1
|
Ren Z, Zhang P, Su H, Xie X, Shao J, Ku L, Tian Z, Deng D, Wei L. Regulatory mechanisms used by ZmMYB39 to enhance drought tolerance in maize (Zea mays) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108696. [PMID: 38705046 DOI: 10.1016/j.plaphy.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Drought is a significant abiotic stressor that limits maize (Zea mays L.) growth and development. Thus, enhancing drought tolerance is critical for promoting maize production. Our findings demonstrated that ZmMYB39 is an MYB transcription factor with transcriptional activation activity. Drought stress experiments involving ZmMYB39 overexpression and knockout lines indicated that ZmMYB39 positively regulated drought stress tolerance in maize. DAP-Seq, EMSA, dual-LUC, and RT-qPCR provided initial insights into the molecular regulatory mechanisms by which ZmMYB39 enhances drought tolerance in maize. ZmMYB39 directly promoted the expression of ZmP5CS1, ZmPOX1, ZmSOD2, ZmRD22, ZmNAC49, and ZmDREB2A, which are involved in stress resistance. ZmMYB39 enhanced drought tolerance by interacting with and promoting the expression of ZmFNR1, ZmHSP20, and ZmDOF6. Our study offers a theoretical basis for understanding the molecular regulatory networks involved in maize drought stress response. Furthermore, ZmMYB39 serves as a valuable genetic resource for breeding drought-resistant maize.
Collapse
Affiliation(s)
- Zhenzhen Ren
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Pengyu Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, China
| | - Huihui Su
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiaowen Xie
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jing Shao
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lixia Ku
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhiqiang Tian
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| | | | - Li Wei
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Zhang Y, Guo Z, Chen X, Li X, Shi Y, Xu L, Yu C, Jing B, Li W, Xu A, Shi X, Li K, Huang Z. Identification candidate genes for salt resistance through quantitative trait loci-sequencing in Brassica napus L. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154187. [PMID: 38422630 DOI: 10.1016/j.jplph.2024.154187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Xu
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Xu H, Zhu M, Chen X. Fungal epiphytes differentially regulate salt tolerance of invasive Ipomoea cairica according to salt stress levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4797-4807. [PMID: 38105332 DOI: 10.1007/s11356-023-31540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Fungal symbionts can improve plant tolerance to salt stress. However, the interaction of epiphytic Fusarium oxysporum and Fusarium fujikuroi with the tolerance of the invasive plant Ipomoea cairica against saline coastal habitats is largely unknown. This study aimed to investigate the interaction of the mixture of the two epiphytic fungi with salt tolerance of I. cairica. Surface-sterilized I. cairica cuttings inoculated (E+) and non-inoculated (E-) with the fungal mixture were cultivated with 2, 3, and 5 parts per thousand (PPT) of NaCl solutions to simulate mild, moderate, and severe salt stress, respectively. The hydroponic experiment showed that the growth inhibition and peroxidation damages of E+ and E- cuttings were aggravated with salinity. Noteworthily, E+ cuttings had higher peroxidase (POD) and catalase (CAT) activities, chlorophyll content, total biomass, aboveground biomass, total shoot length and secondary shoot number, but lower root-to-shoot ratio than E- cuttings under 2 and 3 PPT NaCl conditions. Moreover, E+ had higher superoxide dismutase (SOD) activity and proline content but lower belowground biomass and malondialdehyde (MDA) content than E- cuttings under 3 PPT NaCl condition. However, lower SOD, POD, and CAT activities, and chlorophyll content, but higher MDA content occurred in E+ cuttings than in E- cuttings under 5 PPT NaCl condition. These findings suggested that the mixture of the two epiphytic fungi increased salt tolerance of I. cairica mainly through increasing its antioxidation ability and chlorophyll stability under mildly and moderately saline conditions, but decreased salt tolerance of this plant in an opposite way under severely saline conditions.
Collapse
Affiliation(s)
- Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430048, China
| | - Minjie Zhu
- Hunan Polytechnic of Environment and Biology, Hengyang, 421005, China
| | - Xuhui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
4
|
Zhang P, Wang T, Cao L, Jiao Z, Ku L, Dou D, Liu Z, Fu J, Xie X, Zhu Y, Chong L, Wei L. Molecular mechanism analysis of ZmRL6 positively regulating drought stress tolerance in maize. STRESS BIOLOGY 2023; 3:47. [PMID: 37971599 PMCID: PMC10654321 DOI: 10.1007/s44154-023-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
MYB-related genes, a subclass of MYB transcription factor family, have been documented to play important roles in biological processes such as secondary metabolism and stress responses that affect plant growth and development. However, the regulatory roles of MYB-related genes in drought stress response remain unclear in maize. In this study, we discovered that a 1R-MYB gene, ZmRL6, encodes a 96-amino acid protein and is highly drought-inducible. We also found that it is conserved in both barley (Hordeum vulgare L.) and Aegilops tauschii. Furthermore, we observed that overexpression of ZmRL6 can enhance drought tolerance while knock-out of ZmRL6 by CRISPR-Cas9 results in drought hypersensitivity. DAP-seq analyses additionally revealed the ZmRL6 target genes mainly contain ACCGTT, TTACCAAAC and AGCCCGAG motifs in their promoters. By combining RNA-seq and DAP-seq results together, we subsequently identified eight novel target genes of ZmRL6 that are involved in maize's hormone signal transduction, sugar metabolism, lignin synthesis, and redox signaling/oxidative stress. Collectively, our data provided insights into the roles of ZmRL6 in maize's drought response.
Collapse
Affiliation(s)
- Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhixin Jiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dandan Dou
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiaxu Fu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaowen Xie
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Li Wei
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Fu M, Liao J, Liu X, Li M, Zhang S. Artificial warming affects sugar signals and flavonoid accumulation to improve female willows' growth faster than males. TREE PHYSIOLOGY 2023; 43:1584-1602. [PMID: 37384415 DOI: 10.1093/treephys/tpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Increasing global warming is severely affecting tree growth and development. However, research on the sex-specific responses of dioecious trees to warming is scarce. Here, male and female Salix paraplesia were selected for artificial warming (an increase of 4 °C relative to ambient temperature) to investigate the effects on morphological, physiological, biochemical and molecular responses. The results showed that warming significantly promoted the growth of female and male S. paraplesia, but females grew faster than males. Warming affected photosynthesis, chloroplast structures, peroxidase activity, proline, flavonoids, nonstructural carbohydrates (NSCs) and phenolic contents in both sexes. Interestingly, warming increased flavonoid accumulation in female roots and male leaves but inhibited it in female leaves and male roots. The transcriptome and proteome results indicated that differentially expressed genes and proteins were significantly enriched in sucrose and starch metabolism and flavonoid biosynthesis pathways. The integrative analysis of transcriptomic, proteomic, biochemical and physiological data revealed that warming changed the expression of SpAMY, SpBGL, SpEGLC and SpAGPase genes, resulting in the reduction of NSCs and starch and the activation of sugar signaling, particularly SpSnRK1s, in female roots and male leaves. These sugar signals subsequently altered the expression of SpHCTs, SpLAR and SpDFR in the flavonoid biosynthetic pathway, ultimately leading to the differential accumulation of flavonoids in female and male S. paraplesia. Therefore, warming causes sexually differential responses of S. paraplesia, with females performing better than males.
