate and difficulty in meeting the requirements of the ever-growing population. Several biotic stresses have developed above natural resistance in crops coupled with alarming contamination rates. In particular, the multiple antibiotic resistance in bacteria and some other plant pathogens has been a hot topic over recent years since the food system is often exposed to contamination at each of the farm-to-fork stages. Therefore, a system that prioritizes the safety, quality, and availability of foods is needed to meet the health and dietary preferences of everyone at every time. Methods This review collected scattered information on food systems and proposes methods for plant disease management. Multiple databases were searched for relevant specialized literature in the field. Particular attention was placed on the genetic methods with special interest in the potentials of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and Cas (CRISPR associated) proteins technology in food systems and security. Results The review reveals the approaches that have been developed to salvage the problem of food insecurity in an attempt to achieve sustainable agriculture. On crop plants, some systems tend towards either enhancing the systemic resistance or engineering resistant varieties against known pathogens. The CRISPR-Cas technology has become a popular tool for engineering desired genes in living organisms. This review discusses its impact and why it should be considered in the sustainable management, availability, and quality of food systems. Some important roles of CRISPR-Cas have been established concerning conventional and earlier genome editing methods for simultaneous modification of different agronomic traits in crops. Conclusion Despite the controversies over the safety of the CRISPR-Cas system, its importance has been evident in the engineering of disease- and drought-resistant crop varieties, the improvement of crop yield, and enhancement of food quality.
Collapse
Affiliation(s)
- Akinlolu Olalekan Akanmu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| | - Michael Dare Asemoloye
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| |
Collapse
|
18
|
Hojsgaard D, Nagel M, Feingold SE, Massa GA, Bradshaw JE. New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis. Biomolecules 2024; 14:614. [PMID: 38927018 PMCID: PMC11202281 DOI: 10.3390/biom14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop's biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato's natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Sergio E. Feingold
- Laboratorio de Agrobiotecnología, EEA Balcarce-IPADS (UEDD INTA–CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce B7620, Argentina; (S.E.F.); (G.A.M.)
| | - Gabriela A. Massa
- Laboratorio de Agrobiotecnología, EEA Balcarce-IPADS (UEDD INTA–CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce B7620, Argentina; (S.E.F.); (G.A.M.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce B7620, Argentina
| | | |
Collapse
|
19
|
Gaur VS, Sood S, Guzmán C, Olsen KM. Molecular insights on the origin and development of waxy genotypes in major crop plants. Brief Funct Genomics 2024; 23:193-213. [PMID: 38751352 DOI: 10.1093/bfgp/elad035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 06/14/2024] Open
Abstract
Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.
Collapse
Affiliation(s)
- Vikram S Gaur
- Raja Bhoj College of Agriculture, Balaghat, JNKVV, Jabalpur, Madhya Pradesh, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Shimla- 171001, Himachal Pradesh, India
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, ES-14071, Córdoba, Spain
| | | |
Collapse
|
20
|
Jayarathna S, Hofvander P, Péter-Szabó Z, Andersson M, Andersson R. GBSS mutations in an SBE mutated background restore the potato starch granule morphology and produce ordered granules despite differences to native molecular structure. Carbohydr Polym 2024; 331:121860. [PMID: 38388056 DOI: 10.1016/j.carbpol.2024.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Potato starch with mutations in starch branching enzyme genes (SBEI, SBEII) and granule-bound starch synthase gene (GBSS) was characterized for molecular and thermal properties. Mutations in GBSS were here stacked to a previously developed SBEI and SBEII mutation line. Additionally, mutations in the GBSS gene alone were induced in the wild-type variety for comparison. The parental line with mutations in the SBE genes showed a ∼ 40 % increase in amylose content compared with the wild-type. Mutations in GBSS-SBEI-SBEII produced non-waxy, low-amylose lines compared with the wild-type. An exception was a line with one remaining GBSS wild-type allele, which displayed ∼80 % higher amylose content than wild-type. Stacked mutations in GBSS in the SBEI-SBEII parental line caused alterations in amylopectin chain length distribution and building block size categories of whole starch. Correlations between size categories of building blocks and unit chains of amylopectin were observed. Starch in GBSS-SBEI-SBEII mutational lines had elevated peak temperature of gelatinization, which was positively correlated with large building blocks.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden
| | - Zsuzsanna Péter-Szabó
- Division of Glycoscience, Department of Chemistry, KTH-Royal Institute of Technology, SE-10621 Stockholm, Sweden
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
21
|
Agrawal S, Kumar A, Gupta Y, Trivedi A. Potato Biofortification: A Systematic Literature Review on Biotechnological Innovations of Potato for Enhanced Nutrition. HORTICULTURAE 2024; 10:292. [DOI: 10.3390/horticulturae10030292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Potato biofortification is a comprehensive approach aimed at enhancing the nutritional content of potatoes, addressing widespread nutrient deficiencies and contributing to global food security. This systematic review examines the existing literature on various aspects of potato biofortification, encompassing genetic, agronomic, and biotechnological strategies. The review highlights the nutritional significance of potatoes, emphasizing their role as a staple food in many regions. Genetic approaches to biofortification involve the identification and use of natural variations in potato germplasm to develop varieties with elevated levels of essential nutrients. This includes targeting key micronutrients, such as iron, zinc, and vitamins, through traditional breeding methods. The review explores the genetic diversity within potato germplasm and the potential for breeding programs to develop nutrient-rich varieties. Agronomic practices play a crucial role in potato biofortification, with studies demonstrating the impact of tuber priming and the application of mineral fertilizers on nutrient concentrations in potatoes. The review delves into the intricacies of agronomic biofortification, emphasizing the importance of precise dosages and timing for optimal results. Biotechnological tools, including transgenic and non-transgenic approaches, are discussed in the context of potato biofortification. The review evaluates the efficiency and ethical considerations associated with the development of biofortified transgenic potatoes and emphasizes the significance of non-transgenic approaches in addressing consumer concerns and regulatory barriers. Overall, this systematic review provides a comprehensive overview of the current state of potato biofortification research. It synthesizes findings from diverse studies, offering insights into the potential of biofortified potatoes to address hidden hunger and contribute to improved nutritional outcomes. This review also identifies knowledge gaps and areas for future research, guiding the direction of efforts to harness the full potential of potato biofortification for global food and nutrition security.
