1
|
Raza MM, Jia H, Razzaq MK, Li B, Li K, Gai J. Identification and functional validation of a new gene conferring resistance to Soybean Mosaic Virus strains SC4 and SC20 in soybean. FRONTIERS IN PLANT SCIENCE 2025; 15:1518829. [PMID: 39935688 PMCID: PMC11811538 DOI: 10.3389/fpls.2024.1518829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025]
Abstract
Soybean Mosaic Virus (SMV) poses a serious threat to soybean production, often resulting in considerable yield losses or complete crop failure, particularly if infection occurs during early growth stages. While several SMV resistance genes have been identified, the genetic basis of resistance to certain strains remains poorly understood. Among the 22 SMV strains, SC4 and SC20 are considered pathogenic in Central China. Dominant genes resistant to SC4 (Rsc4) on Chr.14 in Dabaima and to SC20 (Rsc20) on Chr.13 in Qihuang-1 have been identified. Kefeng-1 is resistant to SC4 and SC20. This study aimed to determine whether the resistance to SC4 and SC20 in Kefeng-1 was identical and whether Rsc4 and Rsc20 in Dabaima and Qihuang-1 are also present in Kefeng-1 due to translocation. Mendelian experiments using F1, F2, and recombinant inbred lines (RIL3:8) of Kefeng-1 (resistant) and NN1138-2 (susceptible) indicated a single dominant gene inheritance pattern in SC4 and SC20, respectively. Linkage mapping showed two loci for SC4 and SC20 in neighboring single nucleotide polymorphism linkage disequilibrium blocks (SNPLDB) marker regions of 253 kb and 375 kb, respectively, in Kefeng-1. Association between SNPs in possible gene regions of Kefeng-1 and resistance data showed SNP11692903 jointly as the most significant SNP, exhibiting the highest χ2 value. By comparing SNP11692903 to possible gene sequences in the coding region, Glyma02g13380 was identified as a joint candidate gene. The results were validated using qRT-PCR, virus induced gene silencing (VIGS), and gene-sequence. Therefore, the two Mendelian genes on chromosome 2 in Kefeng-1 responsible for SC4 and SC20 resistance are unique genes, different from Rsc4 in Dabaima and Rsc20 in Qihuang-1. Hence, one gene is involved in resistance toward two SMV strains resistance. This result challenged our previous hypothesis of a single dominant gene responsible for resistance against a single strain and underscored the potential for using multiple resistance sources aimed at enhancing SMV resistance in breeding practices.
Collapse
Affiliation(s)
| | | | | | | | - Kai Li
- Soybean Research Institute & MARA National Center for Soybean Improvement & Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junyi Gai
- *Correspondence: Kai Li, ; Junyi Gai,
| |
Collapse
|
2
|
Kalia D, Jose-Santhi J, Sheikh FR, Singh D, Singh RK. Tobacco rattle virus-based virus-induced gene silencing (VIGS) as an aid for functional genomics in Saffron ( Crocus sativus L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:749-755. [PMID: 38846460 PMCID: PMC11150356 DOI: 10.1007/s12298-024-01459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Several limitations in genetic engineering interventions in saffron exist, hindering the development of genetically modified varieties and the widespread application of genetic engineering in this crop. Lack of genome sequence information, the complexity of genetic makeup, and lack of well-established genetic transformation protocols limit its in planta functional validation of genes that would eventually lead toward crop optimization. In this study, we demonstrate agro infiltration in leaves of adult plants and whole corm before sprouting are suitable for transient gene silencing in saffron using Tobacco Rattle Virus (TRV) based virus-induced gene silencing (VIGS) targeting phytoene desaturase (PDS). Silencing of PDS resulted in bleached phenotype in leaves in both methods. TRV-mediated VIGS could be attained in saffron leaves and corms, providing an opportunity for functional genomics studies in this expensive spice crop. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01459-0.
Collapse
Affiliation(s)
- Diksha Kalia
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Joel Jose-Santhi
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Firdous Rasool Sheikh
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Deepika Singh
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
| | - Rajesh Kumar Singh
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
3
|
Zhang M, Ma X, Jin G, Han D, Xue J, Du Y, Chen X, Yang F, Zhao C, Zhang X. A Modified Method for Transient Transformation via Pollen Magnetofection in Lilium Germplasm. Int J Mol Sci 2023; 24:15304. [PMID: 37894985 PMCID: PMC10607007 DOI: 10.3390/ijms242015304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Lily (Lilium spp.) is a popular ornamental plant. Traditional genetic transformation methods have low efficiency in lily, thus development of a high-efficiency genetic transformation system is important. In this study, a novel transient transformation method involving pollen magnetofection was established and optimized pollen viability, and exogenous gene expression in magnetofected pollen and that of different germplasm were assessed. The highest germination percentage of Lilium regale pollen was 85.73% in medium containing 100 g/L sucrose, 61.5 mg/L H3BO3, and 91.5 mg/L CaCl2. A 1:4 ratio of nanomagnetic beads to DNA plasmid and transformation time of 0.5 h realized the highest transformation efficiency (88.32%). The GFP activity in transformed pollen averaged 69.66%, while that of the control pollen was 0.00%. In contrast to the control, transgenic seedlings obtained by pollination with magnetofected pollen showed strong positive GUS activity with 56.34% transformation efficiency. Among the lily germplasm tested, 'Sweet Surrender' and L. leucanthum had the highest transformation efficiency (85.80% and 54.47%), whereas L. davidii var. willmottiae was not successfully transformed. Transformation efficiency was positively correlated with pollen equatorial diameter and negatively correlated with polar axis/equatorial diameter ratio. The results suggest that pollen magnetofection-mediated transformation can be applied in Lilium but might have species or cultivar specificity.