Collapse
Affiliation(s)
- Mingyue Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jun Liao
- College of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xuejiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Menghan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Singer SD, Lehmann M, Zhang Z, Subedi U, Burton Hughes K, Lim NZL, Ortega Polo R, Chen G, Acharya S, Hannoufa A, Huan T. Elucidation of Physiological, Transcriptomic and Metabolomic Salinity Response Mechanisms in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2059. [PMID: 37653976 PMCID: PMC10221938 DOI: 10.3390/plants12102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 09/02/2023]
Abstract
Alfalfa (Medicago sativa L.) is a widely grown perennial leguminous forage crop with a number of positive attributes. However, despite its moderate ability to tolerate saline soils, which are increasing in prevalence worldwide, it suffers considerable yield declines under these growth conditions. While a general framework of the cascade of events involved in plant salinity response has been unraveled in recent years, many gaps remain in our understanding of the precise molecular mechanisms involved in this process, particularly in non-model yet economically important species such as alfalfa. Therefore, as a means of further elucidating salinity response mechanisms in this species, we carried out in-depth physiological assessments of M. sativa cv. Beaver, as well as transcriptomic and untargeted metabolomic evaluations of leaf tissues, following extended exposure to salinity (grown for 3-4 weeks under saline treatment) and control conditions. In addition to the substantial growth and photosynthetic reductions observed under salinity treatment, we identified 1233 significant differentially expressed genes between growth conditions, as well as 60 annotated differentially accumulated metabolites. Taken together, our results suggest that changes to cell membranes and walls, cuticular and/or epicuticular waxes, osmoprotectant levels, antioxidant-related metabolic pathways, and the expression of genes encoding ion transporters, protective proteins, and transcription factors are likely involved in alfalfa's salinity response process. Although some of these alterations may contribute to alfalfa's modest salinity resilience, it is feasible that several may be disadvantageous in this context and could therefore provide valuable targets for the further improvement of tolerance to this stress in the future.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Madeline Lehmann
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zixuan Zhang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Nathaniel Z.-L. Lim
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Surya Acharya
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Abdelali Hannoufa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
7
|
Guan C, Wu B, Ma S, Zhang J, Liu X, Wang H, Zhang J, Gao R, Jiang H, Jia C. Genome-wide characterization of LBD transcription factors in switchgrass (Panicum virgatum L.) and the involvement of PvLBD12 in salt tolerance. PLANT CELL REPORTS 2023; 42:735-748. [PMID: 36806743 DOI: 10.1007/s00299-023-02989-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
PvLBD12 enhanced the salt tolerance by increasing proline accumulation, improving K+ accumulation, and decreasing reactive oxygen species level in switchgrass. Abiotic stresses are the serious factors which limit plant development and productivity and restrict the agricultural economy. It is important, therefore, to understand the mechanism of abiotic tolerance in plants. Lateral organ boundaries domain (LBD) proteins as plant-specific transcription factors play important function in plant lateral organ development, plant regeneration, and abiotic stress. In our study, we identify 69 LBD members from switchgrass genome-wide sequences and classify them based on their homology with LBD proteins in Arabidopsis. RT-qPCR showed that PvLBD genes had different expression patterns under abiotic stress conditions, indicating that they play important roles in various stress. PvLBD12 was selected as a candidate gene for further functional analysis because it had the highest expression level under salt stress. Overexpression of PvLBD12 enhanced salt tolerance by altering a wide range of physiological responses (like increased proline accumulation, reduced malondialdehyde production, improved K+ accumulation, and reduced Na+ absorption) in switchgrass. Some stress response genes such as proline biosynthesis gene PvP5CS1, vacuolar Na+(K+)/H+ antiporter gene PvNHX1, two key ROS-scavenging enzyme genes PvCAT and PvSOD were all upregulated in PvLBD12 overexpression lines. Taken together, PvLBD12 plays a pivotal role in response to salt stress by increasing proline accumulation, improving K+ accumulation, reducing Na+ absorption, and decreasing reactive oxygen species level. It will be better to understand the potential biological functions of LBD genes in other plants.
Collapse
Affiliation(s)
- Cong Guan
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan, 250100, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan, 250100, China
- Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan, 250100, China
| | - Bo Wu
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan, 250100, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan, 250100, China
- Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan, 250100, China
| | - Shu Ma
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan, 250100, China
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Jinhong Zhang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan, 250100, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan, 250100, China
- Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan, 250100, China
| | - Xuesi Liu
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Jinglei Zhang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan, 250100, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan, 250100, China
- Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan, 250100, China
| | - Run Gao
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan, 250100, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan, 250100, China
- Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan, 250100, China
| | - Huixin Jiang
- Shandong Provincial Animal Husbandry General Station, Jinan, China.
| | - Chunlin Jia
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan, 250100, China.
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan, 250100, China.
- Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan, 250100, China.
| |
Collapse
|
8
|
Kwon EH, Adhikari A, Imran M, Lee DS, Lee CY, Kang SM, Lee IJ. Exogenous SA Applications Alleviate Salinity Stress via Physiological and Biochemical changes in St John's Wort Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:310. [PMID: 36679023 PMCID: PMC9861905 DOI: 10.3390/plants12020310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The plant St. John's wort contains high levels of melatonin, an important biochemical that has both beneficial and adverse effects on stress. Therefore, a method for increasing melatonin levels in plants without adversely affecting their growth is economically important. In this study, we investigated the regulation of melatonin levels in St. John's wort by exposing samples to salinity stress (150 mM) and salicylic acid (0.25 mM) to augment stress tolerance. The results indicated that salinity stress significantly reduced the plant chlorophyll content and damaged the photosystem, plant growth and development. Additionally, these were reconfirmed with biochemical indicators; the levels of abscisic acid (ABA) and proline were increased and the activities of antioxidants were reduced. However, a significant increase was found in melatonin content under salinity stress through upregulation in the relative expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT). The salicylic acid (SA) treatment considerably improved their photosynthetic activity, the maximum photochemical quantum yield (133%), the potential activity of PSⅡ (294%), and the performance index of electron flux to the final PS I electron acceptors (2.4%). On the other hand, SA application reduced ABA levels (32%); enhanced the activity of antioxidant enzymes, such as superoxide dismutase (SOD) (15.4%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (120%); and increased polyphenol (6.4%) and flavonoid (75.4%) levels in salinity-stressed St. John's wort plants. Similarly, SA application under NaCl stress significantly modulated the melatonin content in terms of ion balance; the level of melatonin was reduced after SA application on salt-treated seedlings but noticeably higher than on only SA-treated and non-treated seedlings. Moreover, the proline content was reduced considerably and growth parameters, such as plant biomass, shoot length, and chlorophyll content, were enhanced following treatment of salinity-stressed St. John's wort plants with salicylic acid. These findings demonstrate the beneficial impact of salt stress in terms of a cost-effective approach to extract melatonin in larger quantities from St. John's wort. They also suggest the efficiency of salicylic acid in alleviating stress tolerance and promoting growth of St. John's wort plants.