Collapse
Affiliation(s)
- Smita Agrawal
- Department of Horticulture, B.M. College of Agriculture Khandwa, Khandwa 450001, Madhya Pradesh, India
| | - Amit Kumar
- Department of Horticulture, B.M. College of Agriculture Khandwa, Khandwa 450001, Madhya Pradesh, India
| | - Yash Gupta
- Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Ayushi Trivedi
- Department of Natural Resource Management, College of Forestry and Research Station, Sankra Patan, Durg 491111, Chhattisgarh, India
| |
Collapse
|
22
|
Agunbiade VF, Babalola OO. Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants. Bioinform Biol Insights 2024; 18:11779322241233442. [PMID: 38464334 PMCID: PMC10924568 DOI: 10.1177/11779322241233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
The future global food security depends on the availability of water for agriculture. Yet, the ongoing rise in nonagricultural uses for water, such as urban and industrial uses, and growing environmental quality concerns have increased pressure of irrigation water demand and posed danger to food security. Nevertheless, its severity and duration are predicted to rise shortly. Drought pressure causes stunted growth, severe damage to photosynthesis activity, loss in crop yield, reduced seed germination, and reduced nutrient intake by plants. To overcome the effects of a devastating drought on plants, it is essential to think about the causes, mechanisms of action, and long-term agronomy management and genetics. As a result, there is an urgent need for long-term medication to deal with the harmful effects of drought pressure. The review focuses on the adverse impact of drought on the plant, physiological, and biochemical aspects, and management measures to control the severity of drought conditions. This article reviews the role of genome editing (GE) technologies such as CRISPR 9 (CRISPR-Cas9) related spaces and short palindromic relapse between proteins in reducing the effects of phytohormones, osmolytes, external compounds, proteins, microbes (plant growth-promoting microorganism [PGPM]), approach omics, and drought on plants that support plant growth. This research is to examine the potential of using the microbiome associated with plants for drought resistance and sustainable agriculture. Researchers also advocate using a mix of biotechnology, agronomic, and advanced GE technologies to create drought-tolerant plant varieties.
Collapse
Affiliation(s)
- Victor Funso Agunbiade
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
23
|
Mathur S, Singh D, Ranjan R. Recent advances in plant translational genomics for crop improvement. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:335-382. [PMID: 38448140 DOI: 10.1016/bs.apcsb.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The growing population, climate change, and limited agricultural resources put enormous pressure on agricultural systems. A plateau in crop yields is occurring and extreme weather events and urbanization threaten the livelihood of farmers. It is imperative that immediate attention is paid to addressing the increasing food demand, ensuring resilience against emerging threats, and meeting the demand for more nutritious, safer food. Under uncertain conditions, it is essential to expand genetic diversity and discover novel crop varieties or variations to develop higher and more stable yields. Genomics plays a significant role in developing abundant and nutrient-dense food crops. An alternative to traditional breeding approach, translational genomics is able to improve breeding programs in a more efficient and precise manner by translating genomic concepts into practical tools. Crop breeding based on genomics offers potential solutions to overcome the limitations of conventional breeding methods, including improved crop varieties that provide more nutritional value and are protected from biotic and abiotic stresses. Genetic markers, such as SNPs and ESTs, contribute to the discovery of QTLs controlling agronomic traits and stress tolerance. In order to meet the growing demand for food, there is a need to incorporate QTLs into breeding programs using marker-assisted selection/breeding and transgenic technologies. This chapter primarily focuses on the recent advances that are made in translational genomics for crop improvement and various omics techniques including transcriptomics, metagenomics, pangenomics, single cell omics etc. Numerous genome editing techniques including CRISPR Cas technology and their applications in crop improvement had been discussed.