Collapse
Affiliation(s)
- Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xu Ma
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Ge Jin
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Dongyang Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yunpeng Du
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xuqing Chen
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Fengping Yang
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
4
|
Jagram N, Dasgupta I. Principles and practice of virus induced gene silencing for functional genomics in plants. Virus Genes 2023; 59:173-187. [PMID: 36266497 DOI: 10.1007/s11262-022-01941-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Virus induced gene silencing (VIGS) has, of late, emerged as an important tool for transient silencing of genes in plants. This is now being increasingly used to determine functions of novel genes in a wide variety of plants, many of which are important crops yielding food and fiber or are sources of products having pharmaceutical uses. The technology for VIGS comprises the development of vectors derived from viruses, choosing the optimal orientation and size of the gene to be targeted and adopting the most suitable method of inoculation. This review gives a brief overview of the main aspects of VIGS technology as is being practiced. It also discusses the challenges the technology faces and the possible way ahead to improve its robustness, so that the technology finds wider applications.
Collapse
Affiliation(s)
- Neelam Jagram
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
5
|
Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int J Mol Sci 2023; 24:ijms24065608. [PMID: 36982682 PMCID: PMC10057534 DOI: 10.3390/ijms24065608] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/17/2023] Open
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.
Collapse
|
6
|
Zhao Y, Yang D, Liu Y, Han F, Li Z. A highly efficient genetic transformation system for broccoli and subcellular localization. FRONTIERS IN PLANT SCIENCE 2023; 14:1091588. [PMID: 36937998 PMCID: PMC10018207 DOI: 10.3389/fpls.2023.1091588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Agrobacterium-mediated genetic transformation has been widely used for the identification of functional genes and regulatory and developmental mechanisms in plants. However, there are still some problems of low genetic transformation efficiency and high genotype dependence in cruciferous crops. METHODS In this study, broccoli, a worldwide Brassica crop, was used to investigate the effects of genotype, explant type, concentration of hygromycin B used during seedling selection, overexpression vector type, RNAi and CRISPR/cas9 on the genetic transformation efficiency. At the same time, two vectors, PHG-031350 and PHG-CRa, were used for subcellular localization of the glucoraphanin synthesis-related gene FMOGS-OX5 and clubroot resistance gene by a PEG-Ca2+-mediated transient transformation system for broccoli protoplasts. Finally, the Agrobacterium-mediated genetic transformation system of broccoli was optimized and improved. RESULTS AND DISCUSSION This study showed that hypocotyl explants are more suitable for Agrobacterium-mediated transgene and CRISPR/Cas9 gene editing of broccoli. In contrast to previous studies, we found that 5 mg/L hygromycin B was more advantageous for the selection of resistant broccoli sprouts, and genotype 19B42 reached the highest transformation rate of 26.96%, which is higher than that in Brassica oleracea crops. In addition, the inbred line 19B42 successfully achieved high genetic transformation of overexpression, RNAi and CRISPR/Cas9 vectors; thus, it is powerful recipient material for the genetic transformation of broccoli. Subcellular localization proved that the glucoraphanin metabolism-related gene Bol031350 and clubroot resistance gene CRa were both expressed in the cytoplasm and nucleus, which provided a scientific basis for studying the regulation of glucosinolate metabolism and clubroot resistance in cruciferous crops. Therefore, these findings will provide new insight into the improvement of the genetic transformation and molecular breeding of Brassica oleracea crops.