Collapse
Affiliation(s)
- Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chung-Yeol Lee
- Department of Statictics Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Kalogeropoulou E, Aliferis KA, Tjamos SE, Vloutoglou I, Paplomatas EJ. Combined Transcriptomic and Metabolomic Analysis Reveals Insights into Resistance of Arabidopsis bam3 Mutant against the Phytopathogenic Fungus Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2022; 11:3457. [PMID: 36559570 PMCID: PMC9785915 DOI: 10.3390/plants11243457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The wilt-inducing strains of Fusarium oxysporum are responsible for severe damage to many economically important plant species. The most cost-effective and environmentally safe method for the management of Fusarium wilt is the use of resistant cultivars when they are available. In the present study, the Arabidopsis genotype with disruptions in the β-amylase 3 (BAM3) gene, which encodes the major hydrolytic enzyme that degrades starch to maltose, had significantly lower susceptibility to Fusarium oxysporum f. sp. raphani (For) compared to wild-type (wt) plants. It showed the lowest disease severity and contained reduced quantities of fungal DNA in the plant vascular tissues when analyzed with real-time PCR. Through metabolomic analysis using gas chromatography (GC)-mass spectrometry (MS) and gene-expression analysis by reverse-transcription quantitative PCR (RT-qPCR), we observed that defense responses of Arabidopsis bam3 mutants are associated with starch-degradation enzymes, the corresponding modification of the carbohydrate balance, and alterations in sugar (glucose, sucrose, trehalose, and myo-inositol) and auxin metabolism.
Collapse
Affiliation(s)
- Eleni Kalogeropoulou
- Laboratory of Mycology, Scientific Department of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 145 61 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| | - Irene Vloutoglou
- Laboratory of Mycology, Scientific Department of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 145 61 Athens, Greece
| | - Epaminondas J. Paplomatas
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| |
Collapse
|
10
|
Maslennikova DR, Lastochkina OV, Shakirova FM. Exogenous Sodium Nitroprusside Improves Salt Stress Tolerance of Wheat (Triticum aestivum L.) via Regulating the Components of Ascorbate-Glutathione Cycle, Chlorophyll Content and Stabilization of Cell Membranes State. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2022; 69:130. [DOI: 10.1134/s102144372206019x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 06/23/2023]
|
11
|
Sun Y, Li J, Xing J, Yu X, Lu Y, Xu W, Zhao N, Liu Z, Guo Z. Evaluation of salt tolerance in common vetch (Vicia sativa L.) germplasms and the physiological responses to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153811. [PMID: 36126616 DOI: 10.1016/j.jplph.2022.153811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Common vetch (Vicia sativa L.) is an important leguminous crop, providing humans with starch from seeds, feeding livestock with vegetative organs, or fertilizing soils by returning to field. It is aimed to evaluate salt tolerance in common vetch collections for breeding programs and to investigate the underlined physiological mechanisms. Relative germination rate and relative seedling growth showed great difference among common vetch collections in response to salt. A lower level of Na+ and higher levels of K+ and K+/Na+ ratio were maintained in both shoots and roots in salt-tolerant collections than in salt-sensitive ones under salt stress. Expression of the genes involved in transportation and redistribution of Na+ and K+ were cooperatively responsible for salt stress. Transcript levels of NHX7, HKT1, AKT2, and HAK17 in leaves and roots were induced after salt stress, with higher transcript levels in salt-tolerant collections compared with the sensitive ones. Proline and P5CS1 transcript levels were increased after salt stress, with higher levels in salt-tolerant collection compared with salt-sensitive ones. Both O2- and H2O2 were accumulated after salt stress, and lower levels were accumulated in salt-tolerant collection compared with salt-sensitive ones. Superoxide dismutase, catalase and ascorbate peroxidase activities were altered in response to salt and higher levels were maintained in salt-tolerant collections compared with salt-sensitive ones. It is suggested that salt tolerance in common vetch is associated with maintenance of K+ and Na+ homeostasis and the associated gene expression and promoted proline accumulation and antioxidant defense system.
Collapse
Affiliation(s)
- Yanmei Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jie Li
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jincheng Xing
- Jiangsu Coastal Institute of Agriculture Science, Yancheng, 224002, China.
| | - Xiao Yu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yiwen Lu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenkai Xu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Na Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Mattioli R, Francioso A, Trovato M. Proline Affects Flowering Time in Arabidopsis by Modulating FLC Expression: A Clue of Epigenetic Regulation? PLANTS 2022; 11:plants11182348. [PMID: 36145748 PMCID: PMC9505445 DOI: 10.3390/plants11182348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The recent finding that proline-induced root elongation is mediated by reactive oxygen species (ROS) prompted us to re-evaluate other developmental processes modulated by proline, such as flowering time. By controlling the cellular redox status and the ROS distribution, proline could potentially affect the expression of transcriptional factors subjected to epigenetic regulation, such as FLOWERING LOCUS C (FLC). Accordingly, we investigated the effect of proline on flowering time in more detail by analyzing the relative expression of the main flowering time genes in p5cs1 p5cs2/P5CS2 proline-deficient mutants and found a significant upregulation of FLC expression. Moreover, proline-deficient mutants exhibited an adult vegetative phase shorter than wild-type samples, with a trichome distribution reminiscent of plants with high FLC expression. In addition, the vernalization-induced downregulation of FLC abolished the flowering delay of p5cs1 p5cs2/P5CS2, and mutants homozygous for p5cs1 and flc-7 and heterozygous for P5CS2 flowered as early as the flc-7 parental mutant, indicating that FLC acts downstream of P5CS1/P5CS2 and is necessary for proline-modulated flowering. The overall data indicate that the effects of proline on flowering time are mediated by FLC.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Francioso
- Instituto Universitario de Bio-Orgánica Antonio González, 38200 San Cristóbal de La Laguna, Spain
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-2411
| |
Collapse
|
13
|
Tarchevsky IA, Egorova AM. Participation of Proline in Plant Adaptation to Stress Factors and Its Application in Agrobiotechnology (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Evolution, family expansion, and functional diversification of plant aldehyde dehydrogenases. Gene X 2022; 829:146522. [PMID: 35447239 DOI: 10.1016/j.gene.2022.146522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) act as "aldehyde scavengers" in plants, eliminating reactive aldehydes and hence performing a crucial part in response to stress. ALDH has been specified multiple activities since its identification in the mammalian system 72 years ago. But the most widely researched role in plants is their engagement in stress tolerance. Multiple ALDH families are found in both animals and plants, and many genes are substantially conserved within these two evolutionary diverse taxa, yet both have their unique members/families. A total of twenty-four ALDH protein family has been reported across organisms, where plants contain fourteen families. Surprisingly, the number of genes in the ALDH superfamily has risen in the higher plants because of genome duplication and expansion, indicating the functional versatilely. Observed expansion in the ALDH isoforms might provide high plasticity in their actions to achieve diversified roles in the plant. The physiological importance and functional diversity of ALDHs including plant development and environmental stress adaptability, and their evolution in plants has been studied extensively. Future investigations need to focus on evaluating the individual and interconnecting function of multiple ALDH isoforms across organisms in providing plants with proper development, maturation, and adaptability against harsh environmental conditions.
Collapse
|
15
|
Muguerza MB, Gondo T, Ishigaki G, Shimamoto Y, Umami N, Nitthaisong P, Rahman MM, Akashi R. Tissue Culture and Somatic Embryogenesis in Warm-Season Grasses—Current Status and Its Applications: A Review. PLANTS 2022; 11:plants11091263. [PMID: 35567264 PMCID: PMC9101205 DOI: 10.3390/plants11091263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
Warm-season grasses are C4 plants and have a high capacity for biomass productivity. These grasses are utilized in many agricultural production systems with their greatest value as feeds for livestock, bioethanol, and turf. However, many important warm-season perennial grasses multiply either by vegetative propagation or form their seeds by an asexual mode of reproduction called apomixis. Therefore, the improvement of these grasses by conventional breeding is difficult and is dependent on the availability of natural genetic variation and its manipulation through breeding and selection. Recent studies have indicated that plant tissue culture system through somatic embryogenesis complements and could further develop conventional breeding programs by micropropagation, somaclonal variation, somatic hybridization, genetic transformation, and genome editing. This review summarizes the tissue culture and somatic embryogenesis in warm-season grasses and focus on current status and above applications including the author’s progress.