Collapse
Affiliation(s)
- Shivangi Mathur
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India
| | - Deeksha Singh
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India
| | - Rajiv Ranjan
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India.
| |
Collapse
|
24
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|
25
|
Ortiz R. Challenges for crop improvement. Emerg Top Life Sci 2023; 7:197-205. [PMID: 37905719 DOI: 10.1042/etls20230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
The genetic improvement of crops faces the significant challenge of feeding an ever-increasing population amidst a changing climate, and when governments are adopting a 'more with less' approach to reduce input use. Plant breeding has the potential to contribute to the United Nations Agenda 2030 by addressing various sustainable development goals (SDGs), with its most profound impact expected on SDG2 Zero Hunger. To expedite the time-consuming crossbreeding process, a genomic-led approach for predicting breeding values, targeted mutagenesis through gene editing, high-throughput phenomics for trait evaluation, enviromics for including characterization of the testing environments, machine learning for effective management of large datasets, and speed breeding techniques promoting early flowering and seed production are being incorporated into the plant breeding toolbox. These advancements are poised to enhance genetic gains through selection in the cultigen pools of various crops. Consequently, these knowledge-based breeding methods are pursued for trait introgression, population improvement, and cultivar development. This article uses the potato crop as an example to showcase the progress being made in both genomic-led approaches and gene editing for accelerating the delivery of genetic gains through the utilization of genetically enhanced elite germplasm. It also further underscores that access to technological advances in plant breeding may be influenced by regulations and intellectual property rights.
Collapse
Affiliation(s)
- Rodomiro Ortiz
- Department of Plant Breeding (VF), Swedish University of Agricultural Sciences (SLU), Box 190 Sundsvagen 10, SE 23422 Lomma, Sweden
| |
Collapse
|
26
|
Chen K, Chen J, Pi X, Huang LJ, Li N. Isolation, Purification, and Application of Protoplasts and Transient Expression Systems in Plants. Int J Mol Sci 2023; 24:16892. [PMID: 38069215 PMCID: PMC10706244 DOI: 10.3390/ijms242316892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Protoplasts, derived from plant cells, exhibit remarkable totipotency and hold significant value across a wide spectrum of biological and biotechnological applications. These versatile applications encompass protein subcellular localization and interaction analysis, gene expression regulation, functional characterization, gene editing techniques, and single-cell sequencing. Protoplasts' usability stems from their inherent accessibility and their ability to efficiently incorporate exogenous genes. In this review, we provide a comprehensive overview, including details on isolation procedures and influencing factors, purification and viability assessment methodologies, and the utilization of the protoplast transient expression system. The aim is to provide a comprehensive overview of current applications and offer valuable insights into protoplast isolation and the establishment of transient expression systems in a diverse range of plant species, thereby serving as a valuable resource for the plant science community.
Collapse
Affiliation(s)
- Kebin Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
27
|
Martín-Valmaseda M, Devin SR, Ortuño-Hernández G, Pérez-Caselles C, Mahdavi SME, Bujdoso G, Salazar JA, Martínez-Gómez P, Alburquerque N. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding. Int J Mol Sci 2023; 24:16656. [PMID: 38068981 PMCID: PMC10705926 DOI: 10.3390/ijms242316656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
CRISPR (short for "Clustered Regularly Interspaced Short Palindromic Repeats") is a technology that research scientists use to selectively modify the DNA of living organisms. CRISPR was adapted for use in the laboratory from the naturally occurring genome-editing systems found in bacteria. In this work, we reviewed the methods used to introduce CRISPR/Cas-mediated genome editing into fruit species, as well as the impacts of the application of this technology to activate and knock out target genes in different fruit tree species, including on tree development, yield, fruit quality, and tolerance to biotic and abiotic stresses. The application of this gene-editing technology could allow the development of new generations of fruit crops with improved traits by targeting different genetic segments or even could facilitate the introduction of traits into elite cultivars without changing other traits. However, currently, the scarcity of efficient regeneration and transformation protocols in some species, the fact that many of those procedures are genotype-dependent, and the convenience of segregating the transgenic parts of the CRISPR system represent the main handicaps limiting the potential of genetic editing techniques for fruit trees. Finally, the latest news on the legislation and regulations about the use of plants modified using CRISPR/Cas systems has been also discussed.
Collapse
Affiliation(s)
- Marina Martín-Valmaseda
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sama Rahimi Devin
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Germán Ortuño-Hernández
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Cristian Pérez-Caselles
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sayyed Mohammad Ehsan Mahdavi
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Geza Bujdoso
- Research Centre for Fruit Growing, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary;
| | - Juan Alfonso Salazar
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Pedro Martínez-Gómez
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Nuria Alburquerque
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| |
Collapse
|
28
|
Hoengenaert L, Van Doorsselaere J, Vanholme R, Boerjan W. Microparticle-mediated CRISPR DNA delivery for genome editing in poplar. FRONTIERS IN PLANT SCIENCE 2023; 14:1286663. [PMID: 38023888 PMCID: PMC10679337 DOI: 10.3389/fpls.2023.1286663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
The use of CRISPR/Cas9 is currently the method of choice for precise genome engineering in plants, including in the biomass crop poplar. The most commonly used method for delivering CRISPR/Cas9 and its components in poplar is via Agrobacterium-mediated transformation, that besides the desired gene-editing event also results in stable T-DNA integration. Here we explore the delivery of the gene-editing reagents via DNA-coated microparticle bombardment into the model tree Populus tremula x P. alba to evaluate its potential for developing transgene-free, gene-edited trees, as well as its potential for integrating donor DNA at specific target sites. Using an optimized transformation method, which favors the regeneration of plants that transiently express the genes on the delivered donor DNA, we regenerated gene-edited plants that are free of the Cas9 and the antibiotic resistance-encoding transgenes. In addition, we report the frequent integration of donor DNA fragments at the Cas9-induced double-strand break, opening opportunities toward targeted gene insertions.