Collapse
|
7
|
Rustgi S, Naveed S, Windham J, Zhang H, Demirer GS. Plant biomacromolecule delivery methods in the 21st century. Front Genome Ed 2022; 4:1011934. [PMID: 36311974 PMCID: PMC9614364 DOI: 10.3389/fgeed.2022.1011934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The 21st century witnessed a boom in plant genomics and gene characterization studies through RNA interference and site-directed mutagenesis. Specifically, the last 15 years marked a rapid increase in discovering and implementing different genome editing techniques. Methods to deliver gene editing reagents have also attempted to keep pace with the discovery and implementation of gene editing tools in plants. As a result, various transient/stable, quick/lengthy, expensive (requiring specialized equipment)/inexpensive, and versatile/specific (species, developmental stage, or tissue) methods were developed. A brief account of these methods with emphasis on recent developments is provided in this review article. Additionally, the strengths and limitations of each method are listed to allow the reader to select the most appropriate method for their specific studies. Finally, a perspective for future developments and needs in this research area is presented.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Salman Naveed
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Jonathan Windham
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gözde S. Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
8
|
Calvo‐Baltanás V, De Jaeger‐Braet J, Cher WY, Schönbeck N, Chae E, Schnittger A, Wijnker E. Knock-down of gene expression throughout meiosis and pollen formation by virus-induced gene silencing in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:19-37. [PMID: 35340073 PMCID: PMC9543169 DOI: 10.1111/tpj.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Through the inactivation of genes that act during meiosis it is possible to direct the genetic make-up of plants in subsequent generations and optimize breeding schemes. Offspring may show higher recombination of parental alleles resulting from elevated crossover (CO) incidence, or by omission of meiotic divisions, offspring may become polyploid. However, stable mutations in genes essential for recombination, or for either one of the two meiotic divisions, can have pleiotropic effects on plant morphology and line stability, for instance by causing lower fertility. Therefore, it is often favorable to temporarily change gene expression during meiosis rather than relying on stable null mutants. It was previously shown that virus-induced gene silencing (VIGS) can be used to transiently reduce CO frequencies. We asked if VIGS could also be used to modify other processes throughout meiosis and during pollen formation in Arabidopsis thaliana. Here, we show that VIGS-mediated knock-down of FIGL1, RECQ4A/B, OSD1 and QRT2 can induce (i) an increase in chiasma numbers, (ii) unreduced gametes and (iii) pollen tetrads. We further show that VIGS can target both sexes and different genetic backgrounds and can simultaneously silence different gene copies. The successful knock-down of these genes in A. thaliana suggests that VIGS can be exploited to manipulate any process during or shortly after meiosis. Hence, the transient induction of changes in inheritance patterns can be used as a powerful tool for applied research and biotechnological applications.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Joke De Jaeger‐Braet
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Wei Yuan Cher
- A*STAR, Institute of Molecular and Cell Biology (IMCB)61 Biopolis DriveProteos138673Singapore
| | - Nils Schönbeck
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- UKEMartinistrasse 5220251HamburgGermany
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Arp Schnittger
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
| |
Collapse
|
9
|
Pachamuthu K, Hari Sundar V, Narjala A, Singh RR, Das S, Avik Pal HCY, Shivaprasad PV. Nitrate-dependent regulation of miR444-OsMADS27 signalling cascade controls root development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3511-3530. [PMID: 35243491 DOI: 10.1093/jxb/erac083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Nitrate is an important nutrient and a key signalling molecule for plant development. A number of transcription factors involved in the response to nitrate and their regulatory mechanisms have been identified. However, little is known about the transcription factors involved in nitrate sensing and their regulatory mechanisms among crop plants. In this study, we identified functions of a nitrate-responsive miR444:MADS-box transcription factor OsMADS27 module and its downstream targets mediating rice root growth and stress responses. Transgenic rice plants expressing miR444 target mimic improved rice root growth. Although miR444 has the potential to target multiple genes, we identified OsMADS27 as the major miR444 target that regulates the expression of nitrate transporters, as well as several key genes including expansins, and those associated with auxin signalling, to promote root growth. In agreement with this, overexpression of miRNA-resistant OsMADS27 improved root development and tolerance to abiotic stresses, while its silencing suppressed root growth. OsMADS27 mediated robust stress tolerance in plants through its ability to bind to the promoters of specific stress regulators, as observed in ChIP-seq analysis. Our results provide evidence of a nitrate-dependent miR444-OsMADS27 signalling cascade involved in the regulation of rice root growth, as well as its surprising role in stress responses.