Collapse
Affiliation(s)
- Melody Ballitoc Muguerza
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; (M.B.M.); (G.I.); (Y.S.); (R.A.)
| | - Takahiro Gondo
- Frontier Science Research Center, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
- Correspondence:
| | - Genki Ishigaki
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; (M.B.M.); (G.I.); (Y.S.); (R.A.)
| | - Yasuyo Shimamoto
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; (M.B.M.); (G.I.); (Y.S.); (R.A.)
| | - Nafiatul Umami
- Faculty of Animal Science, Universitas Gadjah Mada, Jl Fauna 3, Yogyakarta 55281, Indonesia;
| | - Pattama Nitthaisong
- Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Mohammad Mijanur Rahman
- Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia;
| | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; (M.B.M.); (G.I.); (Y.S.); (R.A.)
| |
Collapse
|
16
|
The DnaJ-like Zinc Finger Protein ORANGE Promotes Proline Biosynthesis in Drought-Stressed Arabidopsis Seedlings. Int J Mol Sci 2022; 23:ijms23073907. [PMID: 35409266 PMCID: PMC8999238 DOI: 10.3390/ijms23073907] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Orange (OR) is a DnaJ-like zinc finger protein with both nuclear and plastidial localizations. OR, and its orthologs, are highly conserved in flowering plants, sharing a characteristic C-terminal tandem 4× repeats of the CxxCxxxG signature. It was reported to trigger chromoplast biogenesis, promote carotenoid accumulation in plastids of non-pigmented tissues, and repress chlorophyll biosynthesis and chloroplast biogenesis in the nucleus of de-etiolating cotyledons cells. Its ectopic overexpression was found to enhance plant resistance to abiotic stresses. Here, we report that the expression of OR in Arabidopsis thaliana was upregulated by drought treatment, and seedlings of the OR-overexpressing (OE) lines showed improved growth performance and survival rate under drought stress. Compared with the wild-type (WT) and OR-silencing (or) lines, drought-stressed OE seedlings possessed lower contents of reactive oxygen species (such as H2O2 and O2-), higher activities of both superoxide dismutase and catalase, and a higher level of proline content. Our enzymatic assay revealed a relatively higher activity of Δ1-pyrroline-5-carboxylate synthase (P5CS), a rate-limiting enzyme for proline biosynthesis, in drought-stressed OE seedlings, compared with the WT and or lines. We further demonstrated that the P5CS activity could be enhanced by supplementing exogenous OR in our in vitro assays. Taken together, our results indicated a novel contribution of OR to drought tolerance, through its impact on proline biosynthesis.
Collapse
|
17
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Sun S, Li X, Gao S, Nie N, Zhang H, Yang Y, He S, Liu Q, Zhai H. A Novel WRKY Transcription Factor from Ipomoea trifida, ItfWRKY70, Confers Drought Tolerance in Sweet Potato. Int J Mol Sci 2022; 23:686. [PMID: 35054868 PMCID: PMC8775875 DOI: 10.3390/ijms23020686] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
WRKY transcription factors are one of the important families in plants, and have important roles in plant growth, abiotic stress responses, and defense regulation. In this study, we isolated a WRKY gene, ItfWRKY70, from the wild relative of sweet potato Ipomoea trifida (H.B.K.) G. Don. This gene was highly expressed in leaf tissue and strongly induced by 20% PEG6000 and 100 μM abscisic acid (ABA). Subcellar localization analyses indicated that ItfWRKY70 was localized in the nucleus. Overexpression of ItfWRKY70 significantly increased drought tolerance in transgenic sweet potato plants. The content of ABA and proline, and the activity of SOD and POD were significantly increased, whereas the content of malondialdehyde (MDA) and H2O2 were decreased in transgenic plants under drought stress. Overexpression of ItfWRKY70 up-regulated the genes involved in ABA biosynthesis, stress-response, ROS-scavenging system, and stomatal aperture in transgenic plants under drought stress. Taken together, these results demonstrated that ItfWRKY70 plays a positive role in drought tolerance by accumulating the content of ABA, regulating stomatal aperture and activating the ROS scavenging system in sweet potato.
Collapse
Affiliation(s)
- Sifan Sun
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Nan Nie
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Yufeng Yang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| |
Collapse
|
19
|
Patel J, Khandwal D, Choudhary B, Ardeshana D, Jha RK, Tanna B, Yadav S, Mishra A, Varshney RK, Siddique KHM. Differential Physio-Biochemical and Metabolic Responses of Peanut ( Arachis hypogaea L.) under Multiple Abiotic Stress Conditions. Int J Mol Sci 2022; 23:660. [PMID: 35054846 PMCID: PMC8776106 DOI: 10.3390/ijms23020660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
The frequency and severity of extreme climatic conditions such as drought, salinity, cold, and heat are increasing due to climate change. Moreover, in the field, plants are affected by multiple abiotic stresses simultaneously or sequentially. Thus, it is imperative to compare the effects of stress combinations on crop plants relative to individual stresses. This study investigated the differential regulation of physio-biochemical and metabolomics parameters in peanut (Arachis hypogaea L.) under individual (salt, drought, cold, and heat) and combined stress treatments using multivariate correlation analysis. The results showed that combined heat, salt, and drought stress compounds the stress effect of individual stresses. Combined stresses that included heat had the highest electrolyte leakage and lowest relative water content. Lipid peroxidation and chlorophyll contents did not significantly change under combined stresses. Biochemical parameters, such as free amino acids, polyphenol, starch, and sugars, significantly changed under combined stresses compared to individual stresses. Free amino acids increased under combined stresses that included heat; starch, sugars, and polyphenols increased under combined stresses that included drought; proline concentration increased under combined stresses that included salt. Metabolomics data that were obtained under different individual and combined stresses can be used to identify molecular phenotypes that are involved in the acclimation response of plants under changing abiotic stress conditions. Peanut metabolomics identified 160 metabolites, including amino acids, sugars, sugar alcohols, organic acids, fatty acids, sugar acids, and other organic compounds. Pathway enrichment analysis revealed that abiotic stresses significantly affected amino acid, amino sugar, and sugar metabolism. The stress treatments affected the metabolites that were associated with the tricarboxylic acid (TCA) and urea cycles and associated amino acid biosynthesis pathway intermediates. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and heatmap analysis identified potential marker metabolites (pinitol, malic acid, and xylopyranose) that were associated with abiotic stress combinations, which could be used in breeding efforts to develop peanut cultivars that are resilient to climate change. The study will also facilitate researchers to explore different stress indicators to identify resistant cultivars for future crop improvement programs.