Collapse
Affiliation(s)
- Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | | | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
29
|
Koller F, Cieslak M. A perspective from the EU: unintended genetic changes in plants caused by NGT-their relevance for a comprehensive molecular characterisation and risk assessment. Front Bioeng Biotechnol 2023; 11:1276226. [PMID: 37965049 PMCID: PMC10641861 DOI: 10.3389/fbioe.2023.1276226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Several regions in the world are currently holding discussions in regard to the regulation of new genomic techniques (NGTs) and their application in agriculture. The European Commission, for instance, is proposing the introduction of specific regulation for NGT plants. Various questions need to be answered including e.g., the extent to which NGT-induced intended and unintended genetic modifications must be subjected to a mandatory risk assessment as part of an approval procedure. This review mostly focuses on findings in regard to unintended genetic changes that can be caused by the application of NGTs. More specifically, the review deals with the application of the nuclease CRISPR/Cas, which is currently the most important tool for developing NGT plants, and its potential to introduce double strand breaks (DSBs) at a targeted DNA sequence. For this purpose, we identified the differences in comparison to non-targeted mutagenesis methods used in conventional breeding. The review concludes that unintended genetic changes caused by NGT processes are relevant to risk assessment. Due to the technical characteristics of NGTs, the sites of the unintended changes, their genomic context and their frequency (in regard to specific sites) mean that the resulting gene combinations (intended or unintended) may be unlikely to occur with conventional methods. This, in turn, implies that the biological effects (phenotypes) can also be different and may cause risks to health and the environment. Therefore, we conclude that the assessment of intended as well as unintended genetic changes should be part of a mandatory comprehensive molecular characterisation and risk assessment of NGT plants that are meant for environmental releases or for market authorisation.
Collapse
Affiliation(s)
- Franziska Koller
- Fachstelle Gentechnik und Umwelt (FGU), Munich, Bavaria, Germany
| | | |
Collapse
|
30
|
Abeuova L, Kali B, Tussipkan D, Akhmetollayeva A, Ramankulov Y, Manabayeva S. CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato. Transgenic Res 2023; 32:383-397. [PMID: 37330986 DOI: 10.1007/s11248-023-00356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
CRISPR/Cas9 technology has become the most efficient method for genome editing in many plant species, including important industrial crops such as potatoes. This study used three target regions (T1, T2, and T3) in gbss exon I, whose sequences were first inserted into the BbsI sites in the appropriate guide RNA (gRNA) vector (pEn-Chimera, pMR203, pMR204, and pMR205), and then localized between the AtU6 promoter and the gRNA scaffold sequence. Expression vectors were constructed by introducing gRNA genes into the pMR287 (pYUCas9Plus) plasmids using the MultiSite Gateway system by attR and attL sites. The three target regions of mutant potato lines were analyzed. The use of CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis allowed tri- or tetra-allelic mutant potato lines to be generated. Multiple nucleotide substitutions and indels within and around the three target sites caused a frameshift mutation that led to a premature stop codon, resulting in the production of gbss-knockout plants. Mutation frequencies and analysis of mutation patterns suggested that the stably transformed Cas9/multiple guide RNA expression constructs used in this study can induce targeted mutations efficiently in the potato genome. Full knockout of the gbss gene was analyzed by CAPS, Sanger sequencing and iodine staining. The present study demonstrated successful CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato gbss gene by Agrobacterium-mediated transformation, resulting in an amylose-free phenotype.
Collapse
Affiliation(s)
- Laura Abeuova
- National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan
- L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan
| | - Balnur Kali
- National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan
| | - Dilnur Tussipkan
- National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan
| | | | - Yerlan Ramankulov
- National Center for Biotechnology (NCB), Astana, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Shuga Manabayeva
- L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan.
| |
Collapse
|
31
|
Kusano H, Takeuchi A, Shimada H. Efficiency of potato genome editing: Targeted mutation on the genes involved in starch biosynthesis using the CRISPR/dMac3-Cas9 system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:201-209. [PMID: 38420566 PMCID: PMC10901159 DOI: 10.5511/plantbiotechnology.23.0611a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/11/2023] [Indexed: 03/02/2024]
Abstract
Potato (Solanum tuberosum L.) has a tetraploid genome. To make a mutant lacking a specific gene function, it is necessary to introduce mutations into all four gene alleles. To achieve this goal, we developed a powerful genome editing tool, CRISPR/dMac3-Cas9, which installed the translation enhancer dMac3 that greatly increased the translation of the downstream open reading frame. The CRISPR/dMac3-Cas9 system employing three guide RNAs (gRNAs) greatly elevated the frequency of the generation rate of mutation. This system enabled to create the 4-allele mutants of granule-bound starch synthase (GBSS) and starch branching enzyme (SBE). These mutants indicated functionally defective features, suggesting that we succeeded in efficient genome editing of the potato tetraploid genome. Here, we show the effect of the number of gRNAs for efficient mutagenesis of the target gene using the mutants of the GBSS1 gene. CRISPR/dMac3-Cas9 employing three gRNA genes achieved a higher mutation efficiency than the CRISPR/dMac3-Cas9 with two gRNAs, suggesting being influenced by the dose effect of the number of gRNAs at the target region. The alleles of the SBE3 gene contained SNPs that caused sequence differences in the gRNAs but these gRNAs functioned efficiently. However, many rearrangement events and large deletions were induced. These results support the importance of accurate binding of gRNA to the target sequence, which may lead to a hint to avoid the unexpected mutation on the off-target sites.