Collapse
Affiliation(s)
- Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris- Saclay, Versailles, France
| | - Vivek Hari Sundar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Rahul R Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Soumita Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Harshith C Y Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| |
Collapse
|
10
|
Tiedge K, Destremps J, Solano-Sanchez J, Arce-Rodriguez ML, Zerbe P. Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.). PLANT METHODS 2022; 18:71. [PMID: 35644680 PMCID: PMC9150325 DOI: 10.1186/s13007-022-00903-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/07/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the genome for the allotetraploid bioenergy crop switchgrass (Panicum virgatum) has been established, limitations in mutant resources have hampered in planta gene function studies toward crop optimization. Virus-induced gene silencing (VIGS) is a versatile technique for transient genetic studies. Here we report the implementation of foxtail mosaic virus (FoMV)-mediated gene silencing in switchgrass in above- and below-ground tissues and at different developmental stages. RESULTS The study demonstrated that leaf rub-inoculation is a suitable method for systemic gene silencing in switchgrass. For all three visual marker genes, Magnesium chelatase subunit D (ChlD) and I (ChlI) as well as phytoene desaturase (PDS), phenotypic changes were observed in leaves, albeit at different intensities. Gene silencing efficiency was verified by RT-PCR for all tested genes. Notably, systemic gene silencing was also observed in roots, although silencing efficiency was stronger in leaves (~ 63-94%) as compared to roots (~ 48-78%). Plants at a later developmental stage were moderately less amenable to VIGS than younger plants, but also less perturbed by the viral infection. CONCLUSIONS Using FoMV-mediated VIGS could be achieved in switchgrass leaves and roots, providing an alternative approach for studying gene functions and physiological traits in this important bioenergy crop.
Collapse
Affiliation(s)
- Kira Tiedge
- Department of Plant Biology, University of California, Davis, USA.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, USA
| |
Collapse
|
11
|
Jathar V, Saini K, Chauhan A, Rani R, Ichihashi Y, Ranjan A. Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice. THE NEW PHYTOLOGIST 2022; 234:867-883. [PMID: 35152411 DOI: 10.1111/nph.18029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cellular and genetic understanding of the rice leaf size regulation is limited, despite rice being the staple food of more than half of the global population. We investigated the mechanism controlling the rice leaf length using cultivated and wild rice accessions that remarkably differed for leaf size. Comparative transcriptomics, gibberellic acid (GA) quantification and leaf kinematics of the contrasting accessions suggested the involvement of GA, cell cycle and growth-regulating factors (GRFs) in the rice leaf size regulation. Zone-specific expression analysis and VIGS established the functions of specific GRFs in the process. The leaf length of the selected accessions was strongly correlated with GA levels. Higher GA content in wild rice accessions with longer leaves and GA-induced increase in the leaf length via an increase in cell division confirmed a GA-mediated regulation of division zone in rice. Downstream to GA, OsGRF7 and OsGRF8 function for controlling cell division to determine the rice leaf length. Spatial control of cell division to determine the division zone size mediated by GA and downstream OsGRF7 and OsGRF8 explains the leaf length differences between the cultivated and wild rice. This mechanism to control the rice leaf length might have contributed to optimizing leaf size during domestication.
Collapse
Affiliation(s)
- Vikram Jathar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kumud Saini
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Chauhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchi Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Yasunori Ichihashi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Aashish Ranjan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
12
|
Kumar G, Kumari K, Dasgupta I. RTBV-Based VIGS Vector for Functional Genomics in Rice: Methodology, Advances, Challenges, and Future Implications. Methods Mol Biol 2022; 2408:117-131. [PMID: 35325420 DOI: 10.1007/978-1-0716-1875-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The availability of protocols for virus-induced gene silencing (VIGS) in rice has opened up an important channel for the elucidation of gene functions in this important crop plant. Here, we present an updated protocol of a VIGS system based on Rice tungro bacilliform virus (RTBV) for gene silencing in rice. We present complete updated protocols for VIGS in rice, compare the system with other existing ones for monocots, identify some of the challenges faced by this system and discuss ways in which the vector could be improved for better silencing efficiency.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Kamlesh Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
13
|
Zhou T, Dong L, Jiang T, Fan Z. Silencing Specific Genes in Plants Using Virus-Induced Gene Silencing (VIGS) Vectors. Methods Mol Biol 2022; 2400:149-161. [PMID: 34905199 DOI: 10.1007/978-1-0716-1835-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an efficient tool for functional genomics, VIGS (virus-induced gene silencing) has been widely used in reverse and forward genetics to identify genes involved in various biology processes in many plant species. Up to now, at least 50 VIGS vectors based on RNA viruses, DNA viruses or satellites have been developed for either dicots or monocots or both. Silencing specific genes using VIGS vector involves five major steps including, first, choosing an appropriate VIGS vector for the plant; second, selecting a fragment of targeted host gene; third, cloning the fragment into viral VIGS vector; forth, inoculating and infecting the appropriate plant; and fifth, quantifying silencing effects including recording silencing phenotypes and determining silencing efficiency of the target gene. In this chapter, we introduce these steps for VIGS assay in dicots and monocots, by taking a cucumber mosaic virus-based VIGS vector for Nicotiana benthamiana and maize plants as an example. Moreover, we list available VIGS vectors for monocots.