Collapse
Affiliation(s)
- Jaykumar Patel
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Deepesh Khandwal
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Babita Choudhary
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Dolly Ardeshana
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Rajesh Kumar Jha
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Bhakti Tanna
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India
| | - Sonam Yadav
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Avinash Mishra
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Rajeev K Varshney
- Centre of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Kadambot H M Siddique
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
20
|
Han D, Tu S, Dai Z, Huang W, Jia W, Xu Z, Shao H. Comparison of selenite and selenate in alleviation of drought stress in Nicotiana tabacum L. CHEMOSPHERE 2022; 287:132136. [PMID: 34492417 DOI: 10.1016/j.chemosphere.2021.132136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Exogenous selenium (Se) improves the tolerance of plants to abiotic stress. However, the effects and mechanisms of different Se species on drought stress alleviation are poorly understood. This study aims to evaluate and compare the different effects and mechanisms of sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) on the growth, photosynthesis, antioxidant system, osmotic substances and stress-responsive gene expression of Nicotiana tabacum L. under drought stress. The results revealed that drought stress could significantly inhibit growth, whereas both Na2SeO4 and Na2SeO3 could significantly facilitate the growth of N. tabacum under drought stress. However, compared to Na2SeO3, Se application as Na2SeO4 induced a significant increase in the root tip number and number of bifurcations under drought stress. Furthermore, both Na2SeO4 and Na2SeO3 displayed higher levels of photosynthetic pigments, better photosynthesis, and higher concentrations of osmotic substances, antioxidant enzymes, and stress-responsive gene (NtCDPK2, NtP5CS, NtAREB and NtLEA5) expression than drought stress alone. However, the application of Na2SeO4 showed higher expression levels of the NtP5CS and NtAREB genes than Na2SeO3. Both Na2SeO4 and Na2SeO3 alleviated many of the deleterious effects of drought in leaves, which was achieved by reducing stress-induced lipid peroxidation (MDA) and H2O2 content by enhancing the activity of antioxidant enzymes, while Na2SeO4 application showed lower H2O2 and MDA content than Na2SeO3 application. Overall, the results confirm the positive effects of Se application, especially Na2SeO4 application, which is markedly superior to Na2SeO3 in the role of resistance towards abiotic stress in N. tabacum.
Collapse
Affiliation(s)
- Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihua Dai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huifang Shao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
21
|
Chen C, Cui X, Zhang P, Wang Z, Zhang J. Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:188-201. [PMID: 34649022 DOI: 10.1016/j.plaphy.2021.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Proline accumulation is one of the most common reactions in plants under drought stress. Pyrroline-5-carboxylate reductase (P5CR) is the final enzyme and plays an important role in proline biosynthesis. The Chinese wild grapevine Vitis yeshanensis J.X. Chen accession 'Yanshan-1' is highly resistant to drought, but the genetic and molecular mechanisms associated with this resistance have not been elucidated. Here, we cloned a VyP5CR gene (Genbank ID: MZ226960) from 'Yanshan-1', and evaluated its transcriptional response to drought, NaCl, cold, as well as exogenous ABA, MeJA and SA. Tissue specific analysis showed that VyP5CR could be expressed in various organs and was highly expressed in roots. To gain insight into the roles of VyP5CR, we overexpressed VyP5CR in Arabidopsis thaliana (Arabidopsis). Transgenic Arabidopsis plants expressing VyP5CR showed enhanced survival rate, smaller stomata in response to severe drought, as well as stronger root growth on a medium containing mannitol. Under drought stress, VyP5CR-OE plants showed reduced levels of MDA, H2O2 and O2-, and higher proline content, SOD and POD activity. In addition, VyP5CR-OE plants showed increased induction of the drought-related genes COR15A, COR47, DREB2A, KIN1, NCED3 and RD29A. Taken together, these experiments reveal that VyP5CR can promote the drought tolerance of transgenic Arabidopsis. Besides, an interacting protein with VyP5CR, VyCSN5B (COP9 signalosome complex subunit 5b), was screened out by yeast two-hybrid and verified by bimolecular fluorescence complementation assay.
Collapse
Affiliation(s)
- Chengcheng Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pingying Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
22
|
Omari Alzahrani F. Metabolic engineering of osmoprotectants to elucidate the mechanism(s) of salt stress tolerance in crop plants. PLANTA 2021; 253:24. [PMID: 33403449 DOI: 10.1007/s00425-020-03550-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 05/08/2023]
Abstract
Previous studies on engineering osmoprotectant metabolic pathway genes focused on the performance of transgenic plants under salt stress conditions rather than elucidating the underlying mechanism(s), and hence, the mechanism(s) remain(s) unclear. Salt stress negatively impacts agricultural crop yields. Hence, to meet future food demands, it is essential to generate salt stress-resistant varieties. Although traditional breeding has improved salt tolerance in several crops, this approach remains inadequate due to the low genetic diversity of certain important crop cultivars. Genetic engineering is used to introduce preferred gene(s) from any genetic reserve or to modify the expression of the existing gene(s) responsible for salt stress response or tolerance, thereby leading to improved salt tolerance in plants. Although plants naturally produce osmoprotectants as an adaptive mechanism for salt stress tolerance, they offer only partial protection. Recently, progress has been made in the identification and characterization of genes involved in the biosynthetic pathways of osmoprotectants. Exogenous application of these osmoprotectants, and genetic engineering of enzymes in their biosynthetic pathways, have been reported to enhance salt tolerance in different plants. However, no clear mechanistic model exists to explain how osmoprotectant accumulation in transgenic plants confers salt tolerance. This review critically examines the results obtained thus far for elucidating the underlying mechanisms of osmoprotectants for improved salt tolerance, and thus, crop yield stability under salt stress conditions, through the genetic engineering of trehalose, glycinebetaine, and proline metabolic pathway genes.
Collapse
Affiliation(s)
- Fatima Omari Alzahrani
- Department of Biology, Faculty of Science, Albaha Province, Albaha University, Albaha, 65527, Saudi Arabia.
| |
Collapse
|
23
|
Tola AJ, Jaballi A, Germain H, Missihoun TD. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling. Genes (Basel) 2020; 12:genes12010051. [PMID: 33396326 PMCID: PMC7823795 DOI: 10.3390/genes12010051] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.
Collapse
|
24
|
Guan C, Li X, Tian DY, Liu HY, Cen HF, Tadege M, Zhang YW. ADP-ribosylation factors improve biomass yield and salinity tolerance in transgenic switchgrass (Panicum virgatum L.). PLANT CELL REPORTS 2020; 39:1623-1638. [PMID: 32885306 DOI: 10.1007/s00299-020-02589-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
PvArf regulate proline biosynthesis by physically interacting with PvP5CS1 to improve salt tolerance in switchgrass. The genetic factors that contribute to stress resiliency are yet to be determined. Here, we identified three ADP-ribosylation factors, PvArf1, PvArf-B1C, and PvArf-related, which contribute to salinity tolerance in transgenic switchgrass (Panicum virgatum L.). Switchgrass overexpressing each of these genes produced approximately twofold more biomass than wild type (WT) under normal growth conditions. Transgenic plants accumulated modestly higher levels of proline under normal conditions, but this level was significantly increased under salt stress providing better protection to transgenic plants compared to WT. We found that PvArf genes induce proline biosynthesis genes under salt stress to positively regulate proline accumulation, and further demonstrated that PvArf physically interact with PvP5CS1. Moreover, the transcript levels of two key ROS-scavenging enzyme genes were significantly increased in the transgenic plants compared to WT, leading to reduced H2O2 accumulation under salt stress conditions. PvArf genes also protect cells against stress-induced changes in Na+ and K+ ion concentrations. Our findings uncover that ADP-ribosylation factors are key determinants of biomass yield in switchgrass, and play pivotal roles in salinity tolerance by regulating genes involved in proline biosynthesis.
Collapse
Affiliation(s)
- Cong Guan
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
- Shandong institute of agricultural sustainable development, Jinan, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Dan-Yang Tian
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Hua-Yue Liu
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Hui-Fang Cen
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Bioscience, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Yun-Wei Zhang
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China.