Collapse
Affiliation(s)
- Hiroaki Kusano
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ami Takeuchi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science,Tokyo 125-8585, Japan
| |
Collapse
|
32
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
33
|
Stajič E. Improvements in Protoplast Isolation Protocol and Regeneration of Different Cabbage ( Brassica oleracea var. capitata L.) Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:3074. [PMID: 37687321 PMCID: PMC10489862 DOI: 10.3390/plants12173074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Protoplasts are a versatile tool in plant biotechnology since they can be used for basic biological studies as well as for breeding strategies based on genome editing. An efficient protoplast isolation protocol is essential for conducting protoplast-based studies. To optimize the protoplast isolation protocol in cabbage (Brassica oleracea var. capitata L.), different enzyme solutions were tested for the isolation of leaf mesophyll protoplasts. In our experiments, the combination of 0.5% Cellulase Onozuka RS and 0.1% Macerozyme R-10 showed the best result. The optimized protocol proved suitable for the isolation of protoplasts from five different cabbage cultivars with yields ranging from 2.38 to 4.63 × 106 protoplasts/g fresh weight (fw) and a viability of 93% or more. After three weeks in culture, protoplasts from all of the tested cultivars formed micro-calli, but further callus growth and shoot regeneration depended strongly on the genotype and regeneration protocol used. For shoot formation, 1 mg/L BAP in combination with auxin 0.2 mg/L NAA showed the best results with a regeneration of 23.5%. The results obtained will contribute to the development of different applications of cabbage protoplasts and facilitate the breeding process of this important horticultural crop.
Collapse
Affiliation(s)
- Ester Stajič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Sharma S, Friberg M, Vogel P, Turesson H, Olsson N, Andersson M, Hofvander P. Pho1a (plastid starch phosphorylase) is duplicated and essential for normal starch granule phenotype in tubers of Solanum tuberosum L. FRONTIERS IN PLANT SCIENCE 2023; 14:1220973. [PMID: 37636090 PMCID: PMC10450146 DOI: 10.3389/fpls.2023.1220973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
Reserve starch from seeds and tubers is a crucial plant product for human survival. Much research has been devoted to quantitative and qualitative aspects of starch synthesis and its relation to abiotic factors of importance in agriculture. Certain aspects of genetic factors and enzymes influencing carbon assimilation into starch granules remain elusive after many decades of research. Starch phosphorylase (Pho) can operate, depending on metabolic conditions, in a synthetic and degradative pathway. The plastidial form of the enzyme is one of the most highly expressed genes in potato tubers, and the encoded product is imported into starch-synthesizing amyloplasts. We identified that the genomic locus of a Pho1a-type starch phosphorylase is duplicated in potato. Our study further shows that the enzyme is of importance for a normal starch granule phenotype in tubers. Null mutants created by genome editing display rounded starch granules in an increased number that contained a reduced ratio of apparent amylose in the starch.
Collapse
Affiliation(s)
- Shrikant Sharma
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | | | | | | | | | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
35
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
36
|
Pfotenhauer AC, Occhialini A, Harbison SA, Li L, Piatek AA, Luckett CR, Yang Y, Stewart CN, Lenaghan SC. Genome-Editing of FtsZ1 for Alteration of Starch Granule Size in Potato Tubers. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091878. [PMID: 37176936 PMCID: PMC10180631 DOI: 10.3390/plants12091878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Genome-editing has enabled rapid improvement for staple food crops, such as potato, a key beneficiary of the technology. In potato, starch contained within tubers represents the primary product for use in food and non-food industries. Starch granules are produced in the plastids of tubers with plastid size correlated with the size of starch grana. The division of plastids is controlled by proteins, including the tubulin-like GTPase FtsZ1. The altered expression of FtsZ1 has been shown to disrupt plastid division, leading to the production of "macro-plastid"-containing plants. These macro-chloroplast plants are characterized by cells containing fewer and enlarged plastids. In this work, we utilize CRISPR/Cas9 to generate FtsZ1 edited potato lines to demonstrate that genome-editing can be used to increase the size of starch granules in tubers. Altered plastid morphology was comparable to the overexpression of FtsZ1 in previous work in potato and other crops. Several lines were generated with up to a 1.98-fold increase in starch granule size that was otherwise phenotypically indistinguishable from wild-type plants. Further, starch paste from one of the most promising lines showed a 2.07-fold increase in final viscosity. The advantages of enlarged starch granules and the potential of CRISPR/Cas9-based technologies for food crop improvement are further discussed.