Collapse
Affiliation(s)
- Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, China.
| | - Laihua Dong
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tong Jiang
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Bai J, Wang X, Yao X, Chen X, Lu K, Hu Y, Wang Z, Mu Y, Zhang L, Dong H. Rice aquaporin OsPIP2;2 is a water-transporting facilitator in relevance to drought-tolerant responses. PLANT DIRECT 2021; 5:e338. [PMID: 34430793 PMCID: PMC8365552 DOI: 10.1002/pld3.338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 05/30/2023]
Abstract
In rice (Oryza sativa), the PLASMA MEMBRANE INTRINSIC PROTEIN (PIP) family of aquaporin has 11 members, OsPIP1;1 to OsPIP1;3, and OsPIP2;1 to OsPIP2;8, which are hypothesized to facilitate the transport of H2O and other small compounds across cell membranes. To date, however, only OsPIP1;2, OsPIP2;1, and OsPIP2;4 have been demonstrated for substrate selectivity in their source plant (rice). In this study, OsPIP2;2 was characterized as the most efficient facilitator of H2O transport across cell membranes in comparison with the other 10 OsPIPs. In concomitant tests of all OsPIPs, four genes (OsPIP1;3, OsPIP2;1, OsPIP2;2, and OsPIP2;4) were induced to express in leaves of rice plants following a physiological drought stress, while OsPIP2;2 was expressed to the highest level. After de novo expression in frog oocytes and yeast cells, the four OsPIP proteins were localized to the plasma membranes in trimer and tetramer and displayed the activity to increase the membrane permeability to H2O. In comparison, OsPIP2;2 was most supportive to H2O import to oocytes and yeast cells. After de novo expression in tobacco protoplasts, OsPIP2;2 exceeded OsPIP1;3, OsPIP2;1, and OsPIP2;4 to support H2O transport across the plasma membranes. OsPIP2;2-mediated H2O transport was accompanied by drought-tolerant responses, including increases in concentrations of proline and polyamines, both of which are physiological markers of drought tolerance. In rice protoplasts, H2O transport and drought-tolerant responses, which included expression of marker genes of drought tolerance pathway, were considerably enhanced by OsPIP2;2 overexpression but strongly inhibited by the gene silencing. Furthermore, OsPIP2;2 played a role in maintenance of the cell membrane integrity and effectively protected rice cells from electrolyte leakage caused by the physiological drought stress. These results suggest that OsPIP2;2 is a predominant facilitator of H2O transport in relevance to drought tolerance in the plant.
Collapse
Affiliation(s)
- Jiaqi Bai
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xuan Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
- School of Life SciencesNanjing UniversityNanjingChina
| | - Xiaohui Yao
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Xiaochen Chen
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Kai Lu
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Yiqun Hu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant Protection and Agroproduct SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Zuodong Wang
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Yanjie Mu
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Liyuan Zhang
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| | - Hansong Dong
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| |
Collapse
|
15
|
Xie W, Marty DM, Xu J, Khatri N, Willie K, Moraes WB, Stewart LR. Simultaneous gene expression and multi-gene silencing in Zea mays using maize dwarf mosaic virus. BMC PLANT BIOLOGY 2021; 21:208. [PMID: 33952221 PMCID: PMC8097858 DOI: 10.1186/s12870-021-02971-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/13/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Maize dwarf mosaic virus (MDMV), a member of the genus Potyvirus, infects maize and is non-persistently transmitted by aphids. Several plant viruses have been developed as tools for gene expression and gene silencing in plants. The capacity of MDMV for both gene expression and gene silencing were examined. RESULTS Infectious clones of an Ohio isolate of MDMV, MDMV OH5, were obtained, and engineered for gene expression only, and for simultaneous marker gene expression and virus-induced gene silencing (VIGS) of three endogenous maize target genes. Single gene expression in single insertion constructs and simultaneous expression of green fluorescent protein (GFP) and silencing of three maize genes in a double insertion construct was demonstrated. Constructs with GFP inserted in the N-terminus of HCPro were more stable than those with insertion at the N-terminus of CP in our study. Unexpectedly, the construct with two insertion sites also retained insertions at a higher rate than single-insertion constructs. Engineered MDMV expression and VIGS constructs were transmissible by aphids (Rhopalosiphum padi). CONCLUSIONS These results demonstrate that MDMV-based vector can be used as a tool for simultaneous gene expression and multi-gene silencing in maize.