- Beijing Key Laboratory for Grassland Science, China Agricultural University, Beijing, China.
- National Energy R&D Center for Biomass (NECB), Beijing, China.
- Beijing Sure Academy of Biosciences, Beijing, China.
| |
Collapse
|
25
|
Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton ( Gossypium hirsutum L.) Genotypes at the Seedling Stage. Int J Mol Sci 2020; 21:ijms21145095. [PMID: 32707667 PMCID: PMC7404027 DOI: 10.3390/ijms21145095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Young cotyledons of cotton seedlings are most susceptible to chilling stress. To gain insight into the potential mechanism of cold tolerance of young cotton cotyledons, we conducted physiological and comparative transcriptome analysis of two varieties with contrasting phenotypes. The evaluation of chilling injury of young cotyledons among 74 cotton varieties revealed that H559 was the most tolerant and YM21 was the most sensitive. The physiological analysis found that the ROS scavenging ability was lower, and cell membrane damage was more severe in the cotyledons of YM21 than that of H559 under chilling stress. RNA-seq analysis identified a total of 44,998 expressed genes and 19,982 differentially expressed genes (DEGs) in young cotyledons of the two varieties under chilling stress. Weighted gene coexpression network analysis (WGCNA) of all DEGs revealed four significant modules with close correlation with specific samples. The GO-term enrichment analysis found that lots of genes in H559-specific modules were involved in plant resistance to abiotic stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that pathways such as plant hormone signal transduction, MAPK signaling, and plant–pathogen interaction were related to chilling stress response. A total of 574 transcription factors and 936 hub genes in these modules were identified. Twenty hub genes were selected for qRT-PCR verification, revealing the reliability and accuracy of transcriptome data. These findings will lay a foundation for future research on the molecular mechanism of cold tolerance in cotyledons of cotton.
Collapse
|
26
|
Khare T, Srivastava AK, Suprasanna P, Kumar V. Individual and additive stress impacts of Na + and Cl‾ on proline metabolism and nitrosative responses in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:44-52. [PMID: 32387913 DOI: 10.1016/j.plaphy.2020.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 05/25/2023]
Abstract
It is well-established that plants accumulate high concentrations of sodium (Na+) and chloride (Cl‾) ions when subjected to salinity stress. However, little is known about individual or relative toxic impacts of these ions and whether they exert additive impacts under NaCl. Most of the investigations have historically been directed to decode Na+-toxicity, and as a result deeper understandings about Cl‾-toxicity are lacking. In this study, the extent to which sodium and chloride ions contribute in inducing nitrosative responses and proline metabolism is shown in two rice cultivars, one tolerant (Panvel-3) and one sensitive (Sahyadri-3). Equimolar (100 mM) concentrations of Na+, Cl‾ and NaCl (EC ≈ 10 dSm-1) reduced biomass production in both the cultivars in following manner NaCl > Na+>Cl‾. Na+ and NaCl treatments displaced K+, however, the tolerant cultivar maintained low Na+/K+ levels. Hyper-accumulation of Na+ may apparently be attributed for the reduced plant growth and biomass accumulation, and higher lipid-peroxidation. Nitric oxide and nitrate reductase were more responsive to NaCl followed by Na+ and Cl‾, respectively. The expression patterns of key-genes involved in proline biosynthesis and degradation confirmed the involvement of proline in better performance of salt tolerant cultivar under stresses, with higher responsiveness to NaCl and then Na+ and Cl‾ treatments. Principal component analysis revealed correlations in proline metabolism and nitrosative responses under ionic stresses and confirmed the closeness of NaCl and Na+ stresses. Overall, amongst the individual ions, Na+ induced higher toxicity than Cl‾ and both these ions exerted additive stress impacts under NaCl treatment.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Mumbai, 400094, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Mumbai, 400094, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
27
|
Guan C, Cui X, Liu HY, Li X, Li MQ, Zhang YW. Proline Biosynthesis Enzyme Genes Confer Salt Tolerance to Switchgrass ( Panicum virgatum L.) in Cooperation With Polyamines Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:46. [PMID: 32117384 PMCID: PMC7033549 DOI: 10.3389/fpls.2020.00046] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
Understanding the regulation of proline metabolism necessitates the suppression of two Δ1-pyrroline-5-carboxylate synthetase enzyme (P5CS) genes performed in switchgrass (Panicum virgatum L.). The results reveal that overexpressing PvP5CS1 and PvP5CS2 increased salt tolerance. Additionally, transcript levels of spermidine (Spd) and spermine (Spm) synthesis and metabolism related genes were upregulated in PvP5CS OE-transgenic plants and downregulated in the PvP5CS RNAi transformants. According to salt stress assay and the measurement of transcript levels of Polyamines (PAs) metabolism-related genes, P5CS enzyme may not only be the key regulator of proline biosynthesis in switchgrass, but it may also indirectly affect the entire subset of pathway for ornithine to proline or to putrescine (Put). Furthermore, application of proline prompted expression levels of Spd and Spm synthesis and metabolism-related genes in both PvP5CS-RNAi and WT plants, but transcript levels were even lower in PvP5CS-RNAi compared to WT plants under salt stress condition. These results suggested that exogenous proline could accelerate polyamines metabolisms under salt stress. Nevertheless, the enzymes involved in this process and the potential functions remain poorly understood. Thus, the aim of this study is to reveal how proline functions with PAs metabolism under salt stress in switchgrass.
Collapse
Affiliation(s)
- Cong Guan
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hua-yue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Meng-qi Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yun-wei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Grassland Science, China Agricultural University, Beijing, China
- National Energy R&D Center for Biomass (NECB), Beijing, China
- Beijing Sure Academy of Biosciences, Beijing, China
- *Correspondence: Yun-wei Zhang,
| |
Collapse
|
28
|
Zhang Y, Wang Y, Xing J, Wan J, Wang X, Zhang J, Wang X, Li Z, Zhang M. Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize ( Zea mays. L) via Enhancing Vacuolar Na + Sequestration and Maintaining ROS Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:457. [PMID: 32477376 PMCID: PMC7237720 DOI: 10.3389/fpls.2020.00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/27/2020] [Indexed: 05/13/2023]
Abstract
Salinity stress impairs plant growth and causes crops to yield losses worldwide. Reduction of in vivo gibberellin acid (GA) level is known to repress plant size but is beneficial to plant salt tolerance. However, the mechanisms of in vivo GA deficiency-enhanced salt tolerance in maize are still ambiguous. In this study, we generated two independent maize knockout mutant lines of ent-copalyl diphosphate synthase (one of the key enzymes for early steps of GA biosynthesis), zmcps-1 and zmcps-7, to explore the role of GA in maize salt tolerance. The typical dwarf phenotype with lower GA content and delayed leaf senescence under salinity was observed in the mutant plants. The leaf water potential and cell turgor potential were significantly higher in zmcps-1 and zmcps-7 than in the wild type (WT) under salt stress. The mutant plants exhibited a lower superoxide anion production rate in leaves and also a downregulated relative expression level of NAPDH oxidase ZmRbohA-C than the WT maize under salt stress. Also, the mutant plants had higher enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) and higher content of soluble sugars and proline under salt stress. The Na+/K+ ratio was not significantly different between the mutant maize plants and WT plants under salt stress conditions, but the Na+ and K+ content was increased in zmcps-1 and zmcps-7 leaves and shoots. Na+ fluorescent dye staining showed that the mutant leaves have significantly higher vacuolar Na+ intensity than the WT maize. The expression level of vacuolar Na+/H+ exchanger gene ZmNHX1 and vacuolar proton pump genes ZmVP1-1 and ZmVP2 were upregulated in the zmcps-1 and zmcps-7 plants under salinity, further proving that in vivo GA deficiency enhanced vacuolar Na+ sequestration in zmcps-1 and zmcps-7 leaves cells to avoid Na+ cytotoxicity. Together, our results suggested that maintaining ROS homeostasis and enhancing vacuolar Na+ sequestration could be involved in GA deficiency-improved maize salt tolerance.