Collapse
Affiliation(s)
- Alexander C Pfotenhauer
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
| | - Alessandro Occhialini
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37920, USA
| | - Stacee A Harbison
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
| | - Li Li
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
| | - Agnieszka A Piatek
- Department of Food Science, University of Tennessee, Knoxville, TN 37920, USA
| | - Curtis R Luckett
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37920, USA
| | - Yongil Yang
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37920, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, USA
- Department of Food Science, University of Tennessee, Knoxville, TN 37920, USA
| |
Collapse
|
37
|
Eckerstorfer MF, Dolezel M, Engelhard M, Giovannelli V, Grabowski M, Heissenberger A, Lener M, Reichenbecher W, Simon S, Staiano G, Wüst Saucy AG, Zünd J, Lüthi C. Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091764. [PMID: 37176822 PMCID: PMC10180588 DOI: 10.3390/plants12091764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The current initiative of the European Commission (EC) concerning plants produced using certain new genomic techniques, in particular, targeted mutagenesis and cisgenesis, underlines that a high level of protection for human and animal health and the environment needs to be maintained when using such applications. The current EU biosafety regulation framework ensures a high level of protection with a mandatory environmental risk assessment (ERA) of genetically modified (GM) products prior to the authorization of individual GMOs for environmental release or marketing. However, the guidance available from the European Food Safety Authority (EFSA) for conducting such an ERA is not specific enough regarding the techniques under discussion and needs to be further developed to support the policy goals towards ERA, i.e., a case-by-case assessment approach proportionate to the respective risks, currently put forward by the EC. This review identifies important elements for the case-by-case approach for the ERA that need to be taken into account in the framework for a risk-oriented regulatory approach. We also discuss that the comparison of genome-edited plants with plants developed using conventional breeding methods should be conducted at the level of a scientific case-by-case assessment of individual applications rather than at a general, technology-based level. Our considerations aim to support the development of further specific guidance for the ERA of genome-edited plants.
Collapse
Affiliation(s)
- Michael F Eckerstorfer
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Marion Dolezel
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Margret Engelhard
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Valeria Giovannelli
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Marcin Grabowski
- Ministry of Climate and Environment, Department Nature Conservation, GMO Unit, Wawelska 52/54, 00-922 Warsaw, Poland
| | - Andreas Heissenberger
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Matteo Lener
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Wolfram Reichenbecher
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Samson Simon
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Giovanni Staiano
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Anne Gabrielle Wüst Saucy
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| | - Jan Zünd
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| | - Christoph Lüthi
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| |
Collapse
|
38
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
39
|
Effects of Different Gene Editing Modes of CRISPR/Cas9 on Soybean Fatty Acid Anabolic Metabolism Based on GmFAD2 Family. Int J Mol Sci 2023; 24:ijms24054769. [PMID: 36902202 PMCID: PMC10003299 DOI: 10.3390/ijms24054769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Δ12-fatty acid dehydrogenase (FAD2) is the essential enzyme responsible for catalyzing the formation of linoleic acid from oleic acid. CRISPR/Cas9 gene editing technology has been an essential tool for molecular breeding in soybeans. To evaluate the most suitable type of gene editing in soybean fatty acid synthesis metabolism, this study selected five crucial enzyme genes of the soybean FAD2 gene family-GmFAD2-1A, GmFAD2-1B, GmFAD2-2A, GmFAD2-2B, and GmFAD2-2C-and created a CRISPR/Cas9-mediated single gene editing vector system. The results of Sanger sequencing showed that 72 transformed plants positive for T1 generation were obtained using Agrobacterium-mediated transformation, of which 43 were correctly edited plants, with the highest editing efficiency of 88% for GmFAD2-2A. The phenotypic analysis revealed that the oleic acid content of the progeny of GmFAD2-1A gene-edited plants had a higher increase of 91.49% when compared to the control JN18, and the rest of the gene-edited plants in order were GmFAD2-2A, GmFAD2-1B, GmFAD2-2C, and GmFAD2-2B. The analysis of gene editing type has indicated that base deletions greater than 2bp were the predominant editing type in all editing events. This study provides ideas for the optimization of CRISPR/Cas9 gene editing technology and the development of new tools for precise base editing in the future.
Collapse
|
40
|
Sharma P, Pandey A, Malviya R, Dey S, Karmakar S, Gayen D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front Genome Ed 2023; 5:1094965. [PMID: 36911238 PMCID: PMC9998953 DOI: 10.3389/fgeed.2023.1094965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
41
|
Niu L, Liu L, Zhang J, Scali M, Wang W, Hu X, Wu X. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production. Int J Mol Sci 2023; 24:ijms24043927. [PMID: 36835340 PMCID: PMC9967003 DOI: 10.3390/ijms24043927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Maize accumulates large amounts of starch in seeds which have been used as food for human and animals. Maize starch is an importantly industrial raw material for bioethanol production. One critical step in bioethanol production is degrading starch to oligosaccharides and glucose by α-amylase and glucoamylase. This step usually requires high temperature and additional equipment, leading to an increased production cost. Currently, there remains a lack of specially designed maize cultivars with optimized starch (amylose and amylopectin) compositions for bioethanol production. We discussed the features of starch granules suitable for efficient enzymatic digestion. Thus far, great advances have been made in molecular characterization of the key proteins involved in starch metabolism in maize seeds. The review explores how these proteins affect starch metabolism pathway, especially in controlling the composition, size and features of starch. We highlight the roles of key enzymes in controlling amylose/amylopectin ratio and granules architecture. Based on current technological process of bioethanol production using maize starch, we propose that several key enzymes can be modified in abundance or activities via genetic engineering to synthesize easily degraded starch granules in maize seeds. The review provides a clue for developing special maize cultivars as raw material in the bioethanol industry.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
42
|
Sánchez-Gómez C, Posé D, Martín-Pizarro C. Genome Editing by CRISPR/Cas9 in Polyploids. Methods Mol Biol 2023; 2545:459-473. [PMID: 36720828 DOI: 10.1007/978-1-0716-2561-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CRISPR/Cas system has been widely used for genome editing in the past few years. Even though it has been performed in many polyploid species to date, its efficient accomplishment in these organisms is still a challenge. The presence of multiple homoeologous genes as targets for their editing requires more rigorous work and specific needs to assess successful genome editing. Here, we describe a general stepwise protocol to select target sites, design sgRNAs, indicate vector requirements, and screen CRISPR/Cas9-mediated genome editing in polyploid species.