Collapse
Affiliation(s)
- Wenshuang Xie
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Dee Marie Marty
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Junhuan Xu
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Nitika Khatri
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Kristen Willie
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | | | - Lucy R Stewart
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA.
| |
Collapse
|
16
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
17
|
Du C, Gao H, Liu S, Ma D, Feng J, Wang C, Jiang X, Li G, Xie Y. Molecular cloning and functional characterisation of the galactolipid biosynthetic gene TaMGD in wheat grain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:66-74. [PMID: 32526612 DOI: 10.1016/j.plaphy.2020.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Monogalactosyl diacylglycerol (MGDG), the main component of the plastid membrane, is essential for chloroplast photosynthesis; however, little information is available about the function of MGDG synthases gene (TaMGD) in wheat grain. In this manuscript, three homologous genes were identified in wheat grain, and their functions were investigated by gene silencing and overexpression techniques. Three TaMGD homologous genes, TaMGD-6A, -6B, and -6D, located on chromosome 6A, 6B, and 6D, respectively, were isolated from common wheat. The transcription of TaMGD was detected in stems, roots, leaves and grains, and high levels of gene transcripts were detected in stems and leaves. Silencing of TaMGD in common wheat spikes resulted in a decrease in grain weight and starch content, and proteomic analysis showed that the differentially expressed proteins mainly included carbohydrate metabolism- and nucleic acid-related proteins. In comparison with wild-type, transgenic rice plants overexpressing TaMGD-6A and -6D showed an increase in thousand kernel weight, as well as an increase in the expression level of genes related to starch biosynthesis, whereas transgenic rice plants overexpressing TaMGD-6B showed increased grain yield and grain number per spike. The results of gene silencing and overexpression indicated that TaMGD plays an important role in wheat grain weight, which might be associated with carbohydrate metabolism. Hence, this study provides new insights regarding the role of TaMGD in wheat grain characteristics.
Collapse
Affiliation(s)
- Chenyang Du
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Honghuan Gao
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Sujun Liu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xueli Jiang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Gezi Li
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Yingxin Xie
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
18
|
Misra RC, Sharma S, Garg A, Ghosh S. Virus-Induced Gene Silencing in Sweet Basil (Ocimum basilicum). Methods Mol Biol 2020; 2172:123-138. [PMID: 32557366 DOI: 10.1007/978-1-0716-0751-0_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virus-induced gene silencing (VIGS) is a powerful reverse genetic tool for rapid functional analysis of plant genes. Over the last decade, VIGS has been widely used for conducting rapid gene knockdown experiment in plants and played a crucial role in advancing applied and basic research in plant science. VIGS was studied extensively in model plants Arabidopsis and tobacco. Moreover, several non-model plants such as Papaver (Hileman et al., Plant J 44:334-341, 2005), Aquilegia (Gould and Kramer, Plant Methods 3:6, 2007), Catharanthus (Liscombe and O'Connor, Phytochemistry 72:1969-1977, 2011), Withania (Singh et al., Plant Biol J 13:1287-1299, 2015), and Ocimum (Misra et al., New Phytol 214:706-720, 2017) were also successfully explored. We have recently developed a robust protocol for VIGS in sweet basil (Ocimum basilicum). Sweet basil, a popular medicinal/aromatic herb, is being studied for the diversity of specialized metabolites produced in it.
Collapse
Affiliation(s)
- Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Metabolic Biology Department,, John Innes Centre, Norwich, United Kingdom
| | - Shubha Sharma
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anchal Garg
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| |
Collapse
|
19
|
Li P, Zhang L, Mo X, Ji H, Bian H, Hu Y, Majid T, Long J, Pang H, Tao Y, Ma J, Dong H. Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3057-3073. [PMID: 30921464 PMCID: PMC6598099 DOI: 10.1093/jxb/erz130] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
Varieties of Gram-negative bacterial pathogens infect their eukaryotic hosts by deploying the type III translocon to deliver effector proteins into the cytosol of eukaryotic cells in which effectors execute their pathological functions. The translocon is hypothetically assembled by bacterial translocators in association with the assumed receptors situated on eukaryotic plasma membranes. This hypothesis is partially verified in the present study with genetic, biochemical, and pathological evidence for the role of a rice aquaporin, plasma membrane intrinsic protein PIP1;3, in the cytosolic import of the transcription activator-like effector PthXo1 from the bacterial blight pathogen. PIP1;3 interacts with the bacterial translocator Hpa1 at rice plasma membranes to control PthXo1 translocation from cells of a well-characterized strain of the bacterial blight pathogen into the cytosol of cells of a susceptible rice variety. An extracellular loop sequence of PIP1;3 and the α-helix motif of Hpa1 determine both the molecular interaction and its consequences with respect to the effector translocation and the bacterial virulence on the susceptible rice variety. Overall, these results provide multiple experimental avenues to support the hypothesis that interactions between bacterial translocators and their interactors at the target membrane are essential for bacterial effector translocation.