Collapse
Affiliation(s)
- Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiachi Wan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xilei Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Juan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Liu Y, Li D, Yan J, Wang K, Luo H, Zhang W. MiR319 mediated salt tolerance by ethylene. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2370-2383. [PMID: 31094071 PMCID: PMC6835123 DOI: 10.1111/pbi.13154] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 05/03/2023]
Abstract
Salinity-induced accumulation of certain microRNAs accompanied by gaseous phytohormone ethylene production has been recognized as a mechanism of plant salt tolerance. MicroRNA319 (miR319) has been characterized as an important player in abiotic stress resistance in some C3 plants, such as Arabidopsis thaliana and rice. However, its role in the dedicated biomass plant switchgrass (Panicum virgatum L.), a C4 plant, has not been reported. Here, we show crosstalk between miR319 and ethylene (ET) for increasing salt tolerance. By overexpressing Osa-MIR319b and a target mimicry form of miR319 (MIM319), we showed that miR319 positively regulated ET synthesis and salt tolerance in switchgrass. By experimental treatments, we demonstrated that ET-mediated salt tolerance in switchgrass was dose-dependent, and miR319 regulated the switchgrass salt response by fine-tuning ET synthesis. Further experiments showed that the repression of a miR319 target, PvPCF5, in switchgrass also led to enhanced ethylene accumulation and salt tolerance in transgenic plants. Genome-wide transcriptome analysis demonstrated that overexpression of miR319 (OE-miR319) down-regulated the expression of key genes in the methionine (Met) cycle but promoted the expression of genes in ethylene synthesis. The results enrich our understanding of the synergistic effects of the miR319-PvPCF5 module and ethylene synthesis in the salt tolerance of switchgrass, a C4 bioenergy plant.
Collapse
Affiliation(s)
- Yanrong Liu
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Dayong Li
- Beijing Vegetable Research Center (BVRC)Beijing Academy of Agricultural and Forestry SciencesNational Engineering Research Center for VegetablesBeijingChina
| | - Jianping Yan
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Kexin Wang
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Wanjun Zhang
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
- National Energy R&D Center for Biomass (NECB)China Agricultural UniversityBeijingChina
| |
Collapse
|
30
|
Zhang X, Dong J, Deng F, Wang W, Cheng Y, Song L, Hu M, Shen J, Xu Q, Shen F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC PLANT BIOLOGY 2019; 19:459. [PMID: 31666019 PMCID: PMC6822370 DOI: 10.1186/s12870-019-2088-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/20/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding (lnc) RNAs are a class of functional RNA molecules greater than 200 nucleotides in length, and lncRNAs play important roles in various biological regulatory processes and response to the biotic and abiotic stresses. LncRNAs associated with salt stress in cotton have been identified through RNA sequencing, but the function of lncRNAs has not been reported. We previously identified salt stress-related lncRNAs in cotton (Gossypium spp.), and discovered the salt-related lncRNA-lncRNA973. RESULTS In this study, we identified the expression level, localization, function, and preliminary mechanism of action of lncRNA973. LncRNA973, which was localized in the nucleus, was expressed at a low level under nonstress conditions but can be significantly increased by salt treatments. Here lncRNA973 was transformed into Arabidopsis and overexpressed. Along with the increased expression compared with wild type under salt stress conditions in transgenic plants, the seed germination rate, fresh weights and root lengths of the transgenic plants increased. We also knocked down the expression of lncRNA973 using virus-induced gene silencing technology. The lncRNA973 knockdown plants wilted, and the leaves became yellowed and dropped under salt-stress conditions, indicating that the tolerance to salt stress had decreased compared with wild type. LncRNA973 may be involved in the regulation of reactive oxygen species-scavenging genes, transcription factors and genes involved in salt stress-related processes in response to cotton salt stress. CONCLUSIONS LncRNA973 was localized in the nucleus and its expression was increased by salt treatment. The lncRNA973-overexpression lines had increased salt tolerance compared with the wild type, while the lncRNA973 knockdown plants had reduced salt tolerance. LncRNA973 regulated cotton responses to salt stress by modulating the expression of a series of salt stress-related genes. The data provides a basis for further studies on the mechanisms of lncRNA973-associated responses to salt stress in cotton.
Collapse
Affiliation(s)
- Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Jian Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Qingjiang Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
31
|
Banerjee A, Roychoudhury A. Differential regulation of defence pathways in aromatic and non-aromatic indica rice cultivars towards fluoride toxicity. PLANT CELL REPORTS 2019; 38:1217-1233. [PMID: 31175394 DOI: 10.1007/s00299-019-02438-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Excessive bioaccumulation of fluoride in IR-64 caused low abscisic acid level, inhibition of polyamine biosynthesis and ascorbate-glutathione cycle but not in Gobindobhog which had higher antioxidant activity. The current study presents regulation of diverse metabolic and molecular defence pathways during fluoride stress in non-aromatic rice variety, IR-64 and aromatic rice variety, Gobindobhog (GB). Increasing concentration of fluoride affected fresh weight, dry weight, vigour index and relative water content to a lesser extent in GB compared to IR-64. GB exhibited lower methylglyoxal accumulation and lipoxygenase activity compared to IR-64 during stress. The level of osmolytes (proline, amino acids and glycine-betaine) increased in both the stressed varieties. The biosynthesis of higher polyamines was stimulated in stressed GB. IR-64 accumulated higher amount of putrescine due to degradation of higher polyamines as supported by gene expression analysis. Unlike IR-64, GB efficiently maintained the ascorbate-glutathione cycle due to much lower fluoride bioaccumulation, compared to IR-64. GB adapted to fluoride stress by strongly inducing guaiacol peroxidase, phenylalanine ammonia lyase and a novel isozyme of superoxide dismutase. While GB accumulated higher abscisic acid (ABA) level during stress, IR-64 exhibited slow ABA degradation which enabled induction of associated osmotic stress-responsive genes. Unlike GB, ABA-independent DREB2A was downregulated in stressed IR-64. The research illustrates varietal differences in the defence machinery of the susceptible variety, IR-64, and the well adapted cultivar, GB, on prolonged exposure to increasing concentrations of fluoride.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India.
| |
Collapse
|
32
|
Suekawa M, Fujikawa Y, Esaka M. Exogenous proline has favorable effects on growth and browning suppression in rice but not in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:1-7. [PMID: 31247444 DOI: 10.1016/j.plaphy.2019.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Proline is one of the amino acids that compose proteins and has various roles under non-stress and stress conditions. In this study, we investigated the effect of proline on the growth and browning of two plants, tobacco and rice, by exogenous application and endogenous increase of proline. Exogenous proline had a different effect on the growth and browning between tobacco and rice: proline affected negatively the growth of tobacco seedlings and favorably that of rice seedlings. In addition, proline prevented browning only in rice cultured cells, consistent with the increase of proline contents, but not in tobacco BY-2 cells. These results might be due to the difference of exogenous proline uptake activity in these cells. From the Lineweaver-Burk plots, proline inhibited polyphenol oxidase activity in vitro, which is a major factor of enzymatic browning in plants, by affecting the enzyme-substrate complex. Proline could suppress the browning of the plant callus by inhibition of PPO activity.