Collapse
Affiliation(s)
- Carlos Sánchez-Gómez
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain.
| |
Collapse
|
43
|
Anders C, Hoengenaert L, Boerjan W. Accelerating wood domestication in forest trees through genome editing: Advances and prospects. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102329. [PMID: 36586396 PMCID: PMC7614060 DOI: 10.1016/j.pbi.2022.102329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The high economic value of wood requires intensive breeding towards multipurpose biomass. However, long breeding cycles hamper the fast development of novel tree varieties that have improved biomass properties, are tolerant to biotic and abiotic stresses, and resilient to climate change. To speed up domestication, the integration of conventional breeding and new breeding techniques is needed. In this review, we discuss recent advances in genome editing and Cas-DNA-free genome engineering of forest trees, and briefly discuss how multiplex editing combined with multi-omics approaches can accelerate the genetic improvement of forest trees, with a focus on wood.
Collapse
Affiliation(s)
- Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
44
|
Wang M, Wang H, Li K, Li X, Wang X, Wang Z. Review of CRISPR/Cas Systems on Detection of Nucleotide Sequences. Foods 2023; 12:foods12030477. [PMID: 36766007 PMCID: PMC9913930 DOI: 10.3390/foods12030477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Nowadays, with the rapid development of biotechnology, the CRISPR/Cas technology in particular has produced many new traits and products. Therefore, rapid and high-resolution detection methods for biotechnology products are urgently needed, which is extremely important for safety regulation. Recently, in addition to being gene editing tools, CRISPR/Cas systems have also been used in detection of various targets. CRISPR/Cas systems can be successfully used to detect nucleic acids, proteins, metal ions and others in combination with a variety of technologies, with great application prospects in the future. However, there are still some challenges need to be addressed. In this review, we will list some detection methods of genetically modified (GM) crops, gene-edited crops and single-nucleotide polymorphisms (SNPs) based on CRISPR/Cas systems, hoping to bring some inspiration or ideas to readers.
Collapse
Affiliation(s)
- Mengyu Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haoqian Wang
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Kai Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman Li
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xujing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhixing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence:
| |
Collapse
|
45
|
Sandgrind S, Li X, Ivarson E, Wang ES, Guan R, Kanagarajan S, Zhu LH. Improved fatty acid composition of field cress ( Lepidium campestre) by CRISPR/Cas9-mediated genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1076704. [PMID: 36755695 PMCID: PMC9901296 DOI: 10.3389/fpls.2023.1076704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The wild species field cress (Lepidium campestre) has the potential to become a novel cover and oilseed crop for the Nordic climate. Its seed oil is however currently unsuitable for most food, feed, and industrial applications, due to the high contents of polyunsaturated fatty acids (PUFAs) and erucic acid (C22:1). As the biosynthesis of these undesirable fatty acids is controlled by a few well-known major dominant genes, knockout of these genes using CRISPR/Cas9 would thus be more effective in improving the seed oil quality. In order to increase the level of the desirable oleic acid (C18:1), and reduce the contents of PUFAs and C22:1, we targeted three important genes FATTY ACID ELONGASE1 (FAE1), FATTY ACID DESATURASE2 (FAD2), and REDUCED OLEATE DESATURASE1 (ROD1) using a protoplast-based CRISPR/Cas9 gene knockout system. By knocking out FAE1, we obtained a mutated line with almost no C22:1, but an increase in C18:1 to 30% compared with 13% in the wild type. Knocking out ROD1 resulted in an increase of C18:1 to 23%, and a moderate, but significant, reduction of PUFAs. Knockout of FAD2, in combination with heterozygous FAE1fae1 genotype, resulted in mutated lines with up to 66% C18:1, very low contents of PUFAs, and a significant reduction of C22:1. Our results clearly show the potential of CRISPR/Cas9 for rapid trait improvement of field cress which would speed up its domestication process. The mutated lines produced in this study can be used for further breeding to develop field cress into a viable crop.