Collapse
Affiliation(s)
- Ping Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Liyuan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xuyan Mo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Biology, Jiangsu Formal University, Xuzhou, Jiangsu Province, China
| | - Huijie Bian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yiqun Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Taha Majid
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Juying Long
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hao Pang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yuan Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jinbiao Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong Province, China
- Correspondence:
| |
Collapse
|
20
|
Kant R, Dasgupta I. Gene silencing approaches through virus-based vectors: speeding up functional genomics in monocots. PLANT MOLECULAR BIOLOGY 2019; 100:3-18. [PMID: 30850930 DOI: 10.1007/s11103-019-00854-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/02/2019] [Indexed: 05/20/2023]
Abstract
The design and use of existing VIGS vectors for revealing monocot gene functions are described and potential new vectors are discussed, which may expand their repertoire. Virus induced gene silencing (VIGS) is a method of transient gene silencing in plants, triggered by the use of modified viral vectors. VIGS has found widespread use in deciphering the functions of plant genes, mainly for dicots. In the last decade, however, its use in monocots has increased noticeably, involving not only previously described viruses for monocots, but also those described for dicots. Additional viruses have been modified for VIGS to bring a larger collection of monocots under the ambit of this method. For monocots, new methods of inoculation have been tried to obtain increased silencing efficiency. The issue of insert stability and duration of silencing have also been addressed by various research groups. VIGS has been used to unravel the functions of a fairly large collection of monocot genes. This review summarizes the above developments, bringing out some of the gaps in our understanding and identifies directions to develop this technology further in the coming years.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
21
|
Zhao Y, Mao W, Chen Y, Wang W, Dai Z, Dou Z, Zhang K, Wei L, Li T, Zeng B, Liu T, Fan Y, Yan J, Li B, Jia W. Optimization and standardization of transient expression assays for gene functional analyses in strawberry fruits. HORTICULTURE RESEARCH 2019; 6:53. [PMID: 31069083 PMCID: PMC6491593 DOI: 10.1038/s41438-019-0135-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Strawberry is increasingly used as a model plant for research on fruit growth and development. The transient gene manipulation (TGM) technique is widely used to determine the function of plant genes, including those in strawberry fruits. However, its reliable application for the precise identification of gene function has been difficult owing to the lack of conditional optimization. In this study, we found that successful transient gene manipulation requires optimization, with the vector type, temperature, and fruit developmental stage being three major factors determining success. Notably, we found that transient gene manipulation was feasible only from the large green fruit stage onwards, making it especially suitable for identifying genes involved in strawberry fruit ripening. Furthermore, we established a method called percentage difference of phenotype (PDP), in which the functional effect of a gene could be precisely and efficiently identified in strawberry fruits. This method can be used to estimate the functional effect of a gene as a value from 0 to 100%, such that different genes can be quantitatively compared for their relative abilities to regulate fruit ripening. This study provides a useful tool for accelerating research on the molecular basis of strawberry fruit ripening.
Collapse
Affiliation(s)
- Yaoyao Zhao
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wenwen Mao
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Yating Chen
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wei Wang
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Zhengrong Dai
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Zhechao Dou
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Kai Zhang
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Lingzhi Wei
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Tianyu Li
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Baozhen Zeng
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Ting Liu
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Yijuan Fan
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Jiaqi Yan
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Bingbing Li
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wensuo Jia
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| |
Collapse
|
22
|
Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. Virus-induced gene silencing: empowering genetics in non-model organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:757-770. [PMID: 30452695 DOI: 10.1093/jxb/ery411] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 05/19/2023]
Abstract
Virus-induced gene silencing (VIGS) is an RNA interference-based technology used to transiently knock down target gene expression by utilizing modified plant viral genomes. VIGS can be adapted to many angiosperm species that cover large phylogenetic distances, allowing the analysis of gene functions in species that are not amenable to stable genetic transformation. With a vast amount of sequence information already available and even more likely to become available in the future, VIGS provides a means to analyze the functions of candidate genes identified in large genomic or transcriptomic screens. Here, we provide a comprehensive overview of target species and VIGS vector systems, assess recent key publications in the field, and explain how plant viruses are modified to serve as VIGS vectors. As many reports on the VIGS technique are being published, we also propose minimal reporting guidelines for carrying out these experiments, with the aim of increasing comparability between experiments. Finally, we propose methods for the statistical evaluation of phenotypic results obtained with VIGS-treated plants, as analysis is challenging due to the predominantly transient nature of the silencing effect.