Collapse
Affiliation(s)
- Marina Suekawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Yukichi Fujikawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Muneharu Esaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| |
Collapse
|
33
|
Peng X, Wu H, Chen H, Zhang Y, Qiu D, Zhang Z. Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress. BMC Genomics 2019; 20:687. [PMID: 31472675 PMCID: PMC6717372 DOI: 10.1186/s12864-019-6045-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background Tetrastigma hemsleyanum Diels et Gilg is a valuable medicinal herb, whose main bioactive constituents are flavonoids. Chilling sensitivity is the dominant environmental factor limiting growth and development of the plants. But the mechanisms of cold sensitivity in this plant are still unclear. Also, not enough information on genes involved in flavonoid biosynthesis in T. hemsleyanum is available to understand the mechanisms of its physiological and pharmaceutical effects. Results The electrolyte leakage, POD activity, soluble protein, and MDA content showed a linear sustained increase under cold stress. The critical period of cold damage in T. hemsleyanum was from 12 h to 48 h. Expression profiles revealed 18,104 differentially expressed genes (DEGs) among these critical time points. Most of the cold regulated DEGs were early-response genes. A total of 114 unigenes were assigned to the flavonoid biosynthetic pathway. Fourteen genes most likely to encode flavonoid biosynthetic enzymes were identified. Flavonols of T. hemsleyanum might play a crucial role in combating cold stress. Genes encoding PAL, 4CL, CHS, ANR, FLS, and LAR were significantly up-regulated by cold stress, which could result in a significant increase in crucial flavonols (catechin, epicatechin, rutin, and quercetin) in T. hemsleyanum. Conclusions Overall, our results show that the expression of genes related to flavonol biosynthesis as well as flavonol content increased in T. hemsleyanum under cold stress. These findings provide valuable information regarding the transcriptome changes in response to cold stress and give a clue for identifying candidate genes as promising targets that could be used for improving cold tolerance via molecular breeding. The study also provides candidate genes involved in flavonoid biosynthesis and may be useful for clarifying the biosynthetic pathway of flavonoids in T. hemsleyanum. Electronic supplementary material The online version of this article (10.1186/s12864-019-6045-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Peng
- Institute of Biopharmaceutical Technology, Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China.,Fujian Agriculture and Forestry University, Fuzhou, 350000, Fujian, People's Republic of China
| | - Hao Wu
- Institute of Biopharmaceutical Technology, Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Hongjiang Chen
- Institute of Biopharmaceutical Technology, Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Yujiong Zhang
- Institute of Biopharmaceutical Technology, Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Dan Qiu
- Ningbo Engineering College, Ningbo, 315100, China
| | - Zhongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, 350000, Fujian, People's Republic of China.
| |
Collapse
|
34
|
Guan C, Huang YH, Cen HF, Cui X, Tian DY, Zhang YW. Overexpression of the Lolium perenne L. delta1-pyrroline 5-carboxylate synthase (LpP5CS) gene results in morphological alterations and salinity tolerance in switchgrass (Panicum virgatum L.). PLoS One 2019; 14:e0219669. [PMID: 31310632 PMCID: PMC6634860 DOI: 10.1371/journal.pone.0219669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
In plants, Δ1-pyrroline- 5-carboxylate synthase (P5CS) is the rate-limiting enzyme in proline biosynthesis. In this study, we introduced the LpP5CS (Lolium perenne L.) gene into switchgrass by Agrobacterium-mediated transformation. The transgenic lines (TG) were classified into two groups based on their phenotypes and proline levels. The group I lines (TG4 and TG6) had relatively high proline levels and improved biomass yield. The group II lines (TG1 and TG2) showed low proline levels, severely delayed flowering, stunted growth and reduced biomass yield. Additionally, we used RNA-seq analysis to detect the most significant molecular changes, and we analyzed differentially expressed genes, such as flowering-related and CYP450 family genes. Moreover, the biomass yield, physiological parameters, and expression levels of reactive oxygen species scavenger-related genes under salt stress all indicated that the group I plants exhibited significantly increased salt tolerance compared with that of the control plants, in contrast to the group II plants. Thus, genetic improvement of switchgrass by overexpressing LpP5CS to increase proline levels is feasible for increasing plant stress tolerance.
Collapse
Affiliation(s)
- Cong Guan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan-Hua Huang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui-Fang Cen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan-Yang Tian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun-Wei Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Grassland Science, China Agricultural University, Beijing, China
- National Energy R&D Center for Biomass (NECB), Beijing, China
| |
Collapse
|
35
|
Tang Y, Wang J, Bao X, Liang M, Lou H, Zhao J, Sun M, Liang J, Jin L, Li G, Qiu Y, Liu K. Genome-wide identification and expression profile of HD-ZIP genes in physic nut and functional analysis of the JcHDZ16 gene in transgenic rice. BMC PLANT BIOLOGY 2019; 19:298. [PMID: 31286900 PMCID: PMC6615155 DOI: 10.1186/s12870-019-1920-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/03/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Homeodomain-leucine zipper (HD-ZIP) transcription factors play important roles in the growth, development and stress responses of plants, including (presumably) physic nut (Jatropha curcas), which has high drought and salinity tolerance. However, although physic nut's genome has been released, there is little knowledge of the functions, expression profiles and evolutionary histories of the species' HD-ZIP genes. RESULTS In this study, 32 HD-ZIP genes were identified in the physic nut genome (JcHDZs) and divided into four groups (I-IV) based on phylogenetic analysis with homologs from rice, maize and Arabidopsis. The analysis also showed that most of the JcHDZ genes were closer to members from Arabidopsis than to members from rice and maize. Of the 32 JcHDZ genes, most showed differential expression patterns among four tissues (root, stem cortex, leaf, and seed). Expression profile analysis based on RNA-seq data indicated that 15 of the JcHDZ genes respond to at least one abiotic stressor (drought and/or salinity) in leaves at least at one time point. Transient expression of a JcHDZ16-YFP fusion protein in Arabidopsis protoplasts cells showed that JcHDZ16 is localized in the nucleus. In addition, rice seedlings transgenically expressing JcHDZ16 had lower proline contents and activities of antioxidant enzymes (catalase and superoxide dismutase) together with higher relative electrolyte leakage and malondialdehyde contents under salt stress conditions (indicating higher sensitivity) than wild-type plants. The transgenic seedlings also showed increased sensitivity to exogenous ABA, and increases in the transcriptional abundance of several salt stress-responsive genes were impaired in their responses to salt stress. Further data on JcHDZ16-overexpressing plants subjected to salt stress treatment verified the putative role of JcHDZ genes in salt stress responses. CONCLUSION Our results may provide foundations for further investigation of functions of JcHDZ genes in responses to abiotic stress, and promote application of JcHDZ genes in physic nut breeding.
Collapse
Affiliation(s)
- Yuehui Tang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, Henan China
| | - Jian Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, Henan China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Zhoukou, Henan China
| | - Mengyu Liang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Huimin Lou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Junwei Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Mengting Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Jing Liang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Lisha Jin
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Guangling Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Yahui Qiu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan China
| | - Kun Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan China
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou, Henan China
| |
Collapse
|