Collapse
|
46
|
Das J, Kumar S, Mishra DC, Chaturvedi KK, Paul RK, Kairi A. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system. Front Genet 2023; 13:1085332. [PMID: 36699447 PMCID: PMC9868961 DOI: 10.3389/fgene.2022.1085332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
CRISPR-Cas9 system is one of the recent most used genome editing techniques. Despite having a high capacity to alter the precise target genes and genomic regions that the planned guide RNA (or sgRNA) complements, the off-target effect still exists. But there are already machine learning algorithms for people, animals, and a few plant species. In this paper, an effort has been made to create models based on three machine learning-based techniques [namely, artificial neural networks (ANN), support vector machines (SVM), and random forests (RF)] for the prediction of the CRISPR-Cas9 cleavage sites that will be cleaved by a particular sgRNA. The plant dataset was the sole source of inspiration for all of these machine learning-based algorithms. 70% of the on-target and off-target dataset of various plant species that was gathered was used to train the models. The remaining 30% of the data set was used to evaluate the model's performance using a variety of evaluation metrics, including specificity, sensitivity, accuracy, precision, F1 score, F2 score, and AUC. Based on the aforementioned machine learning techniques, eleven models in all were developed. Comparative analysis of these produced models suggests that the model based on the random forest technique performs better. The accuracy of the Random Forest model is 96.27%, while the AUC value was found to be 99.21%. The SVM-Linear, SVM-Polynomial, SVM-Gaussian, and SVM-Sigmoid models were trained, making a total of six ANN-based models (ANN1-Logistic, ANN1-Tanh, ANN1-ReLU, ANN2-Logistic, ANN2-Tanh, and ANN-ReLU) and Support Vector Machine models (SVM-Linear, SVM-Polynomial, SVM-Gaussian However, the overall performance of Random Forest is better among all other ML techniques. ANN1-ReLU and SVM-Linear model performance were shown to be better among Artificial Neural Network and Support Vector Machine-based models, respectively.
Collapse
Affiliation(s)
- Jutan Das
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjeev Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,*Correspondence: Sanjeev Kumar,
| | | | | | - Ranjit Kumar Paul
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Amit Kairi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
47
|
Affiliation(s)
- Jiacheng Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
González MN, Massa GA, Andersson M, Storani L, Olsson N, Décima Oneto CA, Hofvander P, Feingold SE. CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding. Methods Mol Biol 2023; 2653:333-361. [PMID: 36995636 DOI: 10.1007/978-1-0716-3131-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature poses a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene(s). In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein (RNP) complex assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.
Collapse
Affiliation(s)
- Matías Nicolás González
- Laboratorio de Agrobiotecnología, IPADS (INTA - CONICET), Balcarce, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gabriela Alejandra Massa
- Laboratorio de Agrobiotecnología, IPADS (INTA - CONICET), Balcarce, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Leonardo Storani
- Laboratorio de Agrobiotecnología, IPADS (INTA - CONICET), Balcarce, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica, Buenos Aires, Argentina
| | - Niklas Olsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Cecilia Andrea Décima Oneto
- Laboratorio de Agrobiotecnología, IPADS (INTA - CONICET), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | |
Collapse
|
49
|
Wu FH, Hsu CT, Lin CS. Targeted Insertion in Nicotiana benthamiana Genomes via Protoplast Regeneration. Methods Mol Biol 2023; 2653:297-315. [PMID: 36995634 DOI: 10.1007/978-1-0716-3131-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Insertion of a specific sequence in a targeted region for precise editing is still a major challenge in plants. Current protocols rely on inefficient homology-directed repair or non-homologous end-joining with modified double-stranded oligodeoxyribonucleotides (dsODNs) as donors. We developed a simple protocol that eliminates the need for expensive equipment, chemicals, modifications of donor DNA, and complicated vector construction. The protocol uses polyethylene glycol (PEG)-calcium to deliver low-cost, unmodified single-stranded oligodeoxyribonucleotides (ssODNs) and CRISPR/Cas9 ribonucleoprotein (RNP) complexes into Nicotiana benthamiana protoplasts. Regenerated plants were obtained from edited protoplasts with an editing frequency of up to 50% at the target locus. The inserted sequence was inherited to the next generation; this method thus opens the possibility for the future exploration of genomes by targeted insertion in plants.
Collapse
Affiliation(s)
- Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
50
|
Chincinska IA, Miklaszewska M, Sołtys-Kalina D. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. PLANTA 2022; 257:25. [PMID: 36562862 PMCID: PMC9789015 DOI: 10.1007/s00425-022-04054-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
MAIN CONCLUSION Genome editing using CRISPR/Cas technology improves the quality of potato as a food crop and enables its use as both a model plant in fundamental research and as a potential biofactory for producing valuable compounds for industrial applications. Potato (Solanum tuberosum L.) plays a significant role in ensuring global food and nutritional security. Tuber yield is negatively affected by biotic and abiotic stresses, and enzymatic browning and cold-induced sweetening significantly contribute to post-harvest quality losses. With the dual challenges of a growing population and a changing climate, potato enhancement is essential for its sustainable production. However, due to several characteristics of potato, including high levels of heterozygosity, tetrasomic inheritance, inbreeding depression, and self-incompatibility of diploid potato, conventional breeding practices are insufficient to achieve substantial trait improvement in tetraploid potato cultivars within a relatively short time. CRISPR/Cas-mediated genome editing has opened new possibilities to develop novel potato varieties with high commercialization potential. In this review, we summarize recent developments in optimizing CRISPR/Cas-based methods for potato genome editing, focusing on approaches addressing the challenging biology of this species. We also discuss the feasibility of obtaining transgene-free genome-edited potato varieties and explore different strategies to improve potato stress resistance, nutritional value, starch composition, and storage and processing characteristics. Altogether, this review provides insight into recent advances, possible bottlenecks, and future research directions in potato genome editing using CRISPR/Cas technology.
Collapse
Affiliation(s)
- Izabela Anna Chincinska
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Magdalena Miklaszewska
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|