Collapse
Affiliation(s)
- Anna B Dommes
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Thomas Gross
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Denise B Herbert
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Kimmo I Kivivirta
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| |
Collapse
|
23
|
Bortolamiol-Bécet D, Monsion B, Chapuis S, Hleibieh K, Scheidecker D, Alioua A, Bogaert F, Revers F, Brault V, Ziegler-Graff V. Phloem-Triggered Virus-Induced Gene Silencing Using a Recombinant Polerovirus. Front Microbiol 2018; 9:2449. [PMID: 30405546 PMCID: PMC6206295 DOI: 10.3389/fmicb.2018.02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
The phloem-limited poleroviruses infect Arabidopsis thaliana without causing noticeable disease symptoms. In order to facilitate visual infection identification, we developed virus-induced gene silencing (VIGS) vectors derived from Turnip yellows virus (TuYV). Short sequences from the host gene AtCHLI1 required for chlorophyll biosynthesis [42 nucleotides in sense or antisense orientation or as an inverted-repeat (IR), or an 81 nucleotide sense fragment] were inserted into the 3' non-coding region of the TuYV genome to screen for the most efficient and robust silencing vector. All recombinant viruses produced a clear vein chlorosis phenotype on infected Arabidopsis plants due to the expression inhibition of the AtCHLI1 gene. The introduction of a sense-oriented sequence into TuYV genome resulted in a virus exhibiting a more sustainable chlorosis than the virus containing an IR of the same length. This observation was correlated with a higher stability of the sense sequence insertion in the viral genome. In order to evaluate the impact of the TuYV silencing suppressor P0 in the VIGS mechanism a P0 knock-out mutation was introduced into the recombinant TuYV viruses. They induced a similar but milder vein clearing phenotype due to lower viral accumulation. This indicates that P0 does not hinder the performances of the TuYV silencing effect and confirms that in the viral infection context, P0 has no major impact on the production, propagation and action of the short distance silencing signal in phloem cells. Finally, we showed that TuYV can be used to strongly silence the phloem specific AtRTM1 gene. The TuYV-derived VIGS vectors therefore represent powerful tools to easily detect and monitor TuYV in infected plants and conduct functional analysis of phloem-restricted genes. Moreover this example indicates the potential of poleroviruses for use in functional genomic studies of agronomic plants.
Collapse
Affiliation(s)
- Diane Bortolamiol-Bécet
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire CNRS-UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Baptiste Monsion
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,UMR1161 Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Sophie Chapuis
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Danièle Scheidecker
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Abdelmalek Alioua
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Florent Bogaert
- SVQV, INRA UMR 1131, Université de Strasbourg, Colmar, France
| | - Frédéric Revers
- BFP, INRA UMR 1332, Univ. Bordeaux, Villenave d'Ornon, France.,BIOGECO, INRA UMR 1202, Univ. Bordeaux, Pessac, France
| | | | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Moin M, Bakshi A, Madhav MS, Kirti PB. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice. Brief Funct Genomics 2018; 17:339-351. [PMID: 29579147 DOI: 10.1093/bfgp/ely010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the important and direct ways of investigating the function of a gene is to characterize the phenotypic consequences associated with loss or gain-of-function of the corresponding gene. These mutagenesis strategies have been successfully deployed in Arabidopsis, and subsequently extended to crop species including rice. Researchers have made vast advancements in the area of rice genomics and functional genomics, as it is a diploid plant with a relatively smaller genome size unlike other cereals. The advent of rice genome research and the annotation of high-quality genome sequencing along with the developments in databases and computer searches have enabled the functional characterization of unknown genes in rice. Further, with the improvements in the efficiency of regeneration and transformation protocols, it has now become feasible to produce sizable mutant populations in indica rice varieties also. In this review, various mutagenesis methods, the current status of the mutant resources, limitations and strengths of insertional mutagenesis approaches and also results obtained with suitable screens for stress tolerance in rice are discussed. In addition, targeted genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or Cas9/single-guide RNA system and its potential applications in generating transgene-free rice plants through genome engineering as an efficient alternative to classical transgenic technology are also discussed.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
25
|
Tavakol E. Virus-Induced Gene Silencing (VIGS) in Aegilops tauschii and Its Use in Functional Analysis of AetDREB2. Mol Biotechnol 2017; 60:41-48. [PMID: 29196985 DOI: 10.1007/s12033-017-0042-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Among the available reverse genetic approaches for studying gene function, virus-induced gene silencing (VIGS) has several advantages. It allows rapid characterization of gene function independent of stable transformation, which is basically difficult to achieve in monocots, and offers the potential to silence individual or multiple genes of a gene family. In order to establish a VIGS system in Aegilops tauschii, modified vectors derived from Barley stripe mosaic virus (BSMV) were used for silencing a phytoene desaturase gene that provides a convenient visual reporter for silencing. The results demonstrated a high efficiency of BSMV-VIGS in A. tauschii. Moreover, the BSMV-VIGS system was used to target a 354 bp specific region of the Dehydration-responsive element-binding (AetDreb2) gene, resulting in successful silencing of the gene in A. tauschii plants, as verified by real-time qRT-PCR. Indeed, in comparison with plants that were inoculated with an empty vector (BSMV:00), a faster rate of wilting and a lower relative water content were observed in plants inoculated with BSMV:AetDreb2 when they were exposed to drought stress. Therefore, BSMV-VIGS can be efficiently employed as a novel tool for reverse genetics in A. tauschii. It can also be used to study the effects of polyploidization on the gene function by a comparative analysis between bread wheat and its diploid progenitor.
Collapse
Affiliation(s)
- Elahe Tavakol
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186, Shiraz, Iran.
| |
Collapse